Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jan;95(1):272–277. doi: 10.1172/JCI117651

Glutamine: a major gluconeogenic precursor and vehicle for interorgan carbon transport in man.

N Nurjhan 1, A Bucci 1, G Perriello 1, M Stumvoll 1, G Dailey 1, D M Bier 1, I Toft 1, T G Jenssen 1, J E Gerich 1
PMCID: PMC295425  PMID: 7814625

Abstract

To compare glutamine and alanine as gluconeogenic precursors, we simultaneously measured their systemic turnovers, clearances, and incorporation into plasma glucose, their skeletal muscle uptake and release, and the proportion of their appearance in plasma directly due to their release from protein in postabsorptive normal volunteers. We infused the volunteers with [U-14C] glutamine, [3-13C] alanine, [2H5] phenylalanine, and [6-3H] glucose to isotopic steady state and used the forearm balance technique. We found that glutamine appearance in plasma exceeded that of alanine (5.76 +/- 0.26 vs. 4.40 +/- 0.33 mumol.kg-1.min-1, P < 0.001), while alanine clearance exceeded glutamine clearance (14.7 +/- 1.3 vs. 9.3 +/- 0.8 ml.kg-1.min-1, P < 0.001). Glutamine appearance in plasma directly due to its release from protein was more than double that of alanine (2.45 +/- 0.25 vs. 1.16 +/- 0.12 mumol.kg-1.min-1, P < 0.001). Although overall carbon transfer to glucose from glutamine and alanine was comparable (3.53 +/- 0.24 vs 3.47 +/- 0.32 atoms.kg-1.min-1), nearly twice as much glucose carbon came from protein derived glutamine than alanine (1.48 +/- 0.15 vs 0.88 +/- 0.09 atoms.kg-1.min-1, P < 0.01). Finally, forearm muscle released more glutamine than alanine (0.88 +/- 0.05 vs 0.48 +/- 0.05 mumol.100 ml-1.min-1, P < 0.01). We conclude that in postabsorptive humans glutamine is quantitatively more important than alanine for transporting protein-derived carbon through plasma and adding these carbons to the glucose pool.

Full text

PDF
272

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abumrad N. N., Rabin D., Diamond M. P., Lacy W. W. Use of a heated superficial hand vein as an alternative site for the measurement of amino acid concentrations and for the study of glucose and alanine kinetics in man. Metabolism. 1981 Sep;30(9):936–940. doi: 10.1016/0026-0495(81)90074-3. [DOI] [PubMed] [Google Scholar]
  2. Abumrad N. N., Rabin D., Wise K. L., Lacy W. W. The disposal of an intravenously administered amino acid load across the human forearm. Metabolism. 1982 May;31(5):463–470. doi: 10.1016/0026-0495(82)90235-9. [DOI] [PubMed] [Google Scholar]
  3. Ardawi M. S., Jamal Y. S., Ashy A. A., Nasr H., Newsholme E. A. Glucose and glutamine metabolism in the small intestine of septic rats. J Lab Clin Med. 1990 Jun;115(6):660–668. [PubMed] [Google Scholar]
  4. Bergman E. N., Heitmann R. N. Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues. Fed Proc. 1978 Apr;37(5):1228–1232. [PubMed] [Google Scholar]
  5. Bergström J., Fürst P., Norée L. O., Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol. 1974 Jun;36(6):693–697. doi: 10.1152/jappl.1974.36.6.693. [DOI] [PubMed] [Google Scholar]
  6. Bier D. M., Arnold K. J., Sherman W. R., Holland W. H., Holmes W. F., Kipnis D. M. In-vivo measurement of glucose and alanine metabolism with stable isotopic tracers. Diabetes. 1977 Nov;26(11):1005–1015. doi: 10.2337/diab.26.11.1005. [DOI] [PubMed] [Google Scholar]
  7. Björkman O., Felig P., Wahren J. The contrasting responses of splanchnic and renal glucose output to gluconeogenic substrates and to hypoglucagonemia in 60-h-fasted humans. Diabetes. 1980 Aug;29(8):610–616. doi: 10.2337/diab.29.8.610. [DOI] [PubMed] [Google Scholar]
  8. Bortz W. M., Paul P., Haff A. C., Holmes W. L. Glycerol turnover and oxidation in man. J Clin Invest. 1972 Jun;51(6):1537–1546. doi: 10.1172/JCI106950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brockman R. P., Bergman E. N. Effect of glucagon on plasma alanine and glutamine metabolism and hepatic gluconeogenesis in sheep. Am J Physiol. 1975 Jun;228(6):1628–1633. doi: 10.1152/ajplegacy.1975.228.6.1627. [DOI] [PubMed] [Google Scholar]
  10. Brooks D. C., Black P. R., Arcangeli M. A., Aoki T. T., Wilmore D. W. The heated dorsal hand vein: an alternative arterial sampling site. JPEN J Parenter Enteral Nutr. 1989 Jan-Feb;13(1):102–105. doi: 10.1177/0148607189013001102. [DOI] [PubMed] [Google Scholar]
  11. Castellino P., DeFronzo R. A. Glucose metabolism and the kidney. Semin Nephrol. 1990 Sep;10(5):458–463. [PubMed] [Google Scholar]
  12. Cersosimo E., Judd R. L., Miles J. M. Insulin regulation of renal glucose metabolism in conscious dogs. J Clin Invest. 1994 Jun;93(6):2584–2589. doi: 10.1172/JCI117270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chang T. W., Goldberg A. L. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J Biol Chem. 1978 May 25;253(10):3685–3693. [PubMed] [Google Scholar]
  14. Chang T. W., Goldberg A. L. The origin of alanine produced in skeletal muscle. J Biol Chem. 1978 May 25;253(10):3677–3684. [PubMed] [Google Scholar]
  15. Chiasson J. L., Liljenquist J. E., Sinclair-Smith B. C., Lacy W. W. Gluconeogenesis from alanine in normal postabsorptive man. Intrahepatic stimulatory effect of glucagon. Diabetes. 1975 Jun;24(6):574–584. doi: 10.2337/diab.24.6.574. [DOI] [PubMed] [Google Scholar]
  16. Consoli A., Nurjhan N., Reilly J. J., Jr, Bier D. M., Gerich J. E. Contribution of liver and skeletal muscle to alanine and lactate metabolism in humans. Am J Physiol. 1990 Nov;259(5 Pt 1):E677–E684. doi: 10.1152/ajpendo.1990.259.5.E677. [DOI] [PubMed] [Google Scholar]
  17. Darmaun D., Matthews D. E., Bier D. M. Glutamine and glutamate kinetics in humans. Am J Physiol. 1986 Jul;251(1 Pt 1):E117–E126. doi: 10.1152/ajpendo.1986.251.1.E117. [DOI] [PubMed] [Google Scholar]
  18. Darmaun D., Matthews D. E., Bier D. M. Physiological hypercortisolemia increases proteolysis, glutamine, and alanine production. Am J Physiol. 1988 Sep;255(3 Pt 1):E366–E373. doi: 10.1152/ajpendo.1988.255.3.E366. [DOI] [PubMed] [Google Scholar]
  19. Déchelotte P., Darmaun D., Rongier M., Hecketsweiler B., Rigal O., Desjeux J. F. Absorption and metabolic effects of enterally administered glutamine in humans. Am J Physiol. 1991 May;260(5 Pt 1):G677–G682. doi: 10.1152/ajpgi.1991.260.5.G677. [DOI] [PubMed] [Google Scholar]
  20. Elia M., Folmer P., Schlatmann A., Goren A., Austin S. Amino acid metabolism in muscle and in the whole body of man before and after ingestion of a single mixed meal. Am J Clin Nutr. 1989 Jun;49(6):1203–1210. doi: 10.1093/ajcn/49.6.1203. [DOI] [PubMed] [Google Scholar]
  21. Exton J. H. Gluconeogenesis. Metabolism. 1972 Oct;21(10):945–990. doi: 10.1016/0026-0495(72)90028-5. [DOI] [PubMed] [Google Scholar]
  22. Felig P. Amino acid metabolism in man. Annu Rev Biochem. 1975;44:933–955. doi: 10.1146/annurev.bi.44.070175.004441. [DOI] [PubMed] [Google Scholar]
  23. Felig P., Owen O. E., Wahren J., Cahill G. F., Jr Amino acid metabolism during prolonged starvation. J Clin Invest. 1969 Mar;48(3):584–594. doi: 10.1172/JCI106017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Felig P., Pozefsky T., Marliss E., Cahill G. F., Jr Alanine: key role in gluconeogenesis. Science. 1970 Feb 13;167(3920):1003–1004. doi: 10.1126/science.167.3920.1003. [DOI] [PubMed] [Google Scholar]
  25. Felig P., Wahren J. Amino acid metabolism in exercising man. J Clin Invest. 1971 Dec;50(12):2703–2714. doi: 10.1172/JCI106771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Felig P., Wahren J., Karl I., Cerasi E., Luft R., Kipnis D. M. Glutamine and glutamate metabolism in normal and diabetic subjects. Diabetes. 1973 Aug;22(8):573–576. doi: 10.2337/diab.22.8.573. [DOI] [PubMed] [Google Scholar]
  27. Felig P., Wahren J., Räf L. Evidence of inter-organ amino-acid transport by blood cells in humans. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1775–1779. doi: 10.1073/pnas.70.6.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. II. The precursor role of amino acids in alanine and glutamine synthesis. J Biol Chem. 1976 Feb 10;251(3):836–843. [PubMed] [Google Scholar]
  29. Goldberg A. L., Chang T. W. Regulation and significance of amino acid metabolism in skeletal muscle. Fed Proc. 1978 Jul;37(9):2301–2307. [PubMed] [Google Scholar]
  30. Hall S. E., Braaten J. T., McKendry J. B., Bolton T., Foster D., Berman M. Normal alanine-glucose relationships and their changes in diabetic patients before and after insulin treatment. Diabetes. 1979 Aug;28(8):737–745. [PubMed] [Google Scholar]
  31. Haymond M. W., Miles J. M. Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes. 1982 Jan;31(1):86–89. doi: 10.2337/diab.31.1.86. [DOI] [PubMed] [Google Scholar]
  32. Heymsfield S. B., McManus C., Stevens V., Smith J. Muscle mass: reliable indicator of protein-energy malnutrition severity and outcome. Am J Clin Nutr. 1982 May;35(5 Suppl):1192–1199. doi: 10.1093/ajcn/35.5.1192. [DOI] [PubMed] [Google Scholar]
  33. Kaloyianni M., Freedland R. A. Contribution of several amino acids and lactate to gluconeogenesis in hepatocytes isolated from rats fed various diets. J Nutr. 1990 Jan;120(1):116–122. doi: 10.1093/jn/120.1.116. [DOI] [PubMed] [Google Scholar]
  34. Katz H., Homan M., Butler P., Rizza R. Use of [3-3H]glucose and [6-14C]glucose to measure glucose turnover and glucose metabolism in humans. Am J Physiol. 1992 Jul;263(1 Pt 1):E17–E22. doi: 10.1152/ajpendo.1992.263.1.E17. [DOI] [PubMed] [Google Scholar]
  35. Kreisberg R. A., Pennington L. F., Boshell B. R. Lactate turnover and gluconeogenesis in normal and obese humans. Effect of starvation. Diabetes. 1970 Jan;19(1):53–63. doi: 10.2337/diab.19.1.53. [DOI] [PubMed] [Google Scholar]
  36. Lochs H., Roth E., Gasic S., Hübl W., Morse E. L., Adibi S. A. Splanchnic, renal, and muscle clearance of alanylglutamine in man and organ fluxes of alanine and glutamine when infused in free and peptide forms. Metabolism. 1990 Aug;39(8):833–836. doi: 10.1016/0026-0495(90)90128-y. [DOI] [PubMed] [Google Scholar]
  37. Magnusson I., Schumann W. C., Bartsch G. E., Chandramouli V., Kumaran K., Wahren J., Landau B. R. Noninvasive tracing of Krebs cycle metabolism in liver. J Biol Chem. 1991 Apr 15;266(11):6975–6984. [PubMed] [Google Scholar]
  38. Marliss E. B., Aoki T. T., Pozefsky T., Most A. S., Cahill G. F., Jr Muscle and splanchnic glutmine and glutamate metabolism in postabsorptive andstarved man. J Clin Invest. 1971 Apr;50(4):814–817. doi: 10.1172/JCI106552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Matthews D. E., Campbell R. G. The effect of dietary protein intake on glutamine and glutamate nitrogen metabolism in humans. Am J Clin Nutr. 1992 May;55(5):963–970. doi: 10.1093/ajcn/55.5.963. [DOI] [PubMed] [Google Scholar]
  40. Matthews D. E., Marano M. A., Campbell R. G. Splanchnic bed utilization of glutamine and glutamic acid in humans. Am J Physiol. 1993 Jun;264(6 Pt 1):E848–E854. doi: 10.1152/ajpendo.1993.264.6.E848. [DOI] [PubMed] [Google Scholar]
  41. Matthews D. E., Pesola G., Campbell R. G. Effect of epinephrine on amino acid and energy metabolism in humans. Am J Physiol. 1990 Jun;258(6 Pt 1):E948–E956. doi: 10.1152/ajpendo.1990.258.6.E948. [DOI] [PubMed] [Google Scholar]
  42. McGuinness O. P., Fugiwara T., Murrell S., Bracy D., Neal D., O'Connor D., Cherrington A. D. Impact of chronic stress hormone infusion on hepatic carbohydrate metabolism in the conscious dog. Am J Physiol. 1993 Aug;265(2 Pt 1):E314–E322. doi: 10.1152/ajpendo.1993.265.2.E314. [DOI] [PubMed] [Google Scholar]
  43. Meijer A. J., Lof C., Ramos I. C., Verhoeven A. J. Control of ureogenesis. Eur J Biochem. 1985 Apr 1;148(1):189–196. doi: 10.1111/j.1432-1033.1985.tb08824.x. [DOI] [PubMed] [Google Scholar]
  44. Morrison W. L., Gibson J. N., Jung R. T., Rennie M. J. Skeletal muscle and whole body protein turnover in thyroid disease. Eur J Clin Invest. 1988 Feb;18(1):62–68. doi: 10.1111/j.1365-2362.1988.tb01167.x. [DOI] [PubMed] [Google Scholar]
  45. Nurjhan N., Consoli A., Gerich J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J Clin Invest. 1992 Jan;89(1):169–175. doi: 10.1172/JCI115558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Odessey R., Khairallah E. A., Goldberg A. L. Origin and possible significance of alanine production by skeletal muscle. J Biol Chem. 1974 Dec 10;249(23):7623–7629. [PubMed] [Google Scholar]
  47. Pozefsky T., Felig P., Tobin J. D., Soeldner J. S., Cahill G. F., Jr Amino acid balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J Clin Invest. 1969 Dec;48(12):2273–2282. doi: 10.1172/JCI106193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Pozefsky T., Tancredi R. G., Moxley R. T., Dupre J., Tobin J. D. Effects of brief starvation on muscle amino acid metabolism in nonobese man. J Clin Invest. 1976 Feb;57(2):444–449. doi: 10.1172/JCI108295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ross B. D., Hems R., Freedland R. A., Krebs H. A. Carbohydrate metabolism of the perfused rat liver. Biochem J. 1967 Nov;105(2):869–875. doi: 10.1042/bj1050869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sandler M. P., Robinson R. P., Rabin D., Lacy W. W., Abumrad N. N. The effect of thyroid hormones on gluconeogenesis and forearm metabolism in man. J Clin Endocrinol Metab. 1983 Mar;56(3):479–485. doi: 10.1210/jcem-56-3-479. [DOI] [PubMed] [Google Scholar]
  51. Schoolwerth A. C., Smith B. C., Culpepper R. M. Renal gluconeogenesis. Miner Electrolyte Metab. 1988;14(6):347–361. [PubMed] [Google Scholar]
  52. Souba W. W. Interorgan ammonia metabolism in health and disease: a surgeon's view. JPEN J Parenter Enteral Nutr. 1987 Nov-Dec;11(6):569–579. doi: 10.1177/0148607187011006569. [DOI] [PubMed] [Google Scholar]
  53. Tannen R. L. Ammonia metabolism. Am J Physiol. 1978 Oct;235(4):F265–F277. doi: 10.1152/ajprenal.1978.235.4.F265. [DOI] [PubMed] [Google Scholar]
  54. Vinay P., Mapes J. P., Krebs H. A. Fate of glutamine carbon in renal metabolism. Am J Physiol. 1978 Feb;234(2):F123–F129. doi: 10.1152/ajprenal.1978.234.2.F123. [DOI] [PubMed] [Google Scholar]
  55. Wahren J., Felig P., Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976 Apr;57(4):987–999. doi: 10.1172/JCI108375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Walser M., Lund P., Ruderman N. B., Coulter A. W. Synthesis of essential amino acids from their alpha-keto analogues by perfused rat liver and muscle. J Clin Invest. 1973 Nov;52(11):2865–2877. doi: 10.1172/JCI107483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Waterhouse C., Keilson J. The contribution of glucose to alanine metabolism in man. J Lab Clin Med. 1978 Nov;92(5):803–812. [PubMed] [Google Scholar]
  58. Wicklmayr M., Rett K., Schwiegelshohn B., Wolfram G., Hailer S., Dietze G. Inhibition of muscular amino acid release by lipid infusion in man. Eur J Clin Invest. 1987 Aug;17(4):301–305. doi: 10.1111/j.1365-2362.1987.tb02191.x. [DOI] [PubMed] [Google Scholar]
  59. Windmueller H. G. Glutamine utilization by the small intestine. Adv Enzymol Relat Areas Mol Biol. 1982;53:201–237. doi: 10.1002/9780470122983.ch6. [DOI] [PubMed] [Google Scholar]
  60. Wirthensohn G., Guder W. G. Renal substrate metabolism. Physiol Rev. 1986 Apr;66(2):469–497. doi: 10.1152/physrev.1986.66.2.469. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES