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Abstract
Stroke is a leading cause of mortality and long-term morbidity. As a means for stroke prevention, an
estimated 99,000 carotid endarterectomy procedures were performed in the USA in 2006.
Traditionally, the degree of luminal stenosis has been used as a marker of the stage of atherosclerosis
and as an indication for surgical intervention. However, prospective clinical trials have shown that
the majority of patients with a history of recent transient ischemic attack or stroke have mild-to-
moderate carotid stenosis. Using stenosis criteria, many of these symptomatic individuals would be
considered to have early-stage carotid atherosclerosis. It is evident that improved criteria are needed
for identifying the high-risk carotid plaque across a range of stenoses. Histological studies have led
to the hypothesis that plaques with larger lipid-rich necrotic cores, thin fibrous cap rupture,
intraplaque hemorrhage, plaque neovasculature and vessel wall inflammation are characteristics of
the high-risk, ‘vulnerable plaque’. Despite the widespread consensus on the importance of these
plaque features, testing the vulnerable plaque hypothesis in prospective clinical studies has been
hindered by the lack of reliable imaging tools for in vivo plaque characterization. MRI has been
shown to accurately identify key carotid plaque features, including the fibrous cap, lipid-rich necrotic
core, intraplaque hemorrhage, neovasculature and vascular wall inflammation. Thus, MRI is a
histologically validated technique that will permit prospective testing of the vulnerable plaque
hypothesis. This article will provide a summary of the histological validation of carotid MRI, and
highlight its application in prospective clinical studies aimed at early identification of the high-risk
atherosclerotic carotid plaque.
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Stroke is the leading cause of long-term disability as well as the third most common cause of
mortality in the USA. Approximately 795,000 individuals experience a new or recurrent stroke
each year in the USA, that is one person every 40 s [1]. The estimated direct and indirect cost
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of stroke for 2009 is US$68.9 billion [1], and the projected costs for 2050 exceed $2.2 trillion,
leading to a call for a greater focus on stroke prevention and improvement in the treatment of
patients with acute stroke [2].

A number of randomized trials have documented the clinical benefit of carotid endarterectomy
(CEA) for secondary stroke prevention among recently symptomatic patients with high-grade
carotid stenosis [3-5]. In the North American Symptomatic Carotid Endarterectomy Trial
(NASCET), patients with carotid atherosclerosis who had a recent history of transient ischemic
attack (TIA) or nondisabling stroke were randomized to optimal medical therapy or CEA. In
the subgroup with 70–99% stenosis, CEA was associated with an absolute risk reduction of
17% for ipsilateral stroke over 2 years [3].

The role of CEA in symptomatic patients with less than 70% carotid disease is less clear. In
this more moderate stenosis group, CEA afforded an absolute risk reduction of only 6.5% for
stroke over the following 5 years, compared with best medical therapy. As such, 15 CEA
procedures would need to be performed to prevent one stroke over 5 years.

While results from NASCET and other prospective trials indicate a higher risk for stroke with
severe carotid stenosis [6], it is noteworthy that the large majority of the subjects in these trials
who presented with recent carotid territory ischemic events were found to have mild-to-
moderate stenosis. The European Carotid Surgery Trial reported that 43.8% of the 3018
individuals with symptomatic carotid disease had less than 30% stenosis on angiography [7].
NASCET reported that 61% of the 2226 recently symptomatic subjects had less than 50%
carotid stenosis [8]. Also of note, the risk for stroke in NASCET was similar amongst those
with 50–69% stenosis (22.2% at 5 years) and those with 0–49% stenosis (18.7% at 5 years)
[8]. These findings suggest that severity of carotid stenosis is a poor discriminator of stroke
risk amongst those with mild-to-moderate luminal narrowing.

Based on these observations, additional criteria have been sought to better identify patients
most at risk for complications from carotid atherosclerosis. Wasserman, Virmani and
colleagues have advocated looking beyond luminal narrowing to identify the high-risk carotid
plaque. They and others have shown that measurement of stenosis, using the method described
in NASCET, underestimates plaque burden [9-11]. This is likely related to the geometry of the
carotid bulb, which is normally larger than the more distal internal carotid artery (Figure 1),
as well as the phenomenon of expansive remodeling, originally described by Glagov (Figure
2) [12]. Based on the geometry of the bulb, it is possible to have an eccentric plaque opposite
the flow divider, despite measurement of a 0% stenosis, using the method described in
NASCET (Figure 1).

Beyond simple plaque burden, a number of investigators have hypothesized that specific
compositional features of the plaque also distinguish the high-risk, ‘vulnerable plaque’ from
the stable, clinically silent lesion. Analysis of histological findings in CEA specimens has
shown that fibrous cap (FC) rupture, intraplaque hemorrhage (IPH), large lipid-rich necrotic
cores, erosions with overlying mural thrombus, plaque neovasculature and inflammatory cell
infiltration are more commonly observed in plaques removed from previously symptomatic
patients [13-19].

In summary, findings from the symptomatic carotid clinical trials indicate that the majority of
patients with recent carotid territory ischemic events have mild (<30%) to moderate (30–69%)
carotid stenosis. Additional plaque parameters, other than quantification of stenosis, are needed
to identify the high-risk plaque amongst these individuals who are presumed to have early-
stage carotid atherosclerosis.
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Role of imaging
Progress toward prospectively testing the ‘vulnerable plaque hypothesis’ has been hampered
by the inability to accurately and reproducibly identify key plaque features that are believed
to represent the high-risk lesion in vivo. Transcutaneous B-mode ultrasonography provides a
relatively inexpensive method for imaging carotid plaque with high resolution. Studies dating
back to the early 1980s have shown that plaques with an echolucent, heterogeneous or ulcerated
appearance are associated with TIA or stroke [20-27]. Challenges for ultrasound include
acoustical shadowing from calcification, anisotropic effects (where the appearance of the lesion
can vary depending on the angle of insonation) [28-30], operator variability, lack of specificity
for distinguishing lipid core from IPH and modest reader reproducibility [27,31-34]. CT and
PET are promising modalities to quantify atherosclerotic carotid artery lesion size and
compositional features, particularly calcification (CT) [35-39] and vessel wall inflammation
(PET) [40-43]. Advantages of MRI include its superior specificity for characterizing tissue
composition, image generation without ionizing radiation and extensive histological validation
for characterizing carotid atherosclerosis. Multiple centers have shown that MRI can reliably
identify FC status [44-48], plaque composition [49-58], neovasculature and vascular wall
inflammation [59,60] using histology as the gold standard. This has been achieved via the
development of custom designed surface coils that result in significant improvement in the
signal-to-noise ratio, and specialized multicontrast-weighted imaging sequences that include
bright-blood time-of-flight (TOF) as well as pre- and postgadolinium contrast-enhanced black-
blood imaging, which provide submillimeter (~0.6 mm) in-plane resolution. Details of
hardware development, pulse-sequence design and MRI criteria for carotid plaque
characterization have been previously published [61-67].

Histological validation of MRI
FC status & lipid-rich necrotic core

Using a multicontrast-weighted protocol including a 3D TOF bright-blood imaging technique,
Yuan et al. described the MRI appearance of intact/thick FC as a continuous hypointense band
near the bright lumen on 3D-TOF images, and a smooth luminal surface. Plaques where the
hypointense band could not be visualized were categorized as having an intact/thin FC. FC
rupture was identified by the absence or discontinuity of the hypointense band, juxtaluminal
hyperintense signal in the TOF and T1-weighted (T1W) images (consistent with recent
hemorrhage), and/or an irregular lumen surface. In a study comparing in vivo MRI with
histology in patients scanned prior to CEA, Yuan found a high level of agreement between the
magnetic resonance (MR) findings and the histological state of the FC, with a k value of 0.83
(95% CI: 0.67–1.0) and a weighted k value of 0.87 [44]. The sensitivity and specificity for
identifying a thin or ruptured cap was 81 and 90%, respectively [45]. Figure 3 illustrates the
appearance of the FC on 1.5 T MRI, and Figure 4 demonstrates FC rupture with ulceration and
thrombus formation on 3 T MRI, with corresponding histology. Figure 5 demonstrates cap
rupture with ulceration in the common carotid artery on 3 T MRI.

A more recently published study by Cai et al. [48] demonstrated the utility of gadolinium-
based contrast-enhanced MRI for increasing the conspicuity of the FC and the lipid-rich
necrotic core (LRNC), permitting more reliable quantification of FC and LRNC dimensions.
A total of 108 cross-sectional locations with intact FCs from 21 arteries were matched between
MRI and the excised histology specimens. Quantitative measurements of FC length along the
lumen circumference, FC area and LRNC area were collected from contrast-enhanced MR
images and histology sections (Figure 6). Blinded comparison of corresponding MRI and
histology slices showed moderate to good correlation for length (r = 0.73, p < 0.001) and area
(r = 0.80, p < 0.001) of the intact FC. The mean percent LRNC areas ([LRNC area divided by
the wall area] × 100%) measured by contrast-enhanced MRI and histology were 30.1 and
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32.7%, respectively, and were strongly correlated across locations (r = 0.87, p < 0.001).
Intraobserver reproducibility was excellent for LRNC area, FC area and FC length (intraclass
correlation coefficient = 0.87, 0.72 and 0.80, respectively). Interobserver reproducibility was
also excellent for LRNC area, FC area and FC length (intraclass correlation coefficient = 0.89,
0.78 and 0.81, respectively).

Juxtaluminal hemorrhage/mural thrombus
Intraplaque hemorrhage, deep within the core of the lesion, and hemorrhage/thrombus near or
on the luminal surface may differ in etiology and clinical implications. In a study of 26 patients
scheduled for CEA, Kampschulte et al. compared preoperative carotid MRI findings to the
patients’ matched histology to determine whether MRI can distinguish between deep IPH and
juxtaluminal hemorrhage/mural thrombus [55]. Hemorrhages were identified using previously
established MRI criteria (type I = more recent hemorrhage: hyperintense on TOF and T1W
images; type II = older hemorrhage: hyperintense on TOF, T1W, proton density-weighted and
T2W images) [68] and their locations were differentiated between intraplaque and
juxtaluminal. Corresponding histology was used to confirm the MR findings. Matched sections
(n = 190) contained 144 areas of hemorrhage by histology, of which MRI correctly detected
132 areas. The sensitivity and specificity for MRI to correctly identify cross-sections
containing hemorrhage was 96 and 82%, respectively. Furthermore, MRI was able to
distinguish juxtaluminal hemorrhage/thrombus from IPH with an accuracy of 96%.

Moody and colleagues have shown that the contrast between plaque hemorrhage and other
plaque components can be improved using an inversion-prepared rapid 3D gradient-echo
sequence, also known as MP-RAGE (Figure 7) [51]. In a study of 63 patients who underwent
an MRI scan prior to CEA, the authors reported a sensitivity and specificity of 84%, and very
good reproducibility (inter- and intraobserver κ = 0.75 and 0.9, respectively).

Dynamic contrast-enhanced MRI, neovasculature & macrophage infiltration of plaque
In the 1930s, Winternitz reported that neovasculature may be involved in the pathogenesis of
atherosclerosis [69]. More recently, O’Brien noted that neovasculature within plaques may
represent a pathway for the recruitment of macrophage infiltration, and that the endothelial
cells lining these microvessels are a site of inflammatory activation [70]. Work by Galis, Libby
and Nikkari have shown that macrophages, typically found in the shoulder regions adjacent to
the FC, express matrix metalloproteinases that can result in the weakening of the FC,
predisposing it to rupture [71-73]. More recently, Levy et al. have suggested that plaque
neovasculature may play an important role in the pathogenesis of IPH [74].

Work by a number of investigators have demonstrated differential enhancement of carotid
plaque tissues using gadolinium-based MRI contrast agents [50,75,76]. They found that strong
enhancement generally suggests the presence of a highly permeable vascular supply within the
plaque (neovasculature) and loose extracellular matrix for contrast agent uptake. As
neovasculature and increased endothelial permeability are both associated with plaque
inflammation [70,77-80], gadolinium enhancement of the vessel wall has been hypothesized
to be a marker of the vascular wall inflammation. To probe this hypothesis further using
quantitative analyses, Kerwin et al. used dynamic contrast-enhanced MRI to measure the rate
of uptake of gadolinium-based contrast, characterized by the transfer constant Ktrans, and
compared these measurements to histological measurements of plaque composition and
inflammation. The parameter Ktrans is well known in oncology, where it has been used to
characterize tumor blood supply and permeability [81].

To measure Ktrans, repeated MRI measurements were made over short intervals to observe the
dynamics of enhancement in the tissue of interest and in a reference arterial lumen (the ‘arterial
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input function’). The arterial input function and tissue-enhancement curves were then fit by a
parametric model of contrast agent kinetics. Kerwin utilized the equation:

where Ct, and Cp are the contrast agent concentrations in the tissue (total), and blood plasma,
respectively, and υp is the partial volume of blood plasma. This is the standard kinetic model
[82] with a vascular term and ignoring reflux. Concentrations were assumed to be proportional
to intensity change. The results of this modeling are parametric maps of υp and Ktrans in the
plaque that not only quantify the amount of enhancement, but also the rate of enhancement.

Using this dynamic MRI acquisition protocol, Kerwin measured υp and Ktrans in 30 patients
scheduled to undergo CEA [60]. The excised specimens were then histologically analyzed to
measure neovasculature and macrophage content, expressed as percent area (% neovasculature
= [neovasculature area divided by plaque area] × 100%). Measurements of υp correlated with
neovasculature content (Figure 8A; r = 0.68, p < 0.001). Ktrans also correlated with
neovasculature (Figure 8B; r = 0.71, p < 0.001) and macrophage content (Figure 8C; r = 0.75,
p < 0.001). Interestingly, there was a negative correlation between Ktrans and high-density
lipoprotein (HDL)-cholesterol levels (r = -0.66, p < 0.001). Ktrans was also noted to be
significantly higher amongst cigarette smokers compared with nonsmokers (mean: 0.134 vs
0.074 min-1; p = 0.01). Both low HDL and smoking have been found to be proinflammatory
stimuli for atherosclerosis [83,84].

In summary, carotid MRI is a histologically validated tool that can identify the key features
that are believed to characterize the vulnerable plaque, including FC status, plaque
composition, neovasculature and vascular wall inflammation. Furthermore, MRI is ideally
suited for serial assessment of temporal changes in the lesion in a noninvasive, nondestructive
fashion. Therefore, MRI provides a critical tool to test the vulnerable plaque hypothesis in
vivo.

Application of MRI in prospective clinical studies
Prospectively testing the vulnerable plaque hypothesis using carotid MRI

In a prospective, observational study of 154 subjects with 50–79% carotid stenosis who were
asymptomatic at the time of enrollment, Takaya et al. tested the hypothesis that specific carotid
plaque features are associated with a higher risk of subsequent TIA or stroke [85]. Following
their baseline carotid MRI examination, subjects were called every 3 months to identify
symptoms of new-onset TIA or stroke; 12 cerebrovascular events (four strokes and eight TIAs)
that were judged to be carotid related occurred during a mean follow-up period of 38.2 months.
Cox regression analysis demonstrated significant associations between ischemic events and
presence of a thin or ruptured FC (hazard ratio: 17.0; p < 0.001), IPH (hazard ratio: 5.2; p =
0.005) and larger mean necrotic core area (hazard ratio for 10 mm2 increase: 1.6; p = 0.01) in
the carotid plaque (Figure 9A & B).

These findings were corroborated in a more recently published study by Singh et al [86]. A
total of 91 initially asymptomatic men with 50–70% stenosis were followed for a mean period
of 25 months. They reported that of the six cerebrovascular events that occurred, 100%
corresponded to arteries with IPH present at baseline (hazard ratio: 3.6; p < 0.001) [86].

The value of MRI in patients who had a recent history of TIA or stroke and moderate carotid
stenosis was recently demonstrated by Altaf et al. [87]. Amongst 64 subjects with 30–69%
carotid stenosis and a recent carotid territory ischemic event, Altaf performed baseline carotid
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MRIs to identify IPH and followed the subjects for the development of subsequent TIA or
stroke. Of all the index arteries demonstrated, 39 (61%) demonstrated IPH on baseline MRI.
Median follow-up was 38 months. A total of 14 ipsilateral ischemic events (nine TIAs and five
strokes) were observed during follow-up. Out of the 14 events, 13 occurred ipsilateral to carotid
arteries with IPH (hazard ratio: 9.8; 95% CI: 1.3–75.1; p = 0.03).

The small number of ischemic events in these studies [85-87] precluded multivariate analyses.
Nonetheless, these findings offer compelling prospective evidence of the potential of carotid
MRI for defining the high-risk, vulnerable plaque, and provide a foundation for the design of
larger, multicenter studies.

MRI predictors of rapid plaque burden & LRNC progression
As a noninvasive imaging modality, MRI is ideally suited for serial examination of plaque
features that may play a critical role in the pathogenesis of high-risk lesions of atherosclerosis.
In a histopathology study of excised coronary arteries, Kolodgie, Virmani and colleagues
suggested that IPH may represent a potent atherogenic stimulus by contributing to the
deposition of free cholesterol, macrophage infiltration and enlargement of the necrotic core
[88]. In a case–control study of 29 subjects participating in a longitudinal, serial MRI
progression study, Takaya et al. tested the hypothesis that IPH, as detected by high-resolution
MRI, was associated with greater progression in both necrotic core and plaque volume [89].
The volume of wall, lumen, necrotic core and IPH were measured at baseline and follow-up.
Carotid arteries with IPH on baseline examination demonstrated markedly accelerated rates of
progression in wall volume (6.8% with IPH vs -0.15% without IPH; p = 0.009) and LRNC
volume (28.4% with IPH vs -5.2% without IPH; p = 0.001) over the course of 18 months (Figure
10). Furthermore, those with IPH at baseline were much more likely to have new plaque
hemorrhages at 18 months compared with controls (43 vs 0%; p = 0.006). Findings from this
study strongly suggest that hemorrhage into the carotid atherosclerotic plaque accelerates
plaque progression within a relatively short period of 18 months.

Underhill et al. found a similar pattern in individuals with subclinical, earlier-stage carotid
atherosclerosis [90]. In a prospective, longitudinal MRI study of 67 asymptomatic subjects
with 16–49% stenosis, IPH was associated with accelerated progression in carotid wall volume
compared with lesions without IPH (44.1 ± 36.1 vs 0.8 ± 34.5 mm3 per year; p < 0.001).
Underhill also found that IPH altered the pattern of arterial remodeling. Lesions without IPH
demonstrated outward, expansive remodeling with preservation of luminal dimension, as
originally described by Glagov et al. [12]. However, in carotid arteries with IPH, these
compensatory mechanisms appeared to be overridden by rapid expansion of the lesion, and
was associated with luminal narrowing (-24.9 ± 21.1 mm3 per year; p = 0.002).

MRI predictors of luminal surface disruption
As noted earlier, MRI identification of FC rupture is highly associated with carotid territory
ischemic events [85,91]. In a prospective, serial MRI study of 85 subjects with 50–79% stenosis
and no luminal surface disruption at baseline, Underhill et al. examined the clinical and baseline
carotid MRI plaque features that were associated with new FC disruption on follow-up MRI
[92]. They found that the size of the LRNC at baseline was the strongest classifier for
development of a new surface disruption at the 36 month follow-up scan (area under the curve
[AUC] = 0.95). Presence of IPH was also a statistically significant, but weaker, classifier of
new surface disruption (AUC = 0.73).

Dynamic contrast-enhanced MRI & incident FC rupture
Oikawa et al. examined the relationship between the extent of adventitial vasa vasorum, as
measured by Ktrans on baseline dynamic contrast-enhanced MRI, and the development of new
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FC rupture at the 36 month follow-up [93]. Amongst 30 arteries evaluated, baseline mean
Ktrans was significantly higher in arteries with FC rupture and/or IPH at baseline (n = 14)
compared with those with intact surface without IPH (n = 16) (0.13 ± 0.005/min vs 0.10 ±
0.004/min, respectively; p < 0.001). Furthermore, amongst 23 arteries with an intact FC on the
initial MRI, baseline mean Ktrans was significantly higher in arteries that developed MRI
evidence of new FC rupture at 3 years (n = 4) compared with those with intact surface at follow-
up (n = 19) (0.14 ± 0.009/min vs 0.10 ± 0.004/min, respectively; p = 0.004). A total of 50% of
the arteries with a baseline mean Ktrans > 0.114/min developed FC rupture during follow-up
(AUC = 0.91). These results suggest a potential role of adventitial neovasculature in the
pathogenesis of plaque disruption. However, these preliminary findings require further
investigation in larger studies.

Prevalence of high-risk plaque features in arteries with minimal-to-moderate stenosis
MRI studies have shown that presumptive high-risk plaque features, such as IPH and FC
rupture, are commonly identified in carotid arteries with minimal-to-moderate stenosis [94,
95]. In a review of 260 carotid MRI examinations performed in asymptomatic subjects, the
prevalence of plaques with MRI evidence of IPH or FC rupture across a range of luminal
stenoses was assessed by Saam et al. [94]. Up to a third of subjects with asymptomatic 50–
79% stenosis and approximately 10% with 16–49% stenosis have evidence of cap rupture or
IPH (Figure 11).

In a more recent study of subjects undergoing gadolinium contrast-enhanced magnetic
resonance angiography (CE-MRA) and high-resolution carotid MRI at 3 T, Dong et al. found
a surprisingly high prevalence of complex plaque features in arteries with 0% stenosis [96]. A
total of 72 individuals with more than 50% carotid stenosis in at least one carotid artery by
duplex ultrasonography were recruited for MRI of their bilateral carotid arteries. For each
artery, the percent wall volume (wall volume/[lumen volume + wall volume] × 100%) and the
prevalence of LRNC, calcification, IPH and FC rupture were recorded. Of the 144 arteries
available for analysis, 133 had interpretable image quality, and 36.1% of the remaining arteries
had a 0% stenosis on CE-MRA, as measured using NASCET criteria. Amongst arteries found
to have a 0% stenosis by CE-MRA, the mean percent wall volume was 43.0 ± 6.9% with a
range from 31.6 to 60.1%. LRNC was present in 67.4% (31 out of 46) of arteries, calcification
was present in 65.2% (30 out of 46), IPH was present in 8.7% (4 out of 46), and FC rupture
was present in 4.3% (2 out of 46). While selection criteria for the study limit extrapolation of
these results to the general population, the findings confirm that angiography underestimates
carotid plaque burden (Figure 12) [9,10] and is ineffective in detecting the presence of complex
plaque.

Future perspective
The clinical studies reviewed herein demonstrate the potential prognostic value of carotid MRI
for subsequent TIA or stroke in asymptomatic and recently symptomatic individuals with
moderate carotid stenosis. Furthermore, MRI may play a valuable role in examining
mechanisms involved in the pathogenesis of the high-risk carotid plaque. While the results
from these initial studies are promising, the small number of events precluded multivariate
analysis of the data, and highlights the need for larger, multicenter studies.

Additionally, initial findings suggest the need for imaging criteria in the form of a
comprehensive plaque score that would provide greater positive predictive value for future
events. In the study by Altaf et al. [87], IPH was equally prevalent in the contralateral
(nonindex) carotid artery, yet there was only one TIA and no strokes referable to the nonindex
side during follow-up. This suggests that factors other than the sole presence of IPH may also
be important, such as FC status, size of the LRNC and IPH, the location of IPH (juxtaluminal
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or deep within the plaque) and degree of neovasculature. Larger studies are needed to test the
hypothesis that specific baseline plaque features, independently or in combination, are
associated with an increased risk for future ischemic events.

Validation of a comprehensive plaque score in prospective observational studies will provide
the foundation for future randomized clinical trials. These trials will be needed to assess
whether new plaque imaging-based selection criteria, by identifying individuals at higher risk
than those identified by current stenosis-based criteria, will yield a greater absolute risk
reduction that will be sufficient to justify carotid surgery or stenting in patients with moderate
carotid stenosis.

Finally, the development of novel, molecular imaging techniques will advance the MRI field
to the next critical level. The current clinically available MRI techniques described in this
article provide important information regarding the structure and composition of human carotid
atherosclerosis in vivo. Furthermore, dynamic contrast-enhanced MRI shows promise for
providing an indirect measure of plaque neovasculature and the inflammatory activity of the
plaque. The development of probes that package MRI contrast agents with targeted lipid-based
nanoparticles [97-99] or HDLs [100] show great promise for providing a direct measure of
plaque activity and function at a molecular level [101].

Conclusion
Carotid MRI has been extensively validated and provides quantitative information regarding
the morphology and composition of human carotid atherosclerosis in vivo. Therefore, it
provides an essential tool that will allow prospective studies to test the vulnerable plaque
hypothesis.

Currently, there is a lack of consensus in the management of recently symptomatic patients
with moderate carotid stenosis. Furthermore, improved methods of plaque imaging have
documented that stenosis severity underestimates carotid plaque burden and plaque
complexity, including those with angiographically normal appearing arteries. It is critical that
we develop better plaque imaging-based methods for stroke risk stratification so that
individuals with stable plaques will be spared from unnecessary surgery or stenting, and
individuals with unstable, high-risk lesions who would be appropriately referred.

Finally, a better understanding of the characteristics of the vulnerable plaque will provide a
foundation for further research on the pathogenesis of high-risk lesions, and perhaps lead to
development of novel pharmacological therapy.

Executive summary

• Amongst asymptomatic and symptomatic individuals with moderate carotid
stenosis, specific MRI-identified carotid plaque features (e.g., intraplaque
hemorrhage) are associated with an increased likelihood of subsequent transient
ischemic attack or stroke. However, larger studies are needed to confirm these
promising initial findings.

• Measurement of stenosis underestimates carotid plaque burden. Furthermore, MRI
studies have shown that complex plaque features, such as the lipid-rich necrotic
core, intraplaque hemorrhage and fibrous cap rupture, are prevalent in carotid
arteries with minimal stenosis – including those with angiographically normal
appearing arteries.
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• Improved criteria for individual risk stratification will reduce overall healthcare
costs by avoiding interventions that unnecessarily put individuals with stable
plaques at risk for procedure-related complications, and appropriately select
individuals with unstable, high-risk lesions for surgery or stenting.
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Figure 1. Scheme demonstrating the typical geometry of the carotid bulb
The percent stenosis, measured using the NASCET method = [1 – (A/B)] *100%.
CCA: Common carotid artery; ECA: External carotid artery; ICA: Internal carotid artery.
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Figure 2. T1-weighted MRI of the carotid arteries just cephalad to the carotid bifurcation
The R. ICA and R. ECA are normal. The L. ICA and L. ECA demonstrate evidence of expansive
remodeling and eccentric plaque. Note that the lumen diameters in the R. ICA and L. ICA are
the same.
ECA: External carotid artery; ICA: Internal carotid artery; L.: Left; R.: Right.
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Figure 3. Appearance of the fibrous cap on MRI obtained prior to carotid endarterectomy, with
matching gross and histological cross sections of the excised specimen
Cap rupture is seen at the 8:00–9:00 position (arrow 1) on histology and MRI, with associated
recent intraplaque hemorrhage (arrow 2). Adjacent thick cap is seen (arrow 3) as a dark band
on magnetic resonance image. Reproduced with permission from [44].
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Figure 4. 3 T MRI of a plaque in the right common carotid artery that demonstrates fibrous cap
rupture with ulcer formation (yellow arrow)
The crescent-shaped, high-signal region in the PDW, T2W and CE T1W images corresponds
to a region of thrombus formation, shown on the matched histology section (hematoxylin and
eosin stain).
CE: Contrast enhanced; PDW: Proton density weighted; T1W: T1-weighted; T2W: T2-
weighted; TOF: Time-of-flight.
Reproduced with permission from [63].
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Figure 5. 3 T MRI of a plaque in the right common carotid artery with fibrous cap rupture with
ulceration (arrow) on TOF, T1W, T2W, CE T1W images
CE: Contrast enhanced; T1W: T1-weighted; T2W: T2-weighted; TOF: time-of-flight.
Reproduced with permission from [63].

Hatsukami and Yuan Page 19

Imaging Med. Author manuscript; available in PMC 2010 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Improved conspicuity of the fibrous cap and lipid-rich necrotic core on postcontrast-
enhanced MRI
(A) Precontrast T1WI acquired at 1.5 T demonstrating a large eccentric plaque in the common
carotid artery. (B) Postcontrast T1WI demonstrates differential enhancement of the fibrous cap
and underlying lipid-rich necrotic core. (C) Measurement of the fibrous cap (green) and lipid-
rich necrotic core (yellow) areas. (D) Matched histological cross-section of the common carotid
artery from the excised specimen with fibrous cap (green) and necrotic core (yellow) outlined.
Box demonstrates high-power view of the lipid-rich necrotic core demonstrating abundant
cholesterol clefts.
*Lumen of common carotid artery.
JV: Jugular vein; T1WI: T1-weighted image.
Reproduced with permission from [48].
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Figure 7. Characteristic appearance of intraplaque hemorrhage with hyperintense signal in the
TOF, T1W and MP-RAGE images, acquired on a 3 T MRI scanner
MP-RAGE: Magnetization-prepared rapid acquisition gradient-echo;
T1W: T1-weighted; TOF: time-of-flight.
Reproduced with permission from [63].
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Figure 8. Correlation between plaque neovasculature, macrophage content and quantitative
measures of plaque enhancement on dynamic contrast-enhanced MRI
(A) Scatter plots of vp measured using dynamic contrast-enhanced MRI versus histologic
measurement of neovasculature content, expressed as percent neovasculature area
([neovasculature area divided by plaque area] × 100%). Pearson r = 0.68, p < 0.001. (B) Scatter
plots of Ktrans versus histologic measurement of percent neovasculature area. Pearson r = 0.71,
p < 0.001. (C) Scatter plots of Ktrans versus histologic measurement of macrophage content,
expressed as percent macrophage area ([macrophage area divided by plaque area] × 100%).
Pearson r = 0.75, p < 0.001.
vp: Portal volume of blood plasma.
Reproduced with permission from [60].
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Figure 9. Transient ischemic attack- and stroke-free survival amongst patients with carotid artery
intraplaque hemorrhage and thin/ruptured fibrous cap
(A) Kaplan–Meier survival estimates of the proportion of patients remaining free of ipsilateral
TIA or stroke for subjects with (lower curve) and without (upper curve) IPH. (B) Kaplan–
Meier survival estimates of the proportion of patients remaining free of ipsilateral TIA or stroke
for subjects with (lower curve) and without (upper curve) thin or ruptured FC.
FC: Fibrous cap; IPH: Intraplaque hemorrhage; TIA: Transient ischemic attack.
Reproduced with permission from [85].
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Figure 10. T1-weighted magnetic resonance images of a patient with evidence of intraplaque
hemorrhage at baseline
The panels from left to right show cross-sectional images of (A) the CCA, (B) Bif, (C) proximal
ICA and (D) the ICA more distally. The lower row shows the matched cross-sectional images
on the 18-month follow-up MRI. There is marked decrease in luminal area (yellow arrows) in
the internal carotid artery (C & D), and increase in atherosclerotic lesion size in the ICA (red
arrows).
BiF: Carotid bifurcation; CCA: Common carotid artery; ECA: External carotid artery; ICA:
Internal carotid artery; T1W: T1-weighted.
Reproduced with permission from [89].
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Figure 11. Prevalence of MRI identified fibrous cap rupture and intraplaque hemorrhage by degree
of stenosis in carotid plaques (n = 260) of asymptomatic volunteers
The degree of stenosis was determined by duplex ultrasound.
Adapted with permission from [94].
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Figure 12. Angiography underestimates carotid plaque burden
(A) Contrast-enhanced magnetic resonance angiography demonstrates a right carotid artery
with 0% stenosis. The two horizontal lines indicate the location of the cross-sectional black-
blood magnetic resonance images (T1 weighted) shown in (B), which document the presence
of a large eccentric plaque (yellow arrows). *Lumen.
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