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ABSTRACT

We consider neutral evolution of a large population subject to changes in its population size. For
a population with a time-variable carrying capacity we study the distribution of the total branch lengths of
its sample genealogies. Within the coalescent approximation we have obtained a general expression—
Equation 20—for the moments of this distribution with a given arbitrary dependence of the population
size on time. We investigate how the frequency of population-size variations alters the total branch length.

MODELS for gene genealogies of biological popula-
tions often assume a constant, time-independent

population size N. This is the case for the Wright–Fisher
model (Fisher 1930; Wright 1931), for the Moran
model (Moran 1958), and for their representation in
terms of the coalescent (Kingman 1982). In real bio-
logical populations, by contrast, the population size
changes over time. Such fluctuations may be due to
catastrophic events (bottlenecks) and subsequent pop-
ulation expansions or just reflect the randomness in the
factors determining the population dynamics. Many au-
thors have argued that genetic variation in a population
subject to size fluctuations may nevertheless be described
by the Wright–Fisher model, if one replaces the constant
population size in this model by an effective population
size of the form

N eff ¼ lim
L/‘

1

L

XL�1

l¼0

1

Nl

 !�1

; ð1Þ

where Nl stands for the population size in generation l.
The harmonic average in Equation 1 is argued to
capture the significant effect of catastrophic events on
patterns of genetic variation in a population: if, for
example, a population went through a recent bottle-
neck, a large fraction of individuals in a given sample
would originate from few parents. This in turn would
lead to significantly reduced genetic variation, param-
eterized by a small value of Neff. (See, e.g., Ewens 1982
for a review of different measures of the effective
population size and Sjödin et al. 2005 and Wakeley

and Sargsyan 2009 for recent developments of this
concept.)

The concept of an effective population size has been
frequently used in the literature, implicitly assuming
that the distribution of neutral mutations in a large
population of fluctuating size is identical to the distri-
bution in a Wright–Fisher model with the correspond-
ing constant effective population size given by Equation
1. However, recently it was shown that this is true only
under certain circumstances (Kaj and Krone 2003;
Nordborg and Krone 2003; Jagers and Sagitov

2004). It is argued by Sjödin et al. (2005) that the
concept of an effective population size is appropriate
when the timescale of fluctuations of Nl is either much
smaller or much larger than the typical time between
coalescent events in the sample genealogy. In these
limits it can be proved that the distribution of the
sample genealogies is exactly given by that of the
coalescent with a constant, effective population size.

More importantly, it follows from these results that, in
populations with variable size, the coalescent with a
constant effective population size is not always a valid
approximation for the sample genealogies. Deviations
between the predictions of the standard coalescent
model and empirical data are frequently observed,
and there are a number of different statistical tests
quantifying the corresponding discrepancies (see, for
example, Tajima 1989, Fu and Li 1993, and Zeng et al.
2006). The analysis of such deviations is of crucial
importance in understanding, for example, human
genetic history (Garrigan and Hammer 2006). But
while there is a substantial amount of work numerically
quantifying deviations, often in terms of a single
number, little is known about their qualitative origins
and their effect upon summary statistics in the popula-
tion in question.
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The question is thus to understand the effect of
population-size fluctuations on the patterns of genetic
variation, in particular for the case where the scale of the
population-size fluctuations is comparable to the time
between coalescent events in the ancestral tree. As is well
known, many empirical measures of genetic variation
can be computed from the total branch length of the
sample genealogy (the expected number of single-
nucleotide polymorphisms, for example, is propor-
tional to the average total branch length).

The aim of this article is to analyze the distribution of
the scaled total branch length Tn for a sample genealogy
in a population of fluctuating size, as illustrated in
Figure 1. For the genealogy of n $ 2 lineages sampled at
the present time, the expression ºNTn

Ø

gives the total
branch length in terms of generations. Here ºNt

Ø

is the
largest integer #Nt, and the scaling factor N is a suitable
measure of the number of genes in the population and
serves as a counterpart of the constant generation size of
the standard Wright–Fisher model.

A motivating example is given in Figure 2, which
shows numerically computed distributions r(Tn) of the
total branch lengths Tn for a particular population
model with a time-dependent carrying capacity. The
model is described briefly in the Figure 2 legend and
in detail in a model for a population with time-
dependent carrying capacity. As Figure 2 shows, the
distributions depend in a complex manner on the form
of the size changes. We observe that when the frequency
of the population-size fluctuations is very small (Figure
2a), the distribution is well described by the standard
coalescent result

PðT n # tÞ¼ ð1� e�t=2Þn�1; t $ 0 ð2Þ

(Hein et al. 2005). When the frequency is very large
(Figure 2e), Equation 2 also applies, but with a different
time scaling reflecting an effective population size: t on
the right-hand side (rhs) in Equation 2 is replaced by t/c
with c¼N/Neff. Apart from these special limits, however,
the form of the distributions appears to depend in a com-
plicated manner upon the frequency of the population-
size variation. The observed behavior is caused by the
fact that coalescence proceeds faster for smaller popula-
tion sizes and more slowly for larger population sizes, as
illustrated in Figure 1. But the question is how to quan-
titatively account for the changes shown in Figure 2.

We show in this article that the results of the
simulations displayed in Figure 2 are explained by a
general expression—Equation 20—for the moments of
the distributions shown in Figure 2. Our general result is
obtained within the coalescent approximation valid in
the limit of large population size. But we find that in
most cases, the coalescent approximation works very
well down to small population sizes (a few hundred
individuals). Our result enables us to understand and
quantitatively describe how the distributions shown in

Figure 2 depend upon the frequency of the population-
size oscillations. It makes possible to determine, for
example, how the variance, skewness, and the kurtosis of
these distributions depend upon the frequency of de-
mographic fluctuations. This in turn allows us to com-
pute the population homozygosity and to characterize
genetic variation in populations with size fluctuations.

The remainder of this article is organized as follows.
The next section summarizes our analytical results for
the moments of the total branch length. Following that,
we describe the model employed in the computer
simulations. Then, corresponding numerical results are
compared to the analytical predictions. And finally, we
summarize how population-size fluctuations influence
the distribution of total branch lengths and conclude
with an outlook.

COALESCENT APPROXIMATION FORMULAS
FOR THE MOMENTS T k

n

� �
For the purpose of coalescent approximation it is

convenient to introduce a ‘‘scaled time’’ t and a ‘‘scaled
population size’’ x(t) by writing

N l ¼ Nx
l s � l

N

� �
[NxðtÞ : ð3Þ

Here N is a suitable counterpart of the constant
generation size of the standard Wright–Fisher model
assumed to be large. The population is sampled in
generation l s corresponding to t ¼ 0, and the time t is
now counted backward in units of N generations, as is
common in the coalescent picture. Note that Equation 1
translates into

Figure 1.—The effect of population-size oscillations on the
genealogy of a sample of size n ¼ 17 (schematic). Left, gene-
alogy described by Kingman’s coalescent for a large popula-
tion of constant size, illustrated by the light blue rectangle;
right, sinusoidally varying population size. Coalescence is
accelerated in regions of small population sizes and vice versa.
This significantly alters the tree and gives rise to changes in
the distribution of the number of mutations and of the pop-
ulation homozygosity.
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N eff ¼ N lim
T /‘

1

T

ðT

0

dt

xðtÞ

� ��1

: ð4Þ

In this section we show how to calculate the moments
T k

n

� �
for the total (scaled) branch length Tn for a given

realization of the curve x(t), making use of results
obtained by Tavaré (1984).

The starting point is the obvious expression for the
total time:

T n ¼
Xn

j¼2

jtj : ð5Þ

Here tj denotes the time during which the genealogy
has j ancestral lines. For the population with variable
size the times tn, . . . , t2 all depend upon the sample size
n; however, this dependence is not made explicit, either
here or in the following. As shown by Griffiths and
Tavaré (1994) and Tavaré (2004), the joint distribu-
tion of the times tj can be written in terms of the
variables sj ¼

P
n
k¼j tk for j # n (sj ¼ 0 for j . n):

f ðt2; . . . ; tnÞ ¼
Yn
j¼2

bjxðsjÞ�1e�bj ½Lðsj Þ�Lðsj11Þ�: ð6Þ

Here bj ¼ j( j � 1)/2 and LðtÞ ¼
Ð t

0dt9xðt9Þ�1 is the
‘‘population-size intensity function’’ defined by Griffiths

and Tavaré (1994). In a population of constant size,
the variables tj are mutually independent. In general
this is not the case: Zivkovic and Wiehe (2008), for
example, calculated titj

� �
for a time-varying popu-

lation (Equations 2 and 3 in their article), using
Equation 6.

Given Equation 5, the kth moment of the distribution
of Tn is simply

hT k
ni¼

X
n21n31���1nn¼k
n2;n3;...;nn

k!

n2!n3! � � � nn!
nnn � � � 2n2htnn

n . . . t
n2
2 i;

ð7Þ
where the variables nj can assume values between 0 and k
(subject to the constraint n2 1 n3 1 � � �1 nn¼ k). In the
following we show how the correlation functions of
arbitrary order appearing in (7) can be calculated in a
very simple manner. Consider first the case k ¼ 1. We
have

tj ¼
ð‘

0
dt 1f‘ðtÞ¼jg: ð8Þ

Here ‘(t) denotes the number of lines for a particular
realization of the coalescent process at time t in a sample
of size n ¼ ‘(0). The indicator function in Equation 8 is
unity when ‘(t) ¼ j and zero otherwise. Averaging over
realizations gives

htji ¼
ð‘

0
dth1f‘ðtÞ¼jgi ¼

ð‘

0
dt fnjð0; tÞ: ð9Þ

Here fnm(t1, t2) is the conditional probability that n
ancestral lines at t1 coalesce to m lines at time t2 . t1.

Figure 2.—Numerically computed distributions rðT nÞ of
the scaled total branch lengths Tn in genealogies of samples
of size n ¼ 10. The model employed in the simulations is out-
lined in a model for a population with time-dependent

carrying capacity. It describes a population subject to a
time-varying carrying capacity, Kl ¼ K0(1 1 e sin(2pnl)).
The frequency of the time changes is determined by n, and
l ¼ 1, 2, 3, . . . labels discrete generations forward in time.
The parameter N ¼ K0 describes the typical population size,
which is taken here to be equal to the time-averaged carrying
capacity. a–e show rðT nÞ for populations with increasingly
rapidly oscillating carrying capacity. The dashed red line in
a shows that in the limit of low frequencies the standard co-
alescent result, Equation 2, is obtained. The dashed red line
in e shows that also in the limit of large frequencies the stan-
dard coalescent result is obtained, but now with an effective
population size. The dashed red line in d is a two-parameter
distribution, Equation 41, derived in comparison between

numerical simulations and coalescent predictions. Fur-
ther numerical and analytical results on the frequency depen-
dence of the moments of these distributions are shown in
Figure 4. Parameter values used: K0 ¼ 10,000, e ¼ 0.9, and
r ¼ 1 (see a model for a population with time-dependent

carrying capacity for the exact meaning of the intrinsic
growth rate r) and (a) nN ¼ 0.001, (b) nN ¼ 0.1, (c) nN ¼
0.316, (d) nN ¼ 1, and (e) nN ¼ 100.
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For a constant population size, the coalescent is
invariant under time translations, fnm(t1, t2) ¼ gnm(t2 �
t1)H(t2 � t1). Here H(t) ¼ 1 if t . 0 and zero otherwise.
The conditional probability gnm(t) was derived by
Tavaré (1984). For m $ 2 the result is

gnmðtÞ ¼
Xn

j¼m

cnmj e
�bj t ð10Þ

cnmj ¼ ð�1Þj�m 2j � 1

m!ð j � mÞ!
Gðm 1 j � 1Þ

GðmÞ
GðnÞ

Gðn 1 jÞ
Gðn 1 1Þ

Gðn � j 1 1Þ :

ð11Þ

In the general case of a variable population size, as
shown by Griffiths and Tavaré (1994), the condi-
tional probability depends only on the intensity L(t2)�
L(t1) during the time interval [t1, t2]:

fnmðt1; t2Þ ¼ gnmðLðt2Þ � Lðt1ÞÞ: ð12Þ

Now consider the case k ¼ 2. For i . j we have simply

titj ¼
ð‘

0
dt11f‘ðt1Þ¼ig

ð‘

0
dt21f‘ðt2Þ¼jg

¼
ð‘

0
dt11f‘ðt1Þ¼ig

ð‘

t1

dt21f‘ðt2Þ¼jg; ð13Þ

because the second indicator function vanishes when
t2 , t1. Averaging over realizations we find

htitji ¼
ð‘

0
dt1fnið0; t1Þ

ð‘

t1

dt2 fijðt1; t2Þ: ð14Þ

In deriving this result we used the multiplicative rule

h1f‘ðt1Þ¼ig1f‘ðt2Þ¼jgi ¼ fnið0; t1Þfijðt1; t2Þ: ð15Þ

For i ¼ j, by contrast, we find

t2
j ¼

ð‘

0
dt11f‘ðt1Þ¼jg

ð‘

0
dt21f‘ðt2Þ¼jg

¼ 2

ð‘

0
dt11f‘ðt1Þ¼jg

ð‘

t1

dt21f‘ðt2Þ¼jg; ð16Þ

which upon averaging yields

ht2
j i ¼ 2

ð‘

0
dt1fnjð0; t1Þ

ð‘

t1

dt2fjjðt1; t2Þ: ð17Þ

More general correlation functions are readily obtained
in terms of multiple integrals over the functions fnm.
Inserting into (7) we see that the combinatorial factors
(n2!)�1 � � � (nn!)�1 cancel to obtain

hT k
ni ¼ k!

Xn

m1¼2

Xm1

m2¼2

� � �
Xmk�1

mk¼2

m1 � � �mk

ð‘

0
dt1fnm1ð0; t1Þ

� � �
ð‘

tk�1

dtkf mk�1mk
ðtk�1; tkÞ:

ð18Þ

Equation 18 provides an explicit expression for the
moments of the total branch lengths Tn in populations
with population-size variations. The results can be
written in a recursive form, particularly convenient for
numerical computations,

hT k
nðtÞi ¼ k

Xn

m¼2

m

ð‘

t
dt9fnmðt; t9ÞhT k�1

m ðt9Þi; ð19Þ

with initial conditions T 0
mðtÞ

� �
¼ 1 for m $ 2 and

T k
1ðtÞ

� �
¼ 0 for k $ 1. Here Tn(t) is the total time

corresponding to the genealogy of n sequences sampled
at time t in the past given a population-size curve x(t).
Note that t ¼ 0 corresponds to the present time, so that
Tn(0) [ Tn. In a population of constant size, Tn(t) is
independent of t.

Equation 18 or 19 expresses the kth moment of Tn in
terms of a 2k-fold sum [according to (10) each factor of
fnimi

contains a sum over ji]. Equation 18 can be further
simplified by explicitly performing the sums over
m1, . . . , mk. This results in

hT k
ni ¼ k!

Xn

j1¼2

� � �
Xjk�1

jk¼2

dn;j1; ... ;jk

ð‘

0
dt1e�bj1

Lðt1Þ
ð‘

t1

dt2e�bj 2
½Lðt2Þ�Lðt1Þ�

� � �
ð‘

tk�1

dtke�bjk
½LðtkÞ�Lðtk�1Þ�: ð20Þ

The coefficients are determined by recursion:

dn;j ¼
Xj

m¼2

m cnmj ¼ ð2j � 1Þð1 1 ð�1Þj Þ

�
2n � 1
n � j

�
�

2n � 1
n

� ;
ð21Þ

dn;j1; ... ;jk ¼
Xj1

m¼j2

m cnmj1 dm;j2; ... ;jk : ð22Þ

For the particular case k¼ 1 our result corresponds to an
expression derived by Austerlitz et al. (1997) and
Slatkin (1996) and also to the result obtained by
summing Equation 1 in Zivkovic and Wiehe (2008).
For k ¼ 2, the coefficients dn;;j1;j2 are tabulated in Figure
A1 in the appendix for small values of n. In general, the
nested integrals in Equation 20 cannot be simplified
further; their form expresses the correlations of the
times tj due to population-size variations.

Finally note that for n ¼ 2, Equation 18 can be
evaluated as follows:
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hT k
2i ¼ k!2k

ð‘

0
dt1f 22ð0; t1Þ

ð‘

t1

dt2f 22ðt1; t2Þ � � �
ð‘

tk�1

dtk f 22ðtk�1; tkÞ

¼ k!2k

ð‘

0
dt1

ð‘

t1

dt2 � � �
ð‘

tk�1

dtk f 22ð0; tkÞ ¼ 2kk

ð‘

0
dt tk�1e�LðtÞ:

ð23Þ
This representation demonstrates how the expression
(18) simplifies when k . n.

We conclude this section by briefly describing three
different scenarios where our main result (Equation 18)
is applicable. First, Sjödin et al. (2005) discussed a
model where the scaled population size x(t) defined by
Equation 3 may assume two values, 1 and x. The pop-
ulation size randomly jumps from 1 to x at rate l and
back at rate lx. Initially the population size is x(0) ¼ 1.
Our result (Equation 18) is directly applicable to a given
realization of the random process x(t). We denote the
ensemble average over realizations of x(t) by hT k

ni. By
averaging Equation 18 over the corresponding distribu-
tion of L we find

hT ni ¼
Xn

j¼1

dn;j
l 1 lx 1 bj=x

bjðl=x 1 lx 1 bj=xÞ
: ð24Þ

Higher moments can be obtained in a similar fashion.
This provides explicit expressions for the fluctuations of
Tn in the case of slow, fast, and intermediate population-
size changes. This model is particularly suited to
examine the limit of fast population-size fluctuations
l ¼ lx/‘. As expected, the standard Kingman co-
alescent, Equation 2, is recovered but now with an
effective population size Neff ¼ N/c with c ¼ (1 1 x�1)/2.

Second, intermediate population-size variations over
many generations give rise to deviations from the
standard Kingman behavior. The deviations are ex-
pected to be most significant when the timescale of
the size variations is comparable to the times between
coalescent events. Such intermediate population-size
variations are commonly interpreted as due to a
changing environment. In this case it is inappropriate
to average over an ensemble of random population size
curves x(t). The task is instead to describe the fluctua-
tions of Tn conditional on a particular, externally
imposed form of x(t). An example is the question:
How does a recent bottleneck influence the distribution
of Tn? To compute the kth moment of Tn, a k-fold
integration is required. In general this must be per-
formed numerically. However, in the case of piecewise
constant functions x(t) the multiple integrals are
straightforward to evaluate. If, on the other hand, the
function x(t) is sufficiently ‘‘smooth,’’ the multiple
integrals can be evaluated in closed form in the limits
of slowly and rapidly varying population sizes as dem-
onstrated below.

Third, in general stochastic population dynamics
subject to a slowly changing environment may exhibit
both slow changes due to an externally imposed change
of the environment (in the form of a time-changing

carrying capacity, for example) and ‘‘fast’’ (generation-
to-generation) changes due to the random population
dynamics. In the next two sections such a model is
introduced and analyzed by means of Equation 18. The
analysis is simplified by the observation that the fast size
variations are irrelevant when their amplitude remains
small. In this case Equation 18 may be evaluated using a
deterministic population-size curve that is averaged over
the fast changes. In the model discussed in the next two
sections this curve is given by the deterministic time
dependence of the carrying capacity.

A MODEL FOR A POPULATION WITH
TIME-DEPENDENT CARRYING CAPACITY

The purpose of this section is to describe a modified
Wright–Fisher model with a fluctuating carrying capac-
ity. This model is used in the numerical simulations of
sample genealogies described in the next section. Recall
the three key assumptions of the Wright–Fisher model:
(a) constant population size, (b) discrete, nonoverlap-
ping generations, and (c) a symmetric multinomial
distribution of family sizes. We have adopted the fol-
lowing approach: in our simulations, assumptions b and
c are still satisfied, but assumption a is relaxed.

We study a large but finite population of fluctuating
size Nl, where l ¼ 1, 2, . . . labels the discrete, non-
overlapping generations forward in time. The model we
have adopted is the following: consider a generation l
consisting of Nl individuals. The number of individuals
in generation l 1 1 is then given by

N l11 ¼
XNl

j¼1

jj ; ð25Þ

where the random family sizes jj are independent and
identically distributed random variables having a Pois-
son distribution with parameter ll (specified below).
Consequently the number Nl11 is Poisson distributed
with mean Nlll.

This model exhibits a fluctuating population size Nl,
rapidly changing from generation to generation. As
pointed out in the Introduction, in large populations
such fluctuations are averaged over by the ancestral
coalescent process and can be captured in terms of an
effective population size. The resulting genealogies are
simply described by Kingman’s coalescent for a constant
effective population size of the form (1) or (4).

Interesting population-size fluctuations occur on
larger timescales, corresponding to slow variations of
the population size over several generations. Such slow
changes are most commonly interpreted as conse-
quences of a changing environment. A natural model
for such changes is to impose a finite carrying capacity
Kl that varies as a function of generation index l. This
is the approach adopted in the following, and we
choose
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ll ¼
1 1 r

1 1 rN l=K l11
ð26Þ

for a certain parameter value r . 0. Here Kl11 is the
carrying capacity in generation l 1 1. If the environ-
mental changes affected the population through fertil-
ity variations, Kl11 would be replaced by Kl in Equation
26. Equation 26 is chosen so that the population ceases
to grow on average when the carrying capacity is
reached (ll ¼ 1 for Nl ¼ Kl11). When the population
size is small and r>1, the population growth follows the
logistic law, ll ¼ 1 1 r(1 � Nl/Kl11), where r is the
intrinsic growth rate. The particular form of Equation
26 ensures that ll . 0.

Note that fluctuations of Nl in this model are due to
two different sources: rapid fluctuations are caused by
the randomness of the family sizes, and slow fluctuations
are caused by the time dependence of the carrying
capacity. Our choice for the time dependence of Kl is
dictated by the following considerations. The aim is to
describe the influence of a fluctuating population size
upon the statistics of genetic variation. To this end we
need to consider the functional form of Kl. A simple
choice for Kl is a periodically varying function, such as

K l ¼ K 0½1 1 e sinð2pnlÞ�; e 2 ð0; 1Þ; n 2 ð0; ‘Þ: ð27Þ

Note that a more complex dependence of Kl upon l can
be obtained from superpositions of such functions with
different amplitudes e and frequencies n. Here we use
simply (27) and investigate how the statistics of genetic
variation in a sample depend upon frequency of the
fluctuations in Kl.

Figure 3 shows a realization of a curve Nl obtained in
this manner (the choice of parameters is given in the
Figure 3 legend). Figure 3 clearly exhibits fluctuations
in Nl on two timescales, fast and slow. As explained
above, the fast fluctuations are irrelevant provided their
amplitude is sufficiently small. In this case we expect
that the distribution of Tn can be described by a
population-size curve that is averaged over the fast
fluctuations. In the present model, averaging over the
fast fluctuations results in a deterministic population-
size curve determined by the carrying capacity (27).
This curve is shown in Figure 3 as a dashed line.

Note that conditional on the sequence of population
sizes, the genealogy of a set of individuals sampled in
generation l can be determined recursively by randomly
choosing ancestors in the preceding generations. This is
ensured by the assumption that, conditioned on the
values of Nl and Nl11, the family sizes follow a symmetric
multinomial distribution MnðN l11; 1=N l ; . . . ; 1=N l Þ.
The resulting correspondence with the Wright–Fisher
rule of reproduction ensures that the genealogies can
be determined recursively in the way suggested above.

In the next section we analyze results of three sets of
10,000 computer simulations for this population model

with parameters r ¼ 1 and e ¼ 0.9 and for a range of
values for n. The three sets differ in the values for the
average carrying capacity that are chosen to be K0¼ 100,
K0¼ 1000, and K0¼ 10,000. The population is sampled
in generation l s (see Figure 3), which is chosen so that
2nls becomes an odd natural number. This implies that
Kl s
¼ K 0 and that the population size was declining

toward Kls in the most recent past.

COMPARISON BETWEEN NUMERICAL SIMULATIONS
AND COALESCENT PREDICTIONS

In this section we discuss the numerically computed
distributions shown in Figure 2 in terms of Equation 18.
The shapes observed in Figure 2 are conveniently
characterized in terms of their mean T nh i, variance,
skewness, and kurtosis:

varðT nÞ ¼ hT 2
ni � hT ni2;

skewðT nÞ ¼
hðT n � hT niÞ3i

var3=2ðT nÞ
; ð28Þ

kurtðT nÞ ¼
hðT n � hT niÞ4i

var2ðT nÞ
: ð29Þ

Recall that for a normal distribution the skewness van-
ishes, and the kurtosis equals three. We can write the
skewness and kurtosis in terms of the moments T k

n

� �
using

ðT n � T nh iÞ3
� �

¼ T 3
n

� �
� 3 T 2

n

� �
T nh i1 2 T nh i3 and

ðT n � T nh iÞ4
� �

¼ T 4
n

� �
� 4 T 3

n

� �
T nh i1 6 T 2

n

� �
T nh i2�3 T nh i4:

The moments T k
n

� �
are evaluated by means of

Equations 18 and 19 as functionals of the scaled

Figure 3.—One realization of the curve Nl obtained from
simulations of the model described in a model for a popu-

lation with time-dependent carrying capacity (black
solid line). Choice of parameters: r ¼ 1, K0 ¼ 100, e ¼ 0.9,
and Nn ¼ 1, with N ¼ K0. Also shown is an average over the
fast fluctuations. The upper horizontal axis illustrates where
the population is sampled and how time is counted backward
in the coalescent approximation.
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population size x(t) followed backward in time. With
stochastically fluctuating sizes the scaled population size
x(t) also becomes a random process. As Figure 3 in-
dicates, the random fluctuations around the determin-
istic carrying capacity function are relatively small and
we expect that such generation-to-generation fluctua-
tions are irrelevant for the distribution of Tn. We
therefore disregard the fast (random) fluctuations of
the population sizes and define function x(t) determin-
istically by

xðtÞ ¼ 1 1 e sinðvtÞ: ð30Þ

This is obtained from an analog of Equation 3 when the
population is sampled in generation ls (as indicated in
Figure 3):

K l ¼ Nx
l s � l

N

� �
: ð31Þ

Here (27) was used with v ¼ 2pnN, and N ¼ K0. Note
that the particular form (30) of x(t) depends upon when
the population is sampled. Had the population been
sampled at a different time, a different curve x(t) could
have resulted, leading in turn to a different distribution
r(Tn) of Tn, since the distribution depends, for exam-
ple, upon whether most recently the population was
expanding or declining.

Our results are summarized in Figure 4. It shows how
the mean, variance, skewness, and kurtosis of the
distribution of Tn depend on the scaled frequency v

of the population size variation, Equation 30. Shown are
results of numerical simulations of the model described
in the previous section (symbols) and results obtained
within the coalescent approximation using Equation 19.
We observe that the coalescent approximation describes
the results of the numerical simulations well, even for
small population sizes.

In the numerical simulations we have found that, for
very small population sizes, random fluctuations of Nl

around the time-dependent carrying capacity Kl be-
come increasingly important. Since we suspected that
the small deviations observed in Figure 4a for K0 ¼ 100
were due to such fluctuations, we performed slightly
modified simulations imposing a deterministic law
upon Nl by forcing Nl ¼ Kl in every generation [where
Kl is given by (27)]. Comparison of the corresponding
results (not shown) with Figure 4a indicates that the
deviations for K0 ¼ 100 at large frequencies are indeed
caused by the stochastic fluctuations in the population
dynamics underlying Figure 4a. A different interpreta-
tion of this effect is the following: when the population
size is very small, and when e is close to unity, the
population may exhibit a nonnegligible probability of
becoming extinct during the expected time to the most
recent common ancestor for a sample of size n. In this

case we have conditioned on the existence of the
population during 100K0 generations using rejection
sampling. In practice this avoids extinction, but it leads
to a biased size distribution.

Consider now the frequency dependence of the
moments shown in Figure 4. It can be qualitatively and
quantitatively understood using Equation 20 together
with the following expression for L(t):

LðtÞ ¼
ðt

0

ds

1 1 e sinðvsÞ

¼ Øvt=2p 1 1=2ø� ð1=pÞarctanðe=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

Þ1 ð1=pÞarctanððtanðvt=2Þ1 eÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

Þ
ðv=2pÞ

ffiffiffiffiffiffiffiffiffiffiffi
1�e2
p :

ð32Þ

Here Øzø is the smallest integer larger than z. Next we
discuss the asymptotical formulas for small and large
frequencies v.

In the limit of v/0, Equation 32 simplifies to
LðtÞ � t � 1

2 evt2. Inserting this into (20) we find
approximately

hT ni ¼ 2hn 1 4ðg n � hn=nÞev 1 oðvÞ; v/0: ð33Þ

Here hn ¼
P

n�1
j¼1 j�1 and g n ¼

P
n�1
j¼1 j�2. Equation 33 is

shown in Figure 4a as a dashed-dotted line. For the
variance we find the approximate expression

varðT nÞ ¼ 4g n 1 16 fn � gn 1
hn � gn

n

� �
ev 1 oðvÞ; v/0;

ð34Þ

with fn ¼
P

n�1
m¼1ðm�3 1 m�2hm11Þ. The limiting value for

zero frequency is that of the standard coalescent with
constant population size. Equation 34 is shown in Figure
4b as a dashed-dotted line. Similarly the standard results
for the constant-size coalescent are obtained for the
skewness and for the kurtosis in the limit of v/0. This
limiting behavior is illustrated in Figure 2a, which shows
that the distribution of Tn approaches that for King-
man’s coalescent for a constant population size in the
limit of small frequencies. We note that for v>1, the
population-size dependence is essentially that of a
declining population, because the time to the most
recent common ancestor is reached before the first
maximum in x(t) going backward in time (see Figure 3
and Equation 30).

Of particular interest is the limit of large frequencies,
as we now show. As v / ‘, one expects that the coa-
lescent process averages over the population-size oscil-
lations, and the standard coalescent process with a
constant effective population size should be obtained.
For large but finite frequencies, by contrast, Figure 4a
exhibits deviations from the standard coalescent behav-
ior. In the following we analyze the behavior of the
moments in this regime. In the limit of large frequen-
cies, Equation 32 simplifies to
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LðtÞ ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p � arctanðe=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

Þ
v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p 1 oðv�1Þ; v/‘: ð35Þ

For large frequencies, the function L(t) is well approx-
imated by a shifted linear function

LðtÞ � tc 1 L0: ð36Þ

Here c determines the effective population size accord-
ing to Equation 4: Neff ¼ N/c with

c ¼ lim
T /‘

1

T

ðT

0

dt

1 1 e sinðvtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� e2
p : ð37Þ

The parameter c describes the influence of the de-
mographic fluctuations upon the part of the genealogy
in the distant past. The small offset

L0 ¼ �
arctan

�
e=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p �

c

v
� � ec

v
for e not too close to unity ð38Þ

describes the influence of demographic changes on the
most recent part of the genealogy. Inserting the approx-
imation (36) into (20) we find for large frequencies
(and when the amplitude e is not too close to unity)

hT ni ¼ 2hnc�1 1 nev�1 1 oðv�1Þ; v/‘: ð39Þ

The first term in (39) is the expected time of Kingman’s
coalescent for a constant effective population size Neff¼
N/c. The curve corresponding to (39) is shown as a
dashed line in Figure 4a. We infer that corrections to
the standard coalescent result are significant when the
sample size is large, the amplitude of the size oscil-
lations is not too small, and the frequency v is of order

unity. This is consistent with the results of Sjödin et al.
(2005).

We now discuss the behavior of the variance shown in
Figure 4b. For the second moment we find

hT 2
ni � 4c�2ðg n 1 h2

nÞ1
4nhne

vc
: ð40Þ

The first term in Equation 40 corresponds to the second
moment of Tn in Kingman’s coalescent with a constant
effective population size. The second term in (40)
represents a correction due to finite but large frequen-
cies; it depends in a simple fashion on the effective
population-size parameter c and on the sample size n.

Comparing Equations 39 and 40, we arrive at the
conclusion that the corresponding correction for the
variance var(Tn) vanishes. This is consistent with the fact
that, at large frequencies, the variance of Tn is surpris-
ingly insensitive to changes in frequency (as opposed to
the behavior of T nh i, see Figure 4, a and b). In fact, the
limiting value (shown in Figure 4b as a dashed line) is a
very good approximation to var(Tn) down to v � 3.

Consider now the skewness and the kurtosis shown in
Figure 4, c and d. Their behavior is similar to that of the
variance: for v . 3, the skewness and the kurtosis are
essentially independent of v. The results shown in
Figure 4 imply that over a large range of frequencies,
the distribution of the total branch lengths Tn can be
approximated as follows: the distribution is essentially
that of the standard Kingman coalescent with an
effective population size, but the distribution is shifted
such that its mean is given by Equation 39, rather than
by 2hn/c.

Figure 4.—Mean (a),
variance (b), skewness (c),
and kurtosis (d) of the dis-
tribution of Tn for samples
of size n ¼ 10, as a func-
tion of the frequency of
the population-size fluctua-
tions. Shown are results
of numerical simulations
(10,000 simulations with
N ¼ K0, K0 ¼ 100, triangles;
K0 ¼ 1000, diamonds; and
K0 ¼ 10,000, circles) as
well as results computed
within the coalescent ap-
proximation described in
coalescent approxima-

tion formulas for the

moments (red solid lines).
Black dashed-dotted and
dashed lines show the ap-
proximations for small fre-
quencies (Equations 33
and 34) and for large fre-
quencies (Equations 39

and 40). The expressions for the limiting behaviors of the skewness and the kurtosis are shown in c and d, but are not given
in the text. The remaining parameter values are r ¼ 1 and e ¼ 0.9, as in Figure 2.
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One may wonder when this ‘‘rigid shift’’ occurs. Given
Equation 18 it is straightforward to work out the
fluctuations of the times tj within the approximation
(36). We find that for j , n, the expected value of tj is
exactly that of the standard Kingman coalescent with
effective population size. But for j¼ n it is rigidly shifted
by �L0/c. This indicates that the genealogies are
essentially those of the standard coalescent, but modi-
fied by an initial rigid shift. In the parameter regime
discussed here, the distribution of times is expected to
be well approximated by a two-parameter family of
distributions,

PðT n , zÞ � 1� exp � zc 1 nL0

2

� �	 
n�1

ð41Þ

when zc .�nL0, and P(Tn , z)� 0 for smaller values of
z. The first parameter determines the effective popula-
tion size. It parameterizes the slope of the function L(t)
at large times and describes the demographic effect on
the distant past of the genealogy. The second parameter,
L0 describes the influence of the demographic fluctua-
tions on the initial part of the sample genealogy. This
parameter can be negative (recent population decline,
this is the case shown in Figure 3) or positive (recent
population expansion). When L0 . 0, the distribution
r(Tn) is rigidly shifted to the left. In this case the
approximation (36) is expected to break down when the
body of the distribution reaches Tn ¼ 0.

Note that the distribution (41) cannot be described
by a single parameter (a ‘‘generalized effective popula-
tion size’’). The approximation (41) was used to gen-
erate the red dashed curve in Figure 2d.

CONCLUSIONS

The aim of this article was to investigate how the
frequency of population-size fluctuations determines
the shape of the distribution of total branch lengths of
sample genealogies and thus of statistical measures of
genetic variation.

We performed simulations for a modified Wright–
Fisher model of a population subject to a time-
periodically varying carrying capacity and determined
the distribution of the total branch lengths, shown in
Figure 2. We characterized how the shapes of the
distributions depend upon the frequency of the pop-
ulation-size fluctuations by computing the frequency
dependence of the moments of these distributions. We
could explain these dependencies in terms of coales-
cent approximations. In particular, we derived a general
expression—Equation 20—for the moments T k

n

� �
in

populations subject to smooth population changes of
otherwise arbitrary form.

Our results show how quickly (or slowly) the standard
coalescent result for a constant (effective) population
sizes is recovered in the limits of large and small

frequencies. More importantly, our coalescent results
allow us to determine how significant deviations are at
large but finite frequencies. In this case we argued that at
large frequencies, the distribution of Tn is essentially that
of the standard Kingman coalescent with an effective
population size Neff ¼ N/c, but with a shifted mean value

hT ni �
2

c

Xn�1

j¼1

1

j
1

ne
v

for v?1: ð42Þ

The first term on the rhs corresponds to the result of the
standard Kingman coalescent with a constant effective
population size. The second term on the rhs is the
correction term resulting from the population-size
variations (e is the amplitude of the population-size
oscillations, v is its frequency, and n is the sample size).
We infer that corrections to the standard coalescent
result are largest when the sample size is large and the
amplitude e of the size fluctuations is not very small.
This is consistent with the results of Sjödin et al. (2005).

Last but not least we found that the coalescent
approximation yields a reliable description of the
numerical data, even for very small populations.

We close with a number of remarks. First, Equation 20
is easily generalized to describe the moments of observ-
ables that are polynomial functions of the times tj.
Particularly simple is the case of observables A that are
linear functions of the times tj, An ¼

P
n
j¼2 aj tj . In this

case the kth moment of An is given by Equation 20, but
with modified coefficients: the factors m in Equations 21
and 22 are replaced by am.

Second, some observables [such as the F-statistic (Fu

and Li 1993)] can be written as linear functions of tj, but
with random coefficients. In this case too it is possible
to explicitly compute the moments of the distribution
of the observable. These two questions are addressed
in a separate article (S. Sagitov, M. Rafajlovic,
B. Mehlig, and A. Eriksson, unpublished results).

Third, Equation 19 allows us to determine in a
transparent fashion how the fluctuations of Tn depend
upon the time at which the population is sampled. This
will make it possible to discuss, for example, how
Tajima’s D-statistic or the F-statistic depends upon the
time of sampling after a bottleneck, a population
expansion, or a decline.

Fourth, population-size fluctuations are sampled
nonuniformly by the genealogies: initial coalescent
events occur at faster rates and are thus more sensitive
to recent size fluctuations. Remote coalescent events, by
contrast, occur at slower rates, thus damping the effect
of size fluctuations in the distant past. We therefore
expect significant deviations from the standard coales-
cent behavior arising from the most recent history for
large sample sizes n. It would be interesting to quantify
this expectation by computing the covariances and
higher moments of the times tj during which the sample
genealogy has j lines: first, for large i � n and j � n we
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expect to observe strong correlations between ti and tj

and thus deviations from the standard Kingman co-
alescent. Second, for small values of i and j we expect
the times ti and tj to decorrelate and to follow the
distribution of the standard coalescent (with an effec-
tive population size).

Fifth, the model introduced in a model for a

population with time-dependent carrying capacity

assumes a carrying capacity that varies sinusoidally, with
a single frequency. It turns out, however, that our
findings (summarized in Equation 41) are valid for
arbitrary time-dependent fluctuations with a sufficiently
strong and narrow mode at high frequencies. Examples
are linear combinations of high-frequency oscillations
or stochastic fluctuations around a constant population
size, with a sufficiently narrow frequency spectrum. In
this case, too, we expect that L(t) is well approximated
by (36). If this is the case, the distribution of times is of
the form (41) when L0 is small.

Taken together, the results derived in this article give
a rather complete understanding of the fluctuations of
empirical observables due to population size variations.
These results will be significant when attempting to
disentangle the effects of population-size variations
from other factors influencing genetic variation.

Our results raise the question under which circum-
stances the deviations from standard coalescent behav-
iors due to population-size fluctuations (Figures 2 and
4) are most likely to strongly affect the interpretation of
empirical data. As our analysis indicates, the deviations
become substantial when the frequency v ¼ 2pnN is of
order unity. Here n is the frequency of the population
size variations, Equation 30, and N is a suitable measure
of the population size. In other words, rapid population-
size fluctuations will have the strongest effect (other
than simply determining the effective population size)
in small local subpopulations with restricted gene flow
between subpopulations with different fluctuations.
The deviations are expected to be smaller at larger
spatial scales, because the ancestral process averages
over the spatial fluctuations. More generally, we con-
clude that deviations from standard coalescent behavior
are expected for populations subject to an environment
that changes as a function of space and time on neither
too small nor too large length and timescales. An
example for such a population is the marine snail
Littorina saxatilis. Its habitat on the Northern coast of
Bohuslän (Sweden) is fragmented into subpopulations
with strongly restricted gene flow between them, and
effective population sizes of subpopulations have been
found to be very small (K. Johannesson, personal

communication). Starting from the results derived in
this article, we hope to determine gene genealogies in
such fragmented populations subject to variations of
population size in space and time.
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APPENDIX: COEFFICIENTS dn;j1;j2 FOR n ¼ 2, . . . , 10

In Figure A1 we give the coefficients dn;j1;j2 determining the second moment T 2
n

� �
according to Equation 20 for

n ¼ 2, . . . , 10. Note that the coefficient for n ¼ 2 is consistent with Equation 23.

Figure A1.—Coefficients dn;j1;j2 occurring in Equation 20
for n ¼ 2, . . . , 10. Coefficients for odd values of j2 vanish.
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