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Abstract
γδ T cells are important for the early control of West Nile virus (WNV) dissemination. Here, we
investigated the role of γδ T cells in regulation of CD4+ T cell response following WNV
challenge. Splenic dendritic cells (DCs) of WNV-infected γδ T cell-deficient (TCRδ−/−) mice
displayed lower levels of CD40, CD80, CD86 and major histocompatibility complex (MHC) class
II expression and interleukin-12 (IL-12) production than those of wild- type mice. Naïve DCs co-
cultured with WNV-infectedγδ T cells had enhanced levels of co- stimulatory molecules, MHC
class II expression and IL-12 production. Further, co-culture of CD4+ T cells from OT II
transgenic mice with DCs of WNV-infected TCRδ−/− mice induced less interferon-γ (IFN-γ) and
IL-2 production than with those of wild-type controls. Viral antigens were detected in WNV-
infected γδ T cells. WNV infection or toll-like receptor (TLR) agonist treatment of γδ T cells
induced the production of IFN-γ, tumor necrosis factor-alpha (TNF-α) and IL-6, which were
known to promote DC maturation. Nevertheless, levels of TLRs 2, 3, 4 and 7 expression of WNV-
infected γδ T cells were not different from those of non-infected cells. Overall, these data suggest
that WNV-inducedγδ T cell activation promotes DC maturation and initiates CD4+ T cell priming.
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Introduction
West Nile virus (WNV), a mosquito-borne neurotropic flavivirus, has caused annual
outbreaks of viral encephalitis in North America for nearly a decade (Campbell, et al., 2002,
Pletnev, et al., 2006). Although most WNV infections in humans are asymptomatic, severe
neurological disease (including encephalitis) and death have been observed with a higher
frequency in the elderly and immunocompromised (Campbell, et al., 2002, Pletnev, et al.,
2006). Human vaccines are not available yet.
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The murine model has been used as an effective tool to investigate host immunity to WNV
infection in humans. Type I interferon (IFN) and γδ T cells provide immediate control of
virus dissemination (Anderson & Rahal, 2002, Wang, et al., 2003, Samuel & Diamond,
2005). B cells and specific antibodies are critical in the control of disseminated WNV
infection, but are not sufficient to eliminate it from the host (Roehrig, et al., 2001, Diamond,
et al., 2003). αβ T cells (Diamond, et al., 2003) provide long-lasting protective immunity
and contribute to host survival following WNV infection. CD4+ T cells provide help for
antibody responses and sustain WNV-specific CD8+ T cell responses in the central nervous
system (CNS) (Sitati & Diamond, 2006), whereas CD8+ effector T cells are important in
clearing WNV infection from tissues and preventing viral persistence (Wang, et al., 2003,
Shrestha & Diamond, 2004). The development of memory T cells following WNV infection
remains poorly understood.

Dendritic cells (DCs) represent the most important antigen presenting cells exhibiting the
unique capacity to initiate primary T cell responses. Upon microbial infection, DC
maturation is an innate response that leads to adaptive immunity to foreign antigens (De
Smedt, et al., 1996, Bennett, et al., 1998). Maturation of DCs results in the expression of
high levels of major histocompatibility complex (MHC) and co-stimulatory molecules such
as CD40, CD80 and CD86 and is often associated with the secretion of interleukin-12
(IL-12) (Inaba, et al., 2000, Fujii, et al., 2004). Proinflammatory cytokines such as tumor
necrosis factor-alpha (TNF-α) and IFN-γ, promote this process (Dieli, et al., 2004, Conti, et
al., 2005). Furthermore, increasing evidence suggests that the cross talk betweenγδ T cells
and DCs contributes to DC maturation (Leslie, et al., 2002, Collins, et al., 2005, Munz, et
al., 2005). Nevertheless, the in vivo mechanisms underlying this process are not clearly
identified.

We have recently shown that γδ T cells expanded quickly in response to WNV infection and
produced significant amount of IFN-γ (Wang, et al., 2003). γδ T cell-deficient (TCRδ−/−)
mice had a reduced CD8+ T cell memory response and were more susceptible to secondary
WNV infection, suggesting a role of γδ T cells in linkage of innate immunity to adaptive
immune responses (Wang, et al., 2006). In this study, we investigate the role of γδ T cells in
regulating DC maturation and initiating CD4+ T cell priming following WNV challenge.

Materials and Methods
Mice

6-10-week-old C57BL/6 (B6) mice and OT II transgenic mice were purchased from the
Jackson Laboratory Bar Harbor, ME). TCRδ−/− mice were a kind gift from Dr. E. ( Fikrig
(Yale University, New Haven). Groups were age and sex-matched for each experiment and
were housed under identical conditions. All animal experiments were approved by the
Institutional Animal Care and Use Committee at Colorado State University.

Infection in mice
WNV NY99-6480 was passaged three times in C6/36 Aedes albopictus cells to make a virus
stock for both cell culture and in vivo studies. Mice were inoculated intraperitoneally with
100 PFU of WNV NY99-6480 isolate.

Purification of DCs, CD4+, and γδ T cell subsets
DCs, CD4+ and γδ T cells were purified from pooled spleens of 3–5 mice by a positive
selection method, using anti-CD11c, anti-mPDCA-1, anti-CD4 magnetic beads or FITC-
conjugated anti-mouse TCRγδ BD Biosciences, San Diego, CA) followed by anti-FITC
magnetic beads according to the manufacturer’s instructions (Miltenyi Biotec, Auburn, CA).
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The purity of these cells is 82–95%. For FACS purification of γδ T cells, splenocytes were
enriched for Tcells using anti-CD90 magnetic beads (Miltenyi Biotec), stained with FITC
labeled anti-TCRγδ and sorted based on expression of TCRγδ (MoFlo, DakoCytomation).
The purity of γδ T cells was 94.3%.

Flow cytometry
Antibodies for CD40, CD80, CD86, I-Ab and CD11c were purchased from BD Biosciences.
Following staining, cells were fixed in PBS with 1% paraformaldehyde and examined using
a Cyan flow cytometer (Dako Cytomation). Data were analyzed using Summit 4 software
(Dako Cytomation). For intracellular cytokine staining, splenocytes were stimulated at 2 ×
106 cells/well with 10μg/ml LPS (Sigma-Aldrich, St. Louis, MO) or 0.5 μg/ml CL097
(Invivogen, San Diego, CA) with Golgi-Plug for 4 h at 37°C. Cells were harvested, stained
with FITC-anti-CD11c, fixed in Fixation/Permeabilization solution before adding PE- anti-
IL-12 (eBioscience, San Diego, CA) or rat IgG2a (BD Biosciences).

In vitro DC maturation and T cell priming assays
Naïve DCs were co-cultured with γδ T cells from non-infected or WNV-infected mice at 1:
1 ratio in 24-well plates at 37 °C for 24 h. Cells were harvested and stained with antibodies
for cell surface markers. CD11c+ cells were gated for analysis. DCs were also co-cultured
with in vitro WNV-infected γδ T cells. CD4+ T Cells and DCs were purified from
splenocytes of OT II transgenic mice or WNV-infected mice at day 3 post-infection. CD4+ T
Cells (1 × 105) were mixed with DCs at 1:1 ratio and treated with or without OVA residue
323–339 (10μg/ml, Genscript Corporation, Piscataway, NJ).

WNV infection or stimulation with TLR agonist in γδ T cells
γδ T cells (1 × 105 cells/well) were cultured for 2 days at 37 °C in RPMI-1640 medium
(Invitrogen, Carlsbad, CA) in 96-well plates coated with 5μg/ml anti-CD3 (eBioscience).
Cells were infected with WNV at a MOI of 0.5 for 1 h, washed and incubated in the above
medium containing 5 ng/ml recombinant human IL-2 (eBioscience). H36.12j cells
(macrophage cell line, American Type Culture Collection, Manassas, VA) were infected
with WNV (MOI = 1) and harvested at day 4 post-infection. In some experiments, γδ T cells
were stimulated with poly I: C (Amersham Pharmacia, New Jersey, 50μg/ml) or CL097
(Invivogen, 0.5μg/ml).

Quantitative PCR (Q-PCR) and PCR for determining viral load and TLR levels
RNA was extracted using RNAeasy extraction kit (Qiagen, Valencia, CA) and was used to
synthesize complementary (c)DNA using the ProSTAR First-strand RT-PCR kit
(Stratagene, Cedar Creek, TX). The sequences of the primersets for WNV envelope gene
(WNE), Tlr2, Tlr3, Tlr4 and Tlr7 cDNA and PCR conditions were described previously
(Lanciotti, et al., 2000, Schulz, et al., 2005, Chen, et al., 2006). Q-PCR analysis was
performed with RT2 Real-Time SYBR Green / Fluorescein PCR master mix (Superarray,
Frederick, MD) on an iCycler (Bio- Rad, Hercules, CA). The ratioof the amount of
amplified gene compared with the amount of β-actin cDNA represented the relative levels in
each sample. Regular PCR was performed as follows: 94°C for 2 min followed by 35 cycles
of 94°C for 1 min, 60°C for 1 min and 72°C for 1.5 min, and final extension at 72°C for 5
min. The primer pairs used were: TLR2, 5’-CAG ACG TAG TGA GCG AGC TG-3’ and
5’-GGC ATC GGA TGA AAA GTG TT-3’; TLR3, 5’-CCC CCT TTG AAC TCC TCT
TC-3’ and 5’-TTT CGG CTT CTT TTG ATG CT -3’; TLR4, 5’-GCT TTC ACC TCT GCC
TTC AC-3’ and 5’-CGA GGC TTT TCC ATC CAA TA-3’; TLR7, 5’-CAT CAG AGG
CTC CTG GAT GA-3’ and 5’-AGG CAT GTC CTA GGT GGT GA-3’. The sequences of
the primersets for β-actin were described earlier (Farrar & Street, 1995).
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Fluorescence microscopy with γδ T-cells
Cells were fixed in acetone at −20°C for 30 min, rehydrated in PBS and stained with FITC-
conjugated anti-CD3, Phycoerythrin (PE)-conjugated anti-TCRβ (eBioscience) and the
flavivirus E protein-specific monoclonal antibody 4G2 followed by Alexa Fluor 350-
conjugated anti-mouse IgG2a (Invitrogen) at 37°C. Images were acquired on an Olympus
IX71 Inverted Microscope at 20 × magnification.

Plaque assay
Vero cells were seeded in DMEM (Invitrogen) with 10% FBS and incubated with serial
dilutions of culture supernatant for 2 h. DMEM containing 5% FBS and 1% low-melting-
point agarose was added and incubated for 4 days. A second overlay of 1% agarose-medium
containing 0.01% neutral red was added to visualize plaques.

Cytometric bead array and ELISA
Culture supernatant was measured for cytokine production using a mouse Th1/Th2 kit or an
inflammation kit by a FACSArray analyzer (BD Biosciences). Cytokine levels were also
measured by ELISAs (BD Biosciences & PBL Interferon Source).

Statistical analysis
Data analysis was performed using Prism software (Graph-Pad) statistical analysis. Values
for phenotype analysis, viral burden, and cytokine production experiments were presented as
means ± SEM. P values of these experiments were calculated with a non-paired Student’st
test or Mann-Whitney test. Statistical significance was accepted at P < 0.05.

Results
DC activation and maturation was reduced in TCRδ−/− mice during WNV infection

Our previous results have shown that TCRδ−/− mice were much more susceptible to a LD50
dose of WNV infection than wild-type controls (Wang, et al., 2003). Further, TCRδ−/− mice
that survived a LD50 dose of WNV challenge were more susceptible to the secondary
infection than wild-type mice (Wang, et al., 2006). To investigate the role of γδ T cells in
regulating CD4+ T cell response, we assessed splenic DCs phenotype and functionality in
wild-type and TCRδ−/− mice following infection with a LD50 dose of WNV. At day 3 post-
infection, the expression of CD40, CD80, CD86, and MHC class II on CD11c+ splenocytes
of wild-type mice was increased by percentage and mean fluorescence intensity (MFI) (P <
0.05 or 0.01, Fig. 1A, Table 1 and Suppl. Fig. 1). In WNV-infected TCRδ−/− mice,
percentage of CD80+CD11c+, CD86+CD11c+ splenocytes or MFI on these cells were also
increased (P < 0.05 or 0.01); while CD40 and MHC class II expression were only elevated
by percentage (P < 0.01, Fig. 1A, Table 1 & Suppl. Fig. 1). Interestingly, in comparison to
wild-type mice, expression of all these surface molecules was significantly lower in CD11c+

splenocytes of WNV-infected TCRδ−/− mice by percentage (12–28%, Fig. 1A) or by MFI
(16–32% except for CD80, Table 1 & Suppl. Fig. 1, P < 0.05 or 0.01). Similar results were
observed at day 5 post-infection, though the magnitude of increase of these surface
molecules expression was reduced in both groups of mice by 5–40% as compared to day 3
(data not shown). There were no differences in the expression of the above surface
molecules in CD11c+ cells between naïve wild-type and TCRδ−/− mice (Fig. 1A & Table 1
and Suppl. Fig. 1).

Proinflammatory cytokines, including TNF-α, IFN-γ and IL-12, are important for DC
maturation (Sallusto & Lanzavecchia, 1994, Inaba, et al., 2000, Le Bon, et al., 2001). We
next measured cytokine production in CD11c+ DCs from wild-type and TCRδ−/− mice using

Fang et al. Page 4

FEMS Immunol Med Microbiol. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ex vivo intracellular cytokine staining. There were no differences in the percentage of IL-12-
producing DCs between naive wild-type and TCRδ−/− mice upon stimulation with the TLR4
agonist LPS or the TLR7 agonist CL097 (Fig. 1B left panel). However, the percentage of
IL-12-producing DCs in WNV-infected TCRδ−/− mice stimulated with LPS or CL097 were
54% or 26% lower than those of WNV-infected wild-type mice (P < 0.01, Fig. 1B right
panel). There were no significant differences in TNF-α and IFN-γ production in CD11c+

DCs between these two groups (data not shown). Overall, these data suggest that γδ T cells
are involved in the process of DC maturation during WNV infection.

DCs exposed to WNV-infected γδ T cells acquire the functional and phenotypic
characteristics of mature cells

To verify that γδ T cells are involved in DC activation during WNV infection, we performed
ex vivo DC maturation assays. In this assay, CD11c+ DCs were purified from naïve B6 mice
and co-cultured with γδ T cells from non-infected or day 2 post-infected mice. After 24 h
co-culture, cells were harvested and gated on CD11c+ population for phenotypic analysis.
Interestingly, CD40, CD80, CD86 and MHC class II expression on CD11c+ cells were
enhanced after co-culture with naive γδ T cells by MFI and/or percentage (Figs. 2A & 2B, P
< 0.05). Further, DCs co-cultured with γδ T cells from WNV-infected mice had a higher
level of expression of these cell surface molecules than those co-cultured with naïve γδ T
cells or DC alone (Figs. 2A & 2B, P < 0.05). We also co-cultured immature DCs with in
vitro WNV-treated γδ T cells. At 24 h, IL-12 levels in co-culture of DCs with WNV-treated
and anti-CD3 stimulated γδ T cells were about 150% higher than those of DCs alone (Fig.
2C, P < 0.05). DCs co-cultured with non-infected and anti-CD3-stimulated γδ T cells also
induced higher levels of IL-12 (about 60%) than DCs alone (Fig. 2C, P < 0.05). γδ T cells,
naive or activated by anti- CD3-stimulation and/ or WNV infection, did not produce IL-12
(data not shown).

DCs from WNV-infected TCRδ−/− mice could not prime CD4+ T cells as efficiently as those
of wild-type mice

To further understand the role of γδ T cells in regulating CD4+ T cell response during WNV
infection, we tested the capability of DCs from WNV-infected mice to activate naïve CD4+

T cells in vitro. Purified naïve CD4+ T cells from OT II transgenic mice were co-cultured
with DCs from WNV-infected wild-type or TCRδ−/− mice in the presence of OVA 323–
339. At 24 h post co-culture, OT II CD4+ T cells co-cultured with DCs from wild-type mice
produced about 46% more IFN-γ (P < 0.01) or 15% IL-2 (P < 0.05) respectively than those
cocultured with DCs of TCRδ−/− mice (Table 2). At 72 h, IFN-γ but not IL-2 production
remained higher in co-culture with wild-type DCs than TCRδ−/− DCs (data not shown).
These data suggests that the antigen-presenting capacity of DCs might be reduced or
impaired in the absence of γδ T cells.

WNV antigens were detected in the infected γδ T cells
We have recently demonstrated that splenic T cells are permissive to WNV infection and
support a short-term virus replication (Wang, et al., 2008). Here, we asked whether γδ T
cells could be infected by WNV. Splenic γδ T cells were purified and stimulated in vitro
with anti-CD3 for 2 days before WNV infection. The purity of γδ T cells was close to 94%
as analyzed by flow cytometry (Fig. 3A). Immunofluorescence staining demonstrated CD3+/
TCRγδ+/WNV+ populations in these cells at day 2 post-infection (Fig. 3B). Plaque assay
showed WNV replicated productively in purified γδ T cells at days 1 and 2 post-infection,
but decreased at day 3 (P < 0.05, Fig. 3C). Further, Q-PCR analysis of day 4 post-infectedγδ
T cells revealed a low but significant level of virus infection as compared to WNV-infected
H36.12j cells (Fig. 3D).
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WNV infection or TLR agonist stimulation of γδ T cells induces proinflammatory cytokine
production. However, the expression of TLRs on γδ T cells was not changed after infection

The production of proinflammatory cytokines, including IFN-γ, TNF-α and IL-6 from γδ T
cells was increased as early as day 2 post-infection (data not shown) and became more
dramatically enhanced at day 4 post-infection (Fig. 4A–C, P < 0.05 or 0.01). The TLR
family plays a fundamental role in host innate immunity by mounting a rapid and potent
inflammatory response to pathogen infection via recognition of conserved structural patterns
in diverse microbial molecules. The expression of TLR2, TLR3, TLR4 and TLR7/8 on γδ T
cells has been reported (Shimura, et al., 2005, Beetz, et al., 2007, Peng, et al., 2007, Beetz,
et al., 2008). Among them, TLR3 and TLR7-induced Type I IFNs and proinflammatory
cytokine production are known to play important roles in host immunity following WNV
infection (Wang, et al., 2004, Daffis, et al., 2008, Town, et al., 2009). Here, we found γδ T
cells stimulated with TLR agonists such as CL097 (TLR7) or poly I: C (TLR3) also
produced significant amount of IFN-γ, TNF-α, and/or IL-6 (Figs. 4D–F, P < 0.01).
Nevertheless, there were no significant differences in the levels of TLR2, TLR3, TLR4 and
TLR7 expression between WNV-infected γδ T cells and non-infected controls at 6 h (Figs.
5B–5E) or 24 h (Figs. 5A–5E) post-infection.

Discussion
Although several important immune factors have been recognized to be critical for
immediate control of WNV dissemination, the development of long-lasting protective
immunity against WNV is not well understood. In the present study, we investigated the role
of γδ T cells in regulating DC maturation and CD4+ T cell priming following WNV
challenge. We found that DC activation and maturation was reduced in TCRδ−/− mice
during WNV infection. Immature DCs co-cultured with γδ T cells of WNV-infected mice or
in vitro infection had enhanced levels of co-stimulatory molecule expression and IL-12
production. Co-culture of CD4+ T cells of OT II mice with DCs of WNV-infected wild-type
mice induced more IFN-γ and IL-2 production than with DCs of TCRδ−/− mice. Moreover,
WNV infection of γδ T cells induces proinflammatory cytokine production without changes
on TLR expression levels. Collectively, our data suggest that γδ T cells are involved in DC
maturation and CD4+ T cell priming following WNV challenge.

Increasing evidence suggests that both the crosstalk between γδ T cells and DCs and
proinflammatory cytokines contribute to DC maturation (Ismaili, et al., 2002, Leslie, et al.,
2002, Collins, et al., 2005, Munz, et al., 2005, Conti, et al., 2005). Here, we have observed
that naïve DCs co-cultured with non-infectedγδ T cells have enhanced levels of co-
stimulatory molecules and MHC class II expression. This suggests that crosstalk between γδ
T cell and DC is necessary for DC maturation. WNV-infected γδ T cells produce
proinflammatory cytokines, including IFN-γ, TNF-α and IL-6. Upregulation of co-
stimulatory molecules and MHC class II expression was significantly higher on DCs that
were co-cultured with WNV-infectedγδ T cells than with naïve γδ T cells. These data further
demonstrates that the secreting factors from WNV-infected γδ T cells are also important for
promoting DC maturation.

Current understanding of the biological role of γδ T cell receptors during pathogen infection
remains elusive. Unlike αβ T cells, there are few antigens that are recognized by γδ T cell
receptor (Born & O'Brien, 2009). Although γδ T cells support a short-term WNV replication
and are activated after infection, it is not clear whether any viral antigen is recognized by T
cell receptor. TLR3 and TLR7-induced Type I IFNs and proinflammatory cytokine
production play important roles in host immunity, following WNV infection (Wang, et al.,
2004, Daffis, et al., 2008, Town, et al., 2009). It is likely that γδ T cells are induced by
WNV infection via the innate immune receptors, such as TLRs (Peng, et al., 2007, Beetz, et
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al., 2008). This is further supported by the fact that both WNV infection and TLR agonist
stimulation induce γδ T cells to produce IFN-γ, TNF-α and IL-6 cytokines. Expression of
TLRs on γδ T cells has been shown to be upregulated after microbial infection or burn injury
followed by activation (Mokuno, et al., 2000, Shibata, et al., 2007, Schwacha & Daniel,
2008). Nevertheless, we noted no differences in the levels of expression of TLRs after WNV
infection. While the direct role of TLRs in γδ T cell activation upon WNV infection is still
under investigation, it is also possible that WNV infection of γδ T cells induces the non-TLR
innate immune receptors, such as RIG-I and MDA5, which have been reported to be
involved in WNV recognition (Fredericksen & Gale, 2006, Fredericksen, et al., 2008).
Alternatively, γδ T cells and DCs are also known to exert regulatory influences on each
other. For example, induction of human γδ T cells by poly I:C, a ligand for TLR3, depends
on DCs mediated by Type-I IFNs (Kunzmann, et al., 2004). Thus, TLR signaling might be
involved in γδ T cell activation indirectly through induction of WNV permissive DCs in a
three-way process.

The role of T cells in protecting the host against WNV infection has been the subject of
recent investigations. CD4+ T cells are known to provide help for antibody responses and to
sustain WNV-specific CD8+ T cell responses in the CNS, enabling viral clearance (Sitati &
Diamond, 2006). CD8+ T cells have important functions in clearing infection from
peripheral tissues and CNS, and in preventing viral persistence (Shrestha & Diamond, 2004,
Brien, et al., 2007). Therefore, enhancement of memory T cell response is an important
strategy for future flavivirus vaccine development. Although human and mouse γδ T cells
differ in the subsets and ligand recognition, they share substantial similarity in effector
function and the protective role in pathogen infection (Girardi, 2006). The exploration of
parallel activities mediated by murine γδ T cells will continue to provide insights into
immunosurveillance and immune regulation in human diseases. γδ T cells are also known to
display numerical and functional alteration in the elderly (Cardillo, et al., 1993, Argentati, et
al., 2002), which are the potentially susceptible population for WNV encephalitis.
Information gained from this study will possibly enhance our understanding of host
immunity against WNV, and provide critical insights for new strategies for future flavivirus
vaccine development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
DC maturation in WNV-infected mice. A, The percentages of CD40+ CD11c+,
CD80+CD11c+, CD86+CD11c+ or MHCII+CD11c+ in the spleens. Data are presented as
means ± SEM, n = 4 or 5. ** P < 0.01 for WNV-infected (IF) vs. non-infected (NF). † P <
0.05 or †† P < 0.01 for wild-type (WT) vs. TCRδ−/− mice. B, The percentages of IL-12+

CD11c+ naïve (left panel) or day 2 WNV-infected (right panel) splenocytes after ex vivo
stimulation with LPS or CL097. Data are presented as means ± SEM, n = 4 or 5. ** P < 0.01
for wild-type vs. TCRδ−/− mice. P values were calculated with a non-paired Student’st test.
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Figure 2.
In vitro DC maturation assay. Cell surface molecule expression of CD11c+ cells alone
(white bar) or co-culture with γδ T cells of naïve (grey bar) or WNV-infected (black bar)
mice as determined by MFI (A) and the percentage (B). C, IL-12 production from co-culture
of naïve DCs with in vitro WNV infected γδ T cells measured by ELISA. A-γδ: anti-CD3
activated γδ T cells. WNV A-γδ: anti-CD3 treated γδ T cells infected with WNV. Data are
presented as means ± SEM, n = 6. *P < 0.05 or ** P < 0.01 for co-cultured vs. DC alone. #P
< 0.05 for IF vs. NF. P values were calculated with a non-paired Student’st test. Results are
representative of two independent experiments.
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Figure 3.
In vitro WNV infection of γδ T cells. A, Splenic γδ T cells were stained with antibody to γδ
and analyzed by flow cytometer. Dark area represents cells stained with anti-γδ; gray area,
unstained cells. B, Immunofluorescence photomicrographs of WNV-infected γδ T cells at
day 2 post-infection. Infected cells were stained for WNV antigen (blue), CD3/TCRγδ
(green) and TCRαβ (red). Arrows point to CD3+/γδ+WNV+ cells. C, Plaque assay of virus
titer. *P < 0.05 for day 3 vs. day 1. D, WNV infection in splenic γδ T cells as measured by
Q-PCR. Negative and positive controls represent uninfected γδ T cells and WNV-infected
H36.12j cells (MAC), respectively. *P < 0.05 for non-infected vs. WNV-infected cells. P
values were calculated with a non-paired Student’st test.
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Figure 4.
WNV infection or TLR agonist stimulation of γδ T cells induces proinflammatory cytokines.
A–C, Supernatant was collected at day 4 post-infection. D–F, Supernatant was collected 24
h post-treatment. Data are presented as means ± SEM, n = 6. * P < 0.05 or ** P < 0.01 for
non-infected or non-treated vs. WNV-infected or treated. P values were calculated with a
non-paired Student’st test.
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Figure 5.
Levels of TLR expression on WNV-infectedγδ T cells. Splenic γδ T cells were infected with
WNV and harvested at indicated time points. A, PCR amplification of TLRs (top panel) or
β-actin (bottom panel) of WNV-infected or non-infected γδ T cells harvested at 24 h post-
infection. B–E, Q-PCR analysis of TLRs. B, TLR2. C, TLR3. D, TLR4. E, TLR7. cDNA of
CD11c+ cells or plasmacytoid DCs were used as positive control 1 & 2. Data are presented
as means ± SEM, n = 7 or 8. P values were calculated with a Mann-Whitney test.
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Table 1

Mean fluorescence intensity of CD40, CD80, CD86 and MHC class II expression on DCs from wild-type and
TCRδ−/−mice following WNV infection:

Cell surface marker Wild-type NF Wild-type IF TCRδ−/ − NF TCRδ−/− IF

CD40 40.2 ± 3.1 65.2 ± 3.2* 42.1 ± 1.6 44.6 ± 4.0††

CD80 43.0 ± 2.2 56.0 ± 3.6* 38.0 ± 2.5 52.9 ± 1.8*

CD86 41.3 ± 5.9 85.5 ± 1.1** 39.7 ± 5.4 70.7 ± 0.6**, ††

MHC class II 332.0 ± 53 517.0 ±12.2** 338.7 ± 55 434.0 ± 12.3††

Values are means ± SEM, n = 4.

*
P < 0.05 or

**
P < 0.01 for WNV-infected (IF) vs. non-infected (NF).

††
P < 0.01 for wild-type vs. TCRδ−/− mice. Data shown were representative of two independent experiments.

P values were calculated with a non-paired Student’st test.
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Table 2

In vitro T cell priming assay:

Group IFN-γ(pg/ml) IL-2 (pg/ml)

Wild-type DCs + T cells 48.0 ± 4.8 33.7 ± 5.7

TCRδ−/− DCs + T cells 43.3 ± 3.2 33.3 ± 5.8

CD4+ T cells + OVA 33.3 ± 8.4 33.3 ± 2.6

Wild-type DCs + OVA + CD4+ T cells 31,242 ± 1623 18,953 ± 759

TCRδ−/− DCs + OVA + CD4+ T cells 21,640 ± 835** 16,543 ± 392*

Purified naïve CD4+ T cells from OT II transgenic mice were co-cultured with DCs from WNV-infected wild-type or TCRδ−/ − mice in the
presence or absence of OVA 323–339. At 24 h post coculture, supernatant was harvested and measured for cytokine production using mouse Th1/
Th2 cytokine kit. Data are presented as means ± SEM, n = 3.

*
P < 0.05 or

**
P < 0.01 for wild-type vs. TCRδ−/ −.

P values were calculated with a non-paired Student’st test. Data shown were representative of two independent experiments.
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