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Abstract
Survival analysis methods can be used in infectious disease research to describe the occurrence
and timing of clinical or other events subject to censoring and truncation. Here, the survival,
hazard and cumulative hazard functions are defined and simple nonparametric estimators are
provided using an illustrative example of survival after AIDS diagnosis. An understanding of
these foundational measures is central for an informed use of the survival analysis methods
common in infectious disease research.
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Survival analysis is a set of methods that can be used to describe the occurrence and timing
of clinical or other events [1–4]. The target of inference for survival analysis is the time
between an origin and event. For instance, in the example below we are interested in the
survival time from AIDS diagnosis until death. Survival analysis is crucial when observed
data are censored or truncated. Censoring and truncation are common in infectious disease
research. Censoring occurs when we do not know the exact time of an event, but we do
know the event occurred before or after a known time, or within a given interval. Here we
consider only censoring after a known time (i.e., right censoring), which is the most
common form of censoring in biomedical research. Such censoring may be due to
completing the study free of the event (i.e., administrative censoring) or loss to follow up
free of the event but before completing the study (i.e., drop out). Truncation occurs when we
do not observe individuals with event times that are smaller or larger than certain values.
Here we consider only left truncation (i.e., not observing individuals with small event
times), which is the most common form of truncation in biomedical research. Such
truncation occurs when we begin observation after some or all individuals have already been
at risk for the event of interest. For example, in Figure 1 we present left truncated and right
censored data for 78 men followed from the later of AIDS diagnosis or 1995 through the
earliest of death, drop out, or 1998.

Existing introductions to survival analysis (e.g., [5–6]) typically ignore truncation, move
quickly to group comparisons, and do not concentrate on infectious diseases. The intent of
this paper is to clarify foundations for survival analysis that are standard in modern statistics
but not universally understood by clinicians and (non-statistician) scientists working in
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infectious diseases. We concentrate on clarifying foundations of survival analysis, a
prerequisite for group comparisons. First we provide a motivating example.

Motivating Example: Survival after AIDS
Say we are interested in describing survival after AIDS. In this example, the origin is AIDS
diagnosis and the event is all-cause mortality. The time between the origin and event is
AIDS duration. We conduct a cohort study and enroll 42 men alive on 1 January 1995 with a
prior clinical AIDS diagnosis. These 42 men comprise a “prevalent” or left-truncated cohort,
because the 42 men began observation after their origin (i.e., AIDS diagnosis) for the event
death after AIDS. The median (quartiles) AIDS duration at study enrollment for these 42
men is 1.42 (0.34, 2.18) years.

We then prospectively enroll 36 additional men beginning at their clinical AIDS diagnosis
between 1 January 1995 and 1 January 1998. We follow all 78 (= 42 + 36) men for all-cause
mortality through 1 January 1998, the date of study completion. Typically a minimum
amount of time between study enrollment and the date of study completion is required, but
here we make no such requirement. The 36 additional men comprise an “incident” cohort,
because each of the 36 additional men was observed from their origin (i.e., AIDS diagnosis)
for the event death after AIDS. Here “prevalent” and “incident” are used in conjunction with
the origin of the time at risk, rather than their typical use in conjunction with the event.

To carefully describe survival analysis methodology, we use the following mathematical
notation. A symbol key is presented in Table 1. In general, uppercase letters denote random
variables and lowercase letters denote possible realizations of random variables, or
constants. Let W denote the years from AIDS diagnosis to study enrollment. For incident
AIDS cases, who are enrolled at AIDS diagnosis, W = 0. Let T denote the years from AIDS
diagnosis to death, and let C denote the years from AIDS diagnosis to right censoring. In
practice, we only get to observe the minimum of T and C, which we denote by T* =
min(T,C). Let D = 1 if death occurred before censoring and D = 0 otherwise. Finally, let the
subscript i = 1 to N index the N = 78 men. For instance, Di = 1 if individual i died during
follow up (i.e., T*i = Ti).

Data for these 78 men are provided in Table 2. Reading from Table 2, individual 1 was
diagnosed with AIDS on 1990.425, enrolled in the study W1 = 4.575 years after AIDS
diagnosis, and remained alive (D1 = 0) at study completion on 1998.0 at T*1 = 7.575 years
after AIDS diagnosis. These data were obtained from version 11 of the Multicenter AIDS
Cohort Study [7] public use data set. Dates in the public use data are given by month and
year, so we randomly selected the day of the month to obtain exact dates. Randomly
assigning dates in practice is not recommended in general. The intention here is to illustrate
methods using data in the typical form, while both allowing public consumption of the
example data and protecting anonymity. Dates will be available in most infectious disease
research settings and are available in the non-public Multicenter AIDS Cohort Study data.

Each man’s time on study is the difference between study entry and exit, i.e., T*i– Wi years.

Person-years at risk are defined as the sum of each man’s time on study, or .
Immortal person-time in a study occurs when the individual contributing that person time
could not, by study criteria, have died or been censored: immune person-time is similar,
except it pertains to outcomes other than death [8–9]. In our example, there were

 person-years at risk for death under observation and
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 immortal or immune person-years contributed by the 42 men in the
prevalent cohort.

Figure 1 presents a pair of time line diagrams for the 78 men, where the vertical axis is an
individual identifier which ranges from 1 to 78. In Figure 1 panel (A), the horizontal axis is
calendar year. A man’s time line begins at the date of AIDS diagnosis. If this date is before
1 January 1995, the line is dashed, denoting immortal/immune time as the number of years
between AIDS diagnosis and study entry (W); after 1 January 1995 the line is solid,
denoting time at-risk for death after AIDS during the study. The 27 deaths are denoted by
time lines that end with dots. The 7 drop outs are denoted by time lines that end before the
administrative censoring date of 1 January 1998. For instance, reading from Table 2,
individual 11 was diagnosed with AIDS on 1992.825, enrolled in the study W1 = 2.175
years after AIDS diagnosis, and remained alive (D1 = 0) when lost to follow up on 1996.667
at T*1 = 3.842 years after AIDS diagnosis. In Figure 1 panel (B), the horizontal axis is years
from AIDS diagnosis. Time line plots like those in Figure 1 provide an important role in the
exploratory analysis of survival data. Data quality is easily assessed using such simple data
displays that convey a single visualization of pertinent aspects of the entire data set. Next we
review standard survival analysis methods that can be used to draw inferences from survival
data such as our AIDS example.

The Survival, Hazard and Cumulative Hazard Functions
Survival is a function of time and is typically denoted by S(t). Survival is the probability that
the random variable T is greater than some specified time t. A formal definition is provided
in Appendix A. In the AIDS example, survival at time t is the probability of not dying within
t years of AIDS diagnosis.

The hazard is the instantaneous rate of events at time t and is typically denoted h(t). The
hazard at time t is a ratio of the probability of an event to the survival both at time t. In
discrete time, the hazard at time t is the conditional probability of an event at, given survival
to, time t. Returning to the AIDS example, the hazard is the rate at which men in the
population die t years after AIDS diagnosis.

The cumulative hazard function is defined as a sum (formally, an integral) of the hazard
function over time, and should not be confused with the complement of the survival function
(see Appendix A). Plots of the log of the cumulative hazard function are useful in choosing
among candidate parametric survival regression models [10], as well as for assessing the
proportional hazards assumption when using Cox regression models [11]. Next we describe
how to obtain estimates of the survival, hazard and cumulative hazard functions using the
example AIDS data.

Estimators of the Survival, Hazard, and Cumulative Hazard Functions
We concentrate on nonparametric estimators, which do not posit a parametric form for the
survival function (more detail is provided in the Discussion). Again, formal definitions are
provided in Appendix A. To define nonparametric estimators we rank-order and number the
distinct (untied) observed event times Ti as shown in Table 3 in the leftmost columns.
Therefore, Rk is the kth ranked event time. In our example, we have one tied event time T44
= T46 = 1.619 years from AIDS diagnosis, so while there are 27 events there are only 26
rows in Table 3 (plus one row for k = 0). Let Yk be the number of individuals who died at
the kth ranked event time. In Table 3, the number of events, Yk, is equal to 1, except for the
12th event time, where there are two deaths (i.e., Y12 = 2).
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Let Nk be the number of individuals at-risk for mortality while under observation at the kth
ranked event time. Nk is the size of the “risk set” at the kth ranked event time. Note an
individual is immortal for any event between the origin at time 0 and study entry at time Wi
and is therefore not included in the risk set until they enter the study. However, individuals
who are censored exactly coincident with an event at time Rk are considered to be at risk at
that time, and therefore are included in the risk set Nk. In Table 3, Nk ranges from 45
individuals at-risk at 0.962 years from AIDS diagnosis to 11 individuals at-risk at 4.688
years from AIDS diagnosis.

A nonparametric estimator of the survival function is the product-limit or Kaplan-Meier
estimator [13], which is defined as a cumulative product of the estimated probability of not
incurring an event (see Appendix A). Note because the size of the risk sets Nk account for
late entries (i.e., Wi ≥ 0), this is sometimes called the extended Kaplan-Meier estimator [14].
This Kaplan-Meier estimator implicitly imputes unseen truncated events due to some
individuals entering follow up after the origin and imputes event times for individuals who
are censored from follow up without the event [15–16]. The Kaplan-Meier estimator steps at
event times, and is flat elsewhere. There are other nonparametric estimators of the survival
function (see Appendix A), but the Kaplan-Meier estimator is most commonly used in the
biomedical literature. A variance estimator for the survival function is given in Appendix B.

In Table 3, the Kaplan-Meier survival estimate ranges from 1 at AIDS diagnosis down to
0.425 at 4.688 years from AIDS diagnosis. For example, the survival at R2 = 0.791 years
after AIDS, is 0.954 and is obtained as:

In Figure 2 panel (A), we plot the Kaplan-Meier survival function estimates and point-wise
95% confidence limits. Reading from Table 3 or Figure 2 panel (A), the first quartile and
median times from AIDS diagnosis to death were about 1.6 and 3 years, respectively. The
estimated first quartile of mortality of 1.6 years is similar to the 1.78 years (95% confidence
limits: 1.29, 2.44) reported by Schneider and colleagues [17] for a similar time period using
data from the Multicenter AIDS Cohort Study. Figure 2 panel (B) is the estimated
cumulative probability of death (i.e., the complement of the estimated survival function),
which is often presented in place of panel (A). Looking at Figure 2 panel (B), the estimated
probability of death at 2 years from AIDS diagnosis is about 37%.

The hazard h(t) at the kth ranked event time can be estimated by a ratio of the number of
deaths to the product of the number at risk and the time interval since the prior event. In
Table 3, the hazard estimates range from 0.0435 at 0.791 years from AIDS diagnosis to
9.009 at 1.258 years from AIDS diagnosis. For example, the hazard at R2 = 0.791 years after
AIDS, was obtained as:

A smooth function of the hazard is often preferred, because the individual hazard estimates
tend to be unstable. In Figure 2 panel (C), we plot a kernel smooth estimate of the hazard
[3–4,12]. The smoothed hazard appears to decrease between 1.5 and 4 years after AIDS
diagnosis. Finally, in Figure 2 panel (D), we plot the estimator of the cumulative hazard and
point-wise 95% confidence limits.
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Discussion
In this paper we discussed standard methods for description of survival data with particular
attention to right censoring and left truncation. A series of important caveats are discussed
below.

First, in randomized trials, all individuals begin observation at a natural origin, namely
randomization. In observational cohort studies there often exist multiple possible origins.
Some examples include study entry, birth, and disease onset or diagnosis. In such settings
time on study does not carry biologic meaning, unless study enrollment coincides with the
origin of interest. Fortunately, the nonparametric estimators described above easily handle
left truncation due to late entries. Note that when the data consist of a combination of
incident (i.e., W = 0) and prevalent (i.e., W > 0) individuals one might ignore the prevalent
individuals and still obtain consistent estimates of the survival function. However,
discarding data from the prevalent cohort may lead to a loss of precision because of the
reduced sample size and a potential shortening of the time period over which the survival
function can be estimated because prevalent individuals typically have longer survival times.

Second, selection bias may arise whenever we select a subset of individuals for analysis. In
our example, we restrict to men alive 1 January 1995 and our results may or may not
generalize to men alive in other calendar periods. In a substantive analysis, this and any
other restriction would have to be scrutinized before drawing inference about a particular
population. Selection bias may also arise if individuals who enter follow up W years after
AIDS diagnosis do so in an informative manner. For example, late entry is informative if the
hazard of the event is associated with the entry time [18]. In our example of 36 incident (i.e.,
W = 0) and 42 prevalent (i.e., W > 0) individuals, one simple way to assess selection bias
due to informative late entry is to restrict the analysis to the 36 incident individuals. If we do
so in our example, the time to the first quartile of mortality (i.e., 25% dead) is about 1.47
years, which is similar to the 1.6 years in the complete sample (we cannot compare median
survival times because by 1 January 1998 less than half of the 36 incident individuals had
died). Therefore, the late entry does not appear to be informative in these data. Finally,
selection bias may also arise whenever individuals are selected out of the study over time. In
our example, 44 individuals are administratively censored on 1 January 1998 and 7
individuals are censored at drop out. Administrative censoring may be unrelated to the
hazard of death here and in many other examples, but drop out may be informative. For
example, in the AIDS example if men who were ill and more likely to die were also more
likely to drop out then we would obtain an upwardly biased estimate of the survival
function. One simple way to assess the possible effects of informative drop out is to
calculate bounds [19]. For instance, in the AIDS example we can estimate the survival
function if all 7 individuals who dropped out were immediate events, as well as if all 7 were
still alive at the date of administrative censoring. In our example, the median survival was
about 3 years in the observed data, would have been about 2.5 years had all 7 drop outs been
immediately died, and about 3 years had all 7 been alive on 1 January 1998. Therefore, there
is some sensitivity to drop out in these data. In the presence of substantial (e.g., >20%) drop
out, bounds may become uninformative due to their width and a formal sensitivity analysis
[20] may be required.

Third, when the origin or event dates are known only up to an interval and the length of a
typical interval is sizable compared with the typical time from the origin to event, then
survival analysis methods that allow for interval censoring should be employed [21–22].
However, when intervals are small compared to the typical time from the origin to event,
simply taking the midpoint of the interval may suffice [23].
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Fourth, there may be events not of central interest that compete with the event of interest.
Competing risks are events other than the event of interest that remove an individual from
the risk set and preclude the event of interest from occurring. This is distinct from
preclusion of the event being observed due to censoring. In our motivating example, the
event of interest was all-cause mortality and there were no competing risks. However, if the
event of interest had been AIDS-related mortality then any non-AIDS deaths would have
been competing risks. To obtain a valid estimate of the survival function in the presence of
competing risks, methods that explicitly allow for competing risks should be employed [24–
26]. Failure to use methods tailored to competing risks will typically overestimate the
probability of the event of interest occurring. Such overestimation results because standard
methods, such as those presented here, would treat competing risks as censored events of
interest.

Fifth, we did not present parametric estimators of the hazard or survival function. Parametric
estimators assume that the survival time T follows a distribution that is defined using a finite
number of parameters. Examples of common parametric survival distributions include the
lognormal and Weibull. The widely used nonparametric estimators described here do not
assume that the survival time T follows a particular specified distribution. To that end, the
nonparametric estimators are robust, in that they allow the distribution to be general.
However, when the data do cohere with the shape of a parametric distribution,
nonparametric estimators may be less precise than parametric estimators.

Sixth, the assumption that individuals are independent is needed to obtain valid estimates of
the variance as given in Appendix B. In the infectious disease setting, the assumption that
individuals are independent may not hold. For example, when studying the incidence of a
respiratory virus close contact with infected individuals is likely to increase the hazard of
infection. Therefore, in such settings clusters of individuals must be identified and methods
that account for clusters should be used [28], and are akin to methods for repeated events
within an individual, albeit repeated events have a natural time ordering [19], while
infectious disease data often have a natural geographical space ordering in addition to time
ordering.

Here we have presented an example of survival data pertinent to infectious disease research
and illustrated how to describe event times using time lines and nonparametric estimators of
the survival function, the hazard function and cumulative hazard function. The methods
presented have broad applicability in infectious disease research. For instance, plots of
estimates of these functions are helpful tools when attempting to describe the occurrence and
timing of events. But the analysis presented begs the question does survival differ by
measured factors?

The methods to answer important questions about differences in the survival or hazard
function while continuing to account for censoring and truncation typically build upon the
methods presented here. For instance, the log rank test [13] compares the survival function
for two or more groups, while the Cox proportional hazards regression model [11] compares
the hazard function for two or more groups with or without adjustment for concomitant
variables. In conclusion, knowledge of the methods presented is central to an understanding
of the survival analysis methods used in clinical research generally, and infectious disease
research in particular.
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Appendix A: Formal definitions
The survival function is defined as S(t) = P(T > t), where P(•) is the probability of •. Because
the survival function is a probability, it has bounds of S(0) = 1 and S(∞) = 0. S(t) is the
complement of the cumulative distribution function F(t), which is the probability that T is
less than or equal t, i.e. F(t) = P(T ≤ t) = 1–S(t).

The hazard is defined as h(t) = f(t)/S(t), where f(t) is the probability density function, or the
slope of the cumulative distribution function F(t) at time t, f(t) = d F(t)/d t. The cumulative

hazard function is defined as , where the definite integral is taken
from 0 to t.

Observed event times Ti are ranked as R1 < R2 < … < RD′, where D′ is the number of

distinct (untied) event times. In our HIV example,  if there are no tied event

times, otherwise . For k = 1,…,D′, let Yk be the number of individuals who

died at each of the ranked times Rk, or formally , where 1(•) is the
indicator function, such that it equals 1 if • is true and 0 otherwise.

Let Nk be the number of individuals at-risk for mortality while under observation at distinct
ranked event time Rk, for k=1,…,D′. Nk is the size of the “risk set” at time Rk and is defined

as . Note individuals are immortal for any events between the
origin at time 0 and entry at time Wi and are therefore not included in the risk set Rk if Rk ≤
Wi. However, individuals who are censored exactly coincident with the event at time Rk
(i.e., Ti = Rk and Di = 0) are considered to be at risk at time Rk, and therefore are included
in the risk set Nk.
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A nonparametric estimator of S(t) is the product-limit or Kaplan-Meier estimator [13],
which is defined as

where at time t the product is taken over all ordered events up to time t, or {k:Rk ≤ t}. The
hazard h(t) at the distinct event time t = Rk can be estimated by hk = Yk/(NkΔk), where Δk =
Rk –Rk–1 and R0 = 0. Finally, the cumulative hazard is estimated simply as HKM(t) =
−log[SKM(t)].

An alternative nonparametric estimator of the survival function was given independently by
Nelson [32] and Aalen [33] as SNA(t) = exp[−HNA(t)], where HNA(t) = ΣRk ≤t Yk/Nk is the
Nelson-Aalen estimator of the cumulative hazard function. Both the Kaplan-Meier and
Nelson-Aalen estimators of the survival and cumulative hazard functions are nonparametric,
consistent (i.e., converge in probability to the true value as the sample size tends to infinity),
asymptotically normal and asymptotically equivalent [34]. These two approaches may differ
in small sample sizes or when there are many ties. The Kaplan-Meier estimator is more
commonly used in the biomedical literature.

Appendix B: Variance estimators
The most commonly used estimator of the variance for SKM(t) is

, which is attributed to Greenwood [3,35].
Approximate point-wise 95% confidence limits can be calculated by

. A formula for the variance for SNA(t) is , which
was given by Aalen [33]. A formula for the variance for HKM(t) is

, which is obtained by the delta method. Alternative
variance estimators exist [3].
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Figure 1.
Time line plots with (A) calendar time and (B) years from AIDS diagnosis as the time scale
for 78 men enrolled in the Multicenter AIDS Cohort Study, alive on 1 January 1995 and
diagnosed with AIDS before 1 January 1998. Dashed lines represent time between AIDS
diagnosis and study entry, solid lines represent time after study entry, and dots represent
deaths.
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Figure 2.
Estimates of (A) the survival function, (B) the cumulative probability of death (i.e.,
complement of the survival function), (C) a kernel smoothed hazard function, and (D) the
cumulative hazard function, with approximate point-wise 95% confidence limits (dashed)
for 78 men enrolled in the Multicenter AIDS Cohort Study, alive on 1 January 1995 and
diagnosed with AIDS before 1 January 1998
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Table 1

Symbol Key

Symbol: Definition:

N Sample size

W Years from AIDS to study enrollment

T Years from AIDS to death

C Years from AIDS to right censoring

T* Minimum of T and C

D Indicator of death before right censoring

Rk Time of kth ranked event

Yk Number of deaths at time Rk

Nk Number at risk at time Rk

Δk Time interval between ranked death times

S(t) Probability of survival to time t

h(t), hk Hazard at time t, or Rk

H(t) Cumulative hazard to time t
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