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ABSTRACT

Many advances in the understanding of meiosis have been made by measuring how often errors in
chromosome segregation occur. This process of nondisjunction can be studied by counting experimen-
tal progeny, but direct measurement of nondisjunction rates is complicated by not all classes of
nondisjunctional progeny being viable. For X chromosome nondisjunction in Drosophila female meiosis,
all of the normal progeny survive, while nondisjunctional eggs produce viable progeny only if fertilized by
sperm that carry the appropriate sex chromosome. The rate of nondisjunction has traditionally been
estimated by assuming a binomial process and doubling the number of observed nondisjunctional
progeny, to account for the inviable classes. However, the correct way to derive statistics (such as con-
fidence intervals or hypothesis testing) by this approach is far from clear. Instead, we use the multinomial-
Poisson hierarchy model and demonstrate that the old estimator is in fact the maximum-likelihood
estimator (MLE). Under more general assumptions, we derive asymptotic normality of this estimator and
construct confidence interval and hypothesis testing formulae. Confidence intervals under this framework
are always larger than under the binomial framework, and application to published data shows that use of
the multinomial approach can avoid an apparent type 1 error made by use of the binomial assumption.
The current study provides guidance for researchers designing genetic experiments on nondisjunction
and improves several methods for the analysis of genetic data.

MEIOSIS is a specialized cell division, where a
diploid cell undergoes a single round of replica-

tion followed by two rounds of segregation to produce
four haploid gametes. During this segregation, chromo-
somes must correctly separate (or disjoin) from their
homologs at meiosis I, followed by sister chromatids
disjoining at meiosis II. When chromosomes fail to
disjoin from their partners, the resultant nondisjunction
produces aneuploid gametes with the wrong number of
chromosomes. The study of meiotic nondisjunction in
Drosophila has a long and distinguished history of
publication in genetics, with the inaugural article
published in this journal being Calvin Bridges’ use of
nondisjunction to prove the chromosome theory of
heredity (Bridges 1916). The first study that screened
variants isolated from natural populations used non-
disjunction to identify meiotic mutants (Sandler et al.
1968), as did the first EMS-induced mutant screen
(Baker and Carpenter 1972). Subsequent screens us-
ing new mutagens or techniques have also relied on
measuring nondisjunction to identify mutants of interest

(Sekelsky et al. 1999). Indeed, much of the progress
that has been made in the study of meiosis would not
have been possible without the use of nondisjunction to
identify new mutations that are defective at some step in
chromosome segregation.

However, one difficulty in estimating nondisjunction
rates is that in most instances the resulting aneuploid
progeny cannot survive. Fortunately, in Drosophila it is
possible to design crosses to recover them. Sex de-
termination in flies is based on the number of X
chromosomes, rather than a masculinizing Y chromo-
some as in mammals. This means that XO flies are
viable (but sterile) males, while XXY flies are viable
females. Therefore, it is possible to recover both
normal and nondisjunctional progeny, as a nullo-X
egg fertilized by an X-bearing sperm will survive as an
XO male, while a diplo-X egg fertilized by a sperm
lacking an X will be female (XXY). By using visible
markers on the sex chromosomes, these exceptional
progeny are straightforward to identify. However, if those
eggs are fertilized by the other class of sperm, the
resulting OY or XXX progeny are inviable. Therefore,
the nondisjunction rate that occurs during meiosis is not
equal to the proportion of nondisjunctional progeny, as
only 50% of nondisjunctional eggs receive sperm com-
patible with viability, while all normal eggs are viable.
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Given this experimental limitation, what is the correct
method to calculate the error rate during meiosis? For
this discussion, let N be the total number of progeny
produced in an experiment, let X1 be the number of
inviable nondisjunctional progeny (OY and XXX), let
X2 be the number of viable nondisjunctional progeny
(XO and XXY), and let X3 be the number of normal
progeny (XY and XX), such that N¼ X1 1 X2 1 X3. If all
progeny could be counted, then the nondisjunction
rate p̂ would simply be (X1 1 X2)/N.

However, only flies that survive to adulthood can be
counted, and therefore both X1 and N are unknown. As
X- and Y-bearing sperm are produced in equal numbers,
live and dead nondisjunctional progeny are also expec-
ted in equal numbers. Therefore, K.W. Cooper (Cooper

1948) proposed the widely used estimator for the X chro-
mosome nondisjunction rate, where X2 is substituted for
X1 in the above formula, giving the rate as:

p̂ ¼ 2X 2

2X 2 1 X 3
: ð1Þ

While this estimator works, the statistical properties of
this estimator are not clear. Instead of following the
early literature to combine X1 and X2 and use a binomial
distribution, we go back to the three original categories
and model the process as a multinomial distribution
with latent number of progeny N, considering all three
possible phenotypes for each progeny (nondisjunctional
dead, nondisjunctional living, and normal). Whether a
nondisjunctional oocyte becomes a nondisjunctional
dead or nondisjunctional living progeny depends on
the sex chromosome content of the sperm that fertilized
it. As X- and Y-bearing sperm are produced in equal
numbers during male meiosis, the usual genetic expec-
tation for the rates of nondisjunctional dead and living
progeny will be X 1 ¼ X 2 ¼ p=2. However, even assuming
that the rates of nondisjunctional dead and living
progeny are different, with a Poisson assumption of N,
we can derive the maximum-likelihood estimators
(MLEs) for the nondisjunctional dead and nondisjunc-
tional living rates. Under the usual genetic expectation of
equality, the MLE of the nondisjunctional rate coincides
with Cooper’s estimator, and we furthermore derive the
exact distribution of p̂. Under another set of reasonable
assumptions, we show the consistency and asymptotic
normality of Cooper’s estimator, and derive asymptotic
results when comparing two nondisjunction rates. All
these distributional results enable us to develop confi-
dence interval and hypothesis testing related to p, or
px� py in the case of comparing two nondisjunction rates
from populations x and y.

FORMULATION OF THE PROBLEM

Suppose an experiment produces a total of N oocytes.
There are three possible cases for each oocyte: non-

disjunctional dead, nondisjunctional living, and nor-
mal. These classes have the corresponding probabilities
p1, p2, and 1 � p1 � p2, where p1 (p2) is the nondisjunc-
tional dead (living) rate. For the ith progeny, let Xi1 be
the indicator of the i nondisjunctional dead defined as
Xi1 ¼ 1 if ith progeny is nondisjunctional dead, and
Xi1¼ 0, otherwise. Similarly, we define Xi2 and Xi3 as the
indicators of the ith nondisjunctional living and regular
progeny. Then, Xi1 1 Xi2 1 Xi3 ¼ 1. For j ¼ 1, 2, 3,
X j ¼

P
N
i¼1 X ij , N ¼

P
3
j¼1 X j , and X1, X2, and X3 are the

number of progeny in each of three categories.
Given N ¼ n, the conditional distribution of (X1, X2,

X3) is a multinomial distribution with (p1, p2, 1� p1� p2).
The probability mass function (p.m.f.) is

f ðX 1 ¼ x1;X 2 ¼ x2;X 3 ¼ x3 jN ¼ nÞ

¼ n!

x1!x2!x3!
ðp1Þx1ðp2Þx2ð1� p1 � p2Þx3 Ifx11x21x3¼ng:

ð2Þ

THE EXACT DISTRIBUTION OF P̂ UNDER
POISSON ASSUMPTION

First, we make a Poisson assumption for N, which
naturally comes from the most classical hierarchical
model, known as binomial-Poisson hierarchy (see Casella

and Berger 2001, Examples 4.4.1 and 4.4.2). We then
derive p̂1 and p̂2, the maximum-likelihood estimators
for p1 and p2. Under the usual genetic expectation that
X- and Y-bearing sperm are produced in equal num-
bers (and therefore p1 ¼ p2), and ignoring all other
causes of mortality, we show that p̂1 1 p̂2 is equal to
Cooper’s estimator of p̂, and we further derive its exact
distribution.

The likelihood function: To specify the likelihood
function of the observed (X2, X3), we assume that the
number of progeny, N, has a Poisson probability
distribution: PðN ¼ nÞ ¼ e�lln=n!. Then, the joint p.m.f.
can be written as

f ðx1; x2; x3Þ ¼ e�lp1
ðlp1Þx1

x1!

� �
e�lp2

ðlp2Þx2

x2!

� �
e�lð1�p1�p2Þðlð1� p1 � p2ÞÞx3

x3!

� �
:

ð3Þ
This implies that under the Poisson progeny assump-

tion, X1, X2, and X3 are independent Poisson random
variables with parameters lp1, lp2, and l(1 � p1 � p2),
respectively. This desirable property with the observa-
tion that

P
‘
x1¼1 e�lp1 ðlp1Þx1=x1!ð Þ ¼ 1 helps to obtain a

simple likelihood of (p1, p2) by summing over x1 as
follows:

Lðp1; p2Þ ¼ Lðp1; p2; x2; x3Þ ¼ e�lp2
ðlp2Þx2

x2!

� �
e�lð1�p1�p2Þðlð1� p1 � p2ÞÞx3

x3!

� �
:

ð4Þ

Let l(p1, p2) ¼ log L(p1, p2) be the log likelihood.
The maximum-likelihood estimators: Setting
@=@p1ð Þlðp1; p2Þ ¼ 0 and @=f2ð Þlðp1; p2Þ ¼ 0, we obtain
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@l

@p1
¼ l� x3

1� p1 � p2
¼ 0 and

@l

@p2
¼ x2

p2
� x3

1� p1 � p2
¼ 0

with roots:

p1 ¼
l� x2 � x3

l
and p2 ¼

x2

l
:

It can be checked that the second-order Jacobian
matrix is nonpositive definite, ensuring that ðp̂1; p̂2Þ is
the maximizer.

To realize the estimators of p1 and p2, we need to
estimate l. However, without further constraint on p1

and p2, l can be any positive number larger than x2 1 x3

because the given observations of x2 and x3 allow us
to only estimate the ratio of p2 and p3. Further restricting
p1¼ kp2 for a positive k, a reasonable estimate for l is l¼
(1/k11)x2 1 x3. and then MLEs for p1 and p2 are

p1ML ¼
x2

ðk 1 1Þx2 1 kx3
and p2ML ¼ kp1ML

¼ kx2

ðk 1 1Þx2 1 kx3
:

Of course, the usual genetic case is k ¼ 1. In such a
case, we obtain l ¼ 2x2 1 x3 and the nondisjunctional
rate p ¼ p1 1 p2. The invariance property of maximum-
likelihood estimators implies that pML ¼ p̂1 1 p̂2 and
interestingly, pML turns out to be

pML ¼
2x2

2x2 1 x3
; ð5Þ

which is exactly Cooper’s estimator, p̂ in (1).
The exact distribution of p̂ : Focusing on the case p1¼

p2 and letting p ¼ p1 1 p2, we can rewrite (4) as

PðX 2 ¼ x2;X 3 ¼ x3Þ ¼ e�lp=2ðlp=2Þx2

x2!

� �
e�lð1�pÞðlð1� pÞÞx3

x3!

� �
; ð6Þ

with l ¼ 2x2 1 x3. By defining a transformation as y2 ¼
2x2 1 x3 and y3 ¼ 2x2= 2x2 1 x3ð Þ, we can derive the joint
p.m.f. of (Y2, Y3) using (6), and then get the marginal
exact p.m.f. of Y3

PðY 3 ¼ y3Þ ¼
X

y2 possible

pðY 2 ¼ y2;Y 3 ¼ y3Þ; ð7Þ

which is the p.m.f. of p̂. This distribution could be obtained
numerically and an R script is available upon request.

ASYMPTOTIC RESULTS WITHOUT
POISSON ASSUMPTION

For the asymptotic properties of p̂, if N ¼ n is known
(equivalently, X1 is observed), it is the classical param-

eter estimation problem of multinomial distribution.
It is well known that X 2=n/p=2 in probability,
and ðX 2=n � p=2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðp=2Þð1� p=2Þ�=n

p
0N ð0; 1Þ,where

the 0 means convergence in distribution. However,
in this framework X1 is not observed and N is unknown.
Hence, we cannot apply the existing results.

We study the asymptotic properties of p̂ with more
general assumptions, and the asymptotic properties of
p̂x � p̂y, which allow the testing of differences between
two nondisjunctional rates.

One nondisjunction rate: Let the number of progeny
produced in an experiment, Nn, be a random variable
taking only nonnegative integer values with a proba-
bility distribution P(Nn ¼ k). Each individual progeny
can only have three possible outcomes (nondisjunc-
tional dead, nondisjunctional living, and normal), and
progeny are independent of each other. Let the
probabilities of a progeny being in the three categories
be (p/2, p/2, 1�p). If Xi denotes the number of
progeny resulting in outcome i(i ¼ 1, 2, 3), then the
joint p.m.f. of (X1, X2, X3) given Nn ¼ k is the
multinomial distribution M(p/2, p/2, 1 � p;k), whose
p.m.f. is given by Equation 2.

Theorem 1. Assume that {Nn} is a sequence of
random variables such that E(Nn) ¼ cn and N n=n/c in
probability for a constant c. Moreover, assume that as
n/‘, ðN n=ð2X 2 1 X 3Þ � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X 2 1 X 3

p
/0 in probability.

Then, Cooper’s estimator p̂ has the following pro-

perty: (1) p̂/p in probability, and (2) ðp̂� pÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p̂ð2� p̂Þ�=ð2X 2 1 X 3Þ

p
0N ð0; 1Þ.

Remark 1. The assumptions of Theorem 1 are neces-
sarily met by a Poisson distribution for N.

The proof of this remark as well as all the theorems
are provided in the Appendix.

Similar to the usual normal approximation to the
binomial, we require that ð2X 2 1 X 3Þp̂ ¼ 2X 2 $ 5 and
ð2X 2 1 X 3Þð1� p̂ Þ ¼ X 3 $ 5 to ensure a good approx-
imation as our simulation demonstrates. On the
basis of the above theorem, we can easily obtain the
(1 � a) 100% confidence interval for p as p̂ 6 za=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p̂ð2� p̂Þ�=ð2X 2 1 X 3Þ

p
. For hypothesis testing with

H0: p ¼ p0 vs. H1: p . p0 (for example), let
Z 1 ¼ p̂� p0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð2 � p0Þ=ð2X 2 1 X 3Þ

p
. Then, the deci-

sion rule at significance level a is to reject H0 if Z1 . za.
The difference of two nondisjunction rates: Suppose

that there are two progeny populations X and Y. We
observed X2, Y2, X3, Y3 as the number of nondisjunc-
tional living and regular normal progeny for both
populations. We would like to assess whether the
nondisjunction rates of two populations are statisti-
cally different from each other. Specifically, we are
interested in testing: H0: px� py¼ d0 vs. H1: px� py 6¼ d0,
for example, or in constructing the confidence interval
of px� py. Similarly, let the number of progeny from the
X population be Nn, and the number of progeny from
the Y population be Mm, where both Nn and Mm are
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random variables. Let the probabilities of a progeny’s
outcome being in the three categories (X1, X2, X3) be
(px/2, px/2, 1 � px) in the X population, and the
probabilities of a progeny’s outcome being in the three
categories (Y1, Y2, Y3) be (py/2, py/2, 1 � py) in the Y
population. We define

p̂x ¼
2X 2

2X 2 1 X 3
and p̂y ¼

2Y 2

2Y 2 1 Y 3
:

Theorem 2. Assume that {Nn} is a sequence of random
variables such that E(Nn) ¼ c1n and N n=n/c1 in
probability for a constant c1. Assume that {Mm} is a sequence
of random variables such that E(Mm) ¼ c2m and
M m=m/c2 in probability for a constant c2. Moreover,
assume that as

n/‘;
N n

2X 2 1 X 3
� 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X 2 1 X 3

p
/0

in probability, and as

m/‘;
M m

2Y 2 1 Y 3
� 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Y 2 1 Y 3

p
/0 in probability;

then: (1) p̂x � p̂y/px � py in probability, and (2)

p̂x � p̂y � ðpx � pyÞ
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂xð2� p̂xÞ
2X 21X 3

1
p̂yð2� p̂yÞ
2Y 21Y 3

s
0N ð0; 1Þ:

Similarly, the Poisson assumptions of Nn and Mm satisfy
the assumptions of Theorem 2.

Again, we require that ð2X 2 1 X 3Þp̂x ¼ 2X 2 $ 5 and
ð2X 2 1 X 3Þð1� p̂xÞ ¼ X 3 $ 5 as well as ð2Y 2 1 Y 3Þp̂y ¼
2Y 2 $ 5 and ð2Y 2 1 Y 3Þð1� p̂yÞ ¼ Y 3 $ 5 to ensure a
good approximation. On the basis of the above theo-
rem, we can easily obtain the (1 � a)100% confidence
interval for px � py as

p̂x � p̂y 6 za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂xð2� p̂xÞ
2X 2 1 X 3

1
p̂yð2� p̂yÞ
2Y 2 1 Y 3

s
:

For hypothesis testing with H0: px� py¼ d0 vs. H1: px�
py 6¼ d0 (for example), let

Z 2 ¼ ðp̂x � p̂y � d0Þ
, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂xð2� p̂xÞ
2X 2 1 X 3

1
p̂yð2� p̂yÞ
2Y 2 1 Y 3

s
:

Then, the decision rule at significance level a is to
reject H0 if jZ2j . za/2. Finally, for the future experi-

Figure 1.—Comparison of the exact distribution and the asymptotic distribution of the nondisjunction rate. Three cases are
considered, the nondisjunction rates being 0.05, 0.01, 0.004, to show the difference of two distributions. The green curve is the
empirical distribution of p with 50,000 simulations.
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ment with the expected difference as d0, the sample
size can be calculated as n ¼ ðpxð2� pxÞ1 pyð2� pyÞÞ
ðza=2 1 zbÞ2

�
d2

0 with power 1 � b and probability of type
I error as a. For readers not interested in the derivation,
the final equations are summarized in File S1.

COMPARISON OF THE EXACT AND THE
ASYMPTOTIC DISTRIBUTIONS

In this study, we present two ways of getting the
distribution of nondisjunction rate estimator p̂. The exact
distribution of p̂ is derived with stronger assumptions,
namely, the Poisson distribution for the total number of
progeny (N ) with its mean equal to 2x2 1 x3. The
asymptotic results are derived with weaker assumptions
and are applicable as long as N satisfies conditions in
Theorem 1. The Poisson assumption of N is one special
case where Theorem 1 can be applied. When the number
of nondisjunctional living progeny (x2) is not too small,
usually x2 $ 5, the approximation is good. We demon-
strate this by comparing the two distributions assuming
there is a total of 1000 progenies for three cases: (1) X2¼
25, X3¼ 950, then p¼ 0.05; (2) X2¼ 5, X3¼ 990, then p¼
0.01; and (3) X2 ¼ 2, X3 ¼ 996, then p ¼ 0.004.

We further generate the empirical distributions of p9s
under the three cases by simulations to see how our
derived distributions matched the simulated ones. The
detailed procedures are to first, simulate a N from a
Poisson distribution with mean being 1000; second,
simulate x1, x2, x3 from a multinomial distribution with
(p/2, p/2, 1� p); and third, calculate p̂ ¼ 2x2= 2x2 1 x3ð Þ.
The procedure is repeated 50, 000 times each, with p set
to 0.05, 0.01, or 0.004, respectively, as shown in Figure 1.
When X2 is large, the assumptions for asymptotic results
are well met and the three distributions (exact, asymp-
totic, and empirical) are almost identical (case 1 and 2).
When X2 is small (2X2 , 5 and p is close to 0) (case 3),
the asymptotic density deviates more from the exact
distribution, but still in good agreement. These results
show that the asymptotic normal distribution is a very
good approximation of the exact distribution. In the
extreme case that the data are not well modeled by the
Poisson distribution, the asymptotic results are still valid.
We suggest using the asymptotic results for constructing
confidence intervals and doing hypothesis tests unless
either 2X2 or X3 is small (,5). As nondisjunction assays
in Drosophila usually have sample sizes of at least several
hundred, this condition is most likely to be violated in
cases where the value of p is close to 1/N.

ANALYSIS USING REAL DATA

Case study I: The common objectives for doing a
nondisjunction assay include estimating the nondis-
junction rate and testing if two genotypes have rates that
are statistically significantly different. In the first exam-
ple, we compare results of point estimation and hypoth-

esis tests between the asymptotic results derived in this
study and the asymptotic results assuming the tradi-
tional binomial distribution. As we discussed, most pub-
lished literature has used the binomial distribution to
model the nondisjunctional event as Binomial (N, p)
assuming that N is observed and N ¼ 2X2 1 X3. With this
assumption, the estimator turns out to be the same as
one in this study, p̂ ¼ 2x2= 2x2 1 x3ð Þ, but the standard
deviation is calculated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂ Þ=2X 2 1 X 3

p
. This

approximation ignores the fact that the number of
nondisjunctional dead progeny is an unobserved ran-
dom number. When this randomness is accounted for,
as we do in this study, the standard deviation is calcu-
lated as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð2� p̂ Þ=2X 2 1 X 3

p
, which is at least 1.414

times as large as the one calculated with the binomial
distribution (Figure 2). Unlike the binomial assump-
tion that the standard deviation reaches to the largest
when p ¼ 0.5, under the multinomial assumption, the
standard deviation of p increases as p increases. There-
fore, as p gets larger, the ratio between these two
standard deviations gets larger. We illustrate this using
a published data set (Zhang and Hawley 1990). This
study tested nondisjunction rates from a number of
different mutant alleles of the gene nod. The estimated
X nondisjunctional rate for these mutants is around 0.5
(Table 1). The standard deviation calculated using our
asymptotic results is always larger (1.74–1.83 times as
large) and the difference tends to increase as p gets
larger.

Taking this randomness into consideration also has a
large effect in terms of hypothesis tests. For comparing
two nondisjunction rates px and py, our results show that

p̂x � p̂y � ðpx � pyÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂xð2� p̂xÞ
2X 2 1 X 3

1
p̂yð2� p̂yÞ
2Y 2 1 Y 3

s
0N ð0; 1Þ

under the null hypothesis, which is different from

Figure 2.—Comparison of standard deviations calculated
using asymptotic results assuming a binomial distribution� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ð1� p̂Þ= 2X 2 1 X 3ð Þ
p �

and asymptotic results assuming

a multinomial distribution as proposed in this study� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 2� p̂ð Þ= 2X 2 1 X 3ð Þ

p �
. In the plot, we use 2X2

1 X3 ¼ 1000.
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p̂x � p̂y � ðpx � pyÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂xð1� p̂xÞ
2X 2 1 X 3

1
p̂yð1� p̂yÞ
2Y 2 1 Y 3

s
0N ð0; 1Þ;

when N is assumed to be observed. When we test if all
seven mutants have the same nondisjunction rates by
pairwise comparison (Table 1), we found that there are
no statistically significant differences among them with
the family-wise error rate #0.05 (Bonferroni multitest
correction). This is consistent with the genetic analysis
of these alleles, which appear to act as complete nulls
that have lost all gene function. In contrast, using the
same multitest correction method with asymptotic re-
sults derived from the traditional binomial distribution,
the b34 and b17 alleles appear to be significantly differ-
ent from b9, b1, and b29 (Table 2). This suggests that the
genetic analysis is wrong and that these alleles retain
some residual function. However, in light of our current
analysis, the traditional binomial method would appear
to yield false-positive results caused by ignoring the random-
ness in the number of nondisjunctional dead progeny.

Case study II: In the second data set, a collection of
fly lines isolated from nature that had been used in a
population genetics sequencing project for meiotic
genes (Anderson et al. 2009) was assayed for their X
nondisjunction rates. The nondisjunction rates ob-
served among these lines were small (ranging from
p¼ 0 to p¼ 0.014; Table 3). After multitest correction to
control the FDR * 0.05 (Benjamini and Hochberg

1995), the line MW9X showed a significant difference
with several other lines (marked with * in Table 3, P-
values ¼ 0.05) with changes ranging between 6- and 20-
fold. This result shows that while these lines do not carry
alleles of large effect, such as those isolated by a screen
of natural variation (Sandler et al. 1968), these assays
have nonetheless successfully identified naturally oc-
curring phenotypic variation in the trait of meiotic
segregation. This is consistent with the genotypic varia-
tion identified in these same natural populations having

phenotypic consequences as well. While these pheno-
typic differences are only just statistically significant at
these sample sizes, at the population level these differ-
ences should clearly be subject to natural selection. This
result also raises several experimental design consider-
ations, such as when designing an assay to compare the
nondisjunction rate for alleles of small effect, what
sample size would be needed to reject H0: px � py ¼ 0
with 80% power? For example, if the values of p for two
lines differ by 1% (e.g., px ¼ 0.005, py¼ 0.015), a sample
size of 2338 per group is required to achieve a power of
at least 0.8 with a two-sided significance level of 0.05. In
Table 4, we list the sample size required for pairwise
comparisons of a list of nondisjunction rates, ranging
from 0.01 to 0.31. This table indicates that if the
expected difference in rates is quite large (e.g., 20%
vs. 1%, as might be seen in comparing a mutant to a
mutant plus rescue construct) then sample sizes of only
a few hundred would be more than sufficient. Con-
versely, as the real rates under consideration become
closer, the needed sample size becomes much larger
and quickly becomes experimentally intractable. This
indicates that any experimental outcome that hinges on
nondisjunction rates being different by only 1% or 2%
should be viewed with great skepticism.

DISCUSSION

The nondisjunction rate is an important parameter in
the study of meiosis. We have studied the statistical
properties of the currently widely used Cooper’s esti-
mator p̂, which is 2X 2= 2X 2 1 X 3ð Þ. Under stringent
assumptions, the estimator turns out the be the MLE
and the exact distribution of p̂ could be obtained
numerically. When p is not too close to 0 and the
observed nondisjunctional progeny (X2) is not too small
(2X2 # 5), p̂ is shown to have an asymptotic normal
distribution (Theorem 1), and the asymptotic distribu-

TABLE 1

Comparisons of standard deviation calculation between the asymptotic results derived in this study and the asymptotic results
assuming the binomial distribution

FM7a,
nodb27/noda

FM7a,
nodb34/noda

FM7a,
nodb9/noda

FM7a,
nodb1/noda

FM7a,
nodb17/noda

FM7a,
nodb29/noda

FM7a,
nodbd/noda

Regular 1167 639 844 897 2566 598 639
X NDJ 661 323 527 573 1319 400 378
Total 1828 962 1371 1470 3885 998 1017
Adj.total 2489 1285 1898 2043 5204 1398 1395

X NDJ rate 0.5311 0.5027 0.5553 0.5609 0.5069 0.5722 0.5419
std1 (asymp.normal) 0.0177 0.0242 0.0206 0.0199 0.0121 0.0242 0.0238
std2 (binomial) 0.0100 0.0139 0.0114 0.0110 0.0069 0.0132 0.0133
Ratio (std1/std2) 1.77 1.74 1.80 1.81 1.74 1.83 1.78

The data are taken from Zhang and Hawley (1990), which studied nondisjunction rates from a number of different mutant
alleles of the gene nod.
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tion approximates the exact distribution well when p is
large. In the real data analysis, we suggest use of asymp-
totic results whenever possible because it requires no
specific distribution on N. Unless both 2X2 and X3 are
small (,5), the asymptotic normal distribution is a good
approximation of the exact distribution as shown in our
simulation study. The use of the normal approximation
also enables us to apply classical statistical tools to this
problem. For example (as shown in Table 4), the
power/sample size calculation can be carried out and
this can provide experimental guidelines for designing
nondisjunction assays. Statistical significance tests
(P-value calculation) also can be carried out on the
basis of Theorem 2. We provide a MS EXCEL file to do
these calculations as supporting information material in
File S2.

The analysis of nondisjunction data using this frame-
work suggests several important conclusions. The first
is that as nondisjunction rates approach zero, the number
of nondisjunctional progeny expected approaches zero.
It is in this region that the random number of progeny
surviving fertilization has its greatest effect on the
estimated rate. Second, even for cases where p is far
from zero, the variance of this process is greater than
that of a binomial. The practical impact of this is clearly
seen in our analysis of the published nod nondisjunction
data (Zhang and Hawley 1990). While the genetic analysis
indicated that the nod alleles were complete nulls, the
binomial approach finds that their nondisjunction rates
are statistically significantly different from one another,
suggesting that these alleles retain at least some residual
function. When the increased variance due to lethal an-
euploidy after fertilization is accounted for, the differ-
ences are no longer significant, which is consistent with
the genetic analysis. This avoidance of an apparent false-
positive result is a clear benefit to using the multinomial
approach. Third, this suggests that differences in the
nondisjunction rate of less than around 2% may simply
not be amenable to direct experimental analysis, even
with sample sizes of several thousand. This is a point of
concern for population genetics, as variants that reduced
nondisjunction by even a fraction of a percent should be
advantageous and undergo positive selection in species

as numerous as Drosophila. Our results suggest that any
experimental program working with alleles of small
effect should consider the use of sensitized assays, where
the genetic background is weakened so that small
genotypic differences are magnified to an experimen-
tally tractable level (Zwick et al. 1999). Finally, while
increasing sample sizes does decrease confidence
intervals, sample size increases rapidly experience
diminishing returns. As a rule of thumb, Table 4
appears to show that reasonable statistical payoffs (such
as reduction of sizes of confidence intervals) in in-
creasing sample sizes from �100 to �1000, but very
little improvement in increasing sample sizes from
�3000 to . 10,000. The exact sample sizes aimed for
in an experiment should be considered in light of the

TABLE 2

Comparisons of Bonferroni-adjusted P-values from the hy-
pothesis tests between the asymptotic results derived in this
study (conditional multinomial) and the asymptotic results

assuming the binomial distribution using data in Table 1

genotype1 genotype2 adjp(Multinomial) adjp(Binomial)

nodb34 nodb9 1 0.0737
nodb34 nodb1 1 0.0218
nodb34 nodb29 0.8879 0.0063
nodb17 nodb9 0.8879 0.0060
nodb17 nodb1 0.4232 0.0007
nodb17 nodb29 0.3276 0.0003

TABLE 3

X nondisjunctional rate estimates for lines from two natural
populations (North American and Africa)

Line NonX Normal X nondis rate (std)

301 0 177 0 (�)
303 3 1905 0.0031(0.0018)
304* 2 3818 0.0010(0.0007)
306 0 1601 0 (�)
319 2 2295 0.0017(0.0012)
322 4 3826 0.0021(0.0010)
335 3 2784 0.0022(0.0012)
336 7 3168 0.0044(0.0017)
350 7 3843 0.0036(0.0014)
357 3 2658 0.0023(0.0013)
358 6 2908 0.0041(0.0017)
359 2 525 0.0076(0.0053)
361 3 3651 0.0016(0.0009)
375 6 2650 0.0045(0.0018)
390 5 1122 0.0088(0.0039)
397 0 664 0 (�)
399* 1 3053 0.0007(0.0007)
732 4 1845 0.00439(0.0022)
740* 1 2691 0.0007(0.0007)
774 2 1222 0.0033(0.0023)
MW11-3 0 218 0 (�)
MW25X 2 2909 0.0014(0.0010)
MW27X* 1 1937 0.0010(0.0010)
MW28X 0 159 0 (�)
MW28-5 0 148 0 (�)
MW38X 6 2155 0.0055(0.0023)
MW46-1 0 499 0 (�)
MW6-3II 1 1482 0.0013(0.0013)
MW6X 3 1526 0.0039(0.0023)
MW9-2 1 919 0.0022(0.0022)
MW9-4* 1 2162 0.0009(0.0009)
MW9X 14 2024 0.0136(0.0036)

Nondisjunction rates were measured by crossing wild-type
females to y cv v f car/BSY males under standard conditions,
which allowed identification of nondisjunctional progeny as
multiply-marked males (XO) or BS females (XXY). The num-
bers in parentheses are the standard deviations of the X non-
disjunction rates. The lines marked with * have significantly
different nondisjunction rates when compared to MW9X.
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data’s intended purpose to meet research goals without
wasted efforts.

In the current work, we have considered only esti-
mating the rate of X nondisjunction in female meiosis.
The small 4 chromosome can also be used in non-
disjunction assays, as triplo-4 progeny are viable and can
therefore be observed. By mating experimental females
to males bearing a compound-4, both normal and non-
disjunctional oocytes have the same 50% chance of
being fertilized by the type of sperm that results in viable
progeny. This means that the rate of nondisjunction is
expected to be equal to the proportion of nondisjunc-
tional progeny observed, without the doubling used in
Cooper’s estimator for X chromosome nondisjunction.
In light of our current results, it is clear that the use of a
binomial model for 4 nondisjunction would also un-
derestimate the true size of the confidence intervals. A
preliminary examination of this process suggests that as
random survival is applied to all progeny, instead of
solely to the nondisjunctional classes, the increase in
variance of estimates of 4 nondisjunction rates due to
sperm chromosome content may be even greater than
that for the X. This appears to be because in the X-only
case the 50% chance of dying from fertilization by the
wrong sperm is applied solely to nondisjunctional pro-
geny, while all of the normal progeny are assumed to
survive. In the 4-only case, the same 50% chance of dying
is applied to both nondisjunctional and normal prog-
eny. Therefore, while the value of p̂ is equal to the ob-
served proportion of nondisjunctional progeny observed,
the variance of 4-only nondisjunction should be greater
than that of the X-only case. Furthermore, in practice
nondisjunction for the X and 4 are often scored simulta-
neously. This practice is biologically relevant, as it has
revealed the intriguing observation that rates of X and 4

nondisjunction are often found in a 2:1 ratio across certain
classes of mutants (Zitron and Hawley 1989; Sekelsky

et al. 1999). In this case, as X nondisjunctional oocytes have
only a 25% chance of being viable after fertilization, this
should result in an even larger increase in the variance
than that of the X-only case. Therefore, researchers should
be aware that when compound-4 is used to simultaneously
measure X and 4 nondisjunction, our method for calcu-
lating confidence intervals for X nondisjunction rates will
be an underestimate of the true interval. We are continu-
ing to study the process of X and 4 nondisjunction and
hope to be able to develop similar multinomial results for
the 4-only and X/4 simultaneous cases in the future.

The authors thank Boris Rubinstein and Arcady Mushegian for
helpful discussion and comments, the editor, and two anonymous
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TABLE 4

The expected sample size needed from each of two popula-
tions with the given nondisjunction rates (px and py) to declare
a statistically significant difference with probability of type I

error of a ¼ 0.05 and power of b ¼ 0.90

py

px 0.05 0.1 0.15 0.2 0.25 0.3

0.01 771 273 160 111 84 67
0.06 22,476 2,013 511 256 162 115
0.11 892 41,810 3,188 737 346 209
0.16 341 1,414 60,092 4,298 950 432
0.21 195 492 1,908 77,325 5,342 1,150
0.26 132 264 634 2,372 93,506 6,321
0.31 97 171 329 768 2,807 108,637
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APPENDIX

Proof of Theorem 1: The key result to obtain the
asymptotic properties of p̂ is the following Chung’s
lemma, which is Theorem 7.3.2 (Chung 1974).

Lemma 1. Suppose that {Xi, i $ 1} is a sequence of i.i.d.
random variables with mean 0 and variance 1. Define
Sn ¼

P
n
i¼1 X i. Let {gn,n $ 1} be a sequence of random

variables taking only strictly positive integer values (can be
relaxed to ‘‘taking only nonnegative integers’’) such that
gk=k/c in probability, where c is a positive constant. Then,
Sgn

� ffiffiffiffiffi
gn
p

0N ð0; 1Þ.
The proof of Theorem 1 also relies on the two lemmas

below (their proofs are available upon request).
Lemma 2.

2X 2

N n
/p; in L2 and in probability:

Lemma 3.

N n

2X 2 1 X 3
/1 in L2 and in probability:

Lemma 4.

p
N n

2X 21X 3
�1

� �, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2�pÞ

2X 2s1X 3

s
/0 in L2and in probability:

Proof. Since p̂ ¼ 2X 2=N n=ðð2X 2 1 X 3Þ=N nÞ, Lemmas 2
and 3 imply the consistency of p̂, namely, p̂/p in
probability.

Observe that X i2 � p=2ð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p=2ð Þ 1� p=2ð Þ
p	 


is a
sequence of i.i.d. random variables with mean 0 and
variance 1. Then,

Sn ¼
X

n
i¼1

X i2 � p=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þð1� p=2Þ

p ¼ X 2

n
� p=2

� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þð1� p=2Þ

p
n

:

So, Chung’s lemma and the assumption imply

SNnffiffiffiffiffiffiffi
N n
p ¼ X 2=N nð Þ � ðp=2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp=2Þð1� p=2Þ=N n

p ¼ 2X 2=N nð Þ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� pÞ=N n

p 0N ð0; 1Þ:
ð8Þ

Next, consider

2X 2=ð2X 2 1 X 3Þð Þ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� pÞ=ð2X 2 1 X 3Þ

p ¼ 2X 2=N nð Þ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� pÞ=N n

p
 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N n

2X 2 1 X 3

r
1

p N n=ð2X 2 1 X 3Þð Þ � 1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� pÞ=ð2X 2 1 X 3Þ

p :

ð9Þ

Slutsky’s theorem with (8) and Lemmas 3 and 4 imply

p̂� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� pÞ=ð2X 2 1 X 3Þ

p 0N ð0; 1Þ: ð10Þ

Finally, observe that p̂� pð Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ð2� p̂Þ= 2X 2 1 X 3ð Þ
p

¼
p̂� pð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� pÞ=2X 2 1X 3

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2�pÞ

p
=

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð2�p̂Þ

p
Þ. The

consistency of p̂ implies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 2� pð Þ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð2� p̂ Þ

p
/1/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð2� pÞ
p

in probability. Together with (10), Slutsky’s
theorem gives the desired asymptotic normal result. n

Proof of Remark 1: With the Poisson assumption, Nn

becomes Nl having a Poisson distribution with param-
eter l. It is well known that E(Nl) ¼ l and N l=l/1 in
probability. The first assumption is satisfied. To check
the second assumption, it suffices to show the L1 con-
vergence by Markov inequality. Observe that E(2X2 1

X3) ¼ E(Nl)¼ l. Applying Cauchy–Schwartz inequality,
we have

E

���� N l

2X 2 1 X 3
� 1

���� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X 2 1 X 3

p� 
# E

N l

2X 2 1 X 3
� 1

� �2� 1=2

Eð2X 2 1 X 3Þ½ �1=2

¼ EððN l � 2X 2 � X 3Þ2
1

ð2X 2 1 X 3Þ2
� 1=2

l1=2 # E
1

ð2X 2 1 X 3Þ6
� 1=6

EðN l � 2X 2 � X 3Þ3
� �1=3

l1=2 :

The last inequality comes by applying Hölder’s in-
equality with p ¼ 3 and q ¼ 3

2 . It goes to zero because
it can be shown that given the first assumption of
Theorem 1, [E(2X2 1 X3)�6]1/6 ¼ O(l�1) and [E(Nl �
2X2 � X3)3]1/3 ¼ O(l1/3).

Proof of Theorem 2: Proof. Observe that the two
samples are independent. The consistency follows
immediately. With the assumptions, we can apply
Theorem 1 to each sample and obtain

p̂1�p1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1ð2�p̂1Þ=ð2X2 1 X3Þ
p

p̂2�p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2ð2�p̂2Þ=ð2Y2 1 Y3Þ
p

0
B@

1
CA0N 0;

1 0
0 1

� � �
ð11Þ

Let g(x, y)¼ x� y and D ¼ ð@g=@x; @g=@yÞ. Observe that
g ðp̂1; p̂2Þ ¼ p̂1 � p̂2 and D ¼ (1, �1). Then, the asymp-
totic normality comes from applying the multivariate d

methods.
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Supplemental Information

Inference for one nondisjuntion rate

Let !2 be the number of observed nondisjunctional living progeny, !3 be the
number of observed regular progeny in a study measuring X nondisjunction,
then the nondisjunction rate " is calculated as:

"̂ =
2!2

2!2 +!3

The 95% confidence interval for " is:

"̂± 1.96

√
"̂(2− "̂)

2!2 +!3
.

Comparison of two nondisjunction rates

Suppose that there are two progeny populations ! and $ . We observed
!2, $2, !3, $3 as the number of nondisjunctional living and regular normal
progeny for both populations. Nondisjunctional rates for two populates are
calculated as:

"̂! =
2!2

2!2 +!3
,

and

"̂" =
2$2

2$2 + $3

For hypothsis testing with &0 : "! − "" = '0 vs. &1 : "! − "" ∕= '0 , let

( =
"̂! − "̂" − '0√

#̂!(2−#̂!)
2$2+$3

+ #̂"(2−#̂")
2%2+%3

Then, the decision rule at significance level ) = 0.05 is to reject &0 if
∣(∣ > 1.96. For the specific test of whether "! and "" are equal, set '0 to 0.

Calculation of sample size

For an experiment designed to identify a difference between two nondisjunc-
tion rates "! − "" = '0, the sample size per population required to achieve
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the desired power of 90% while controlling the probability of type I error as
! = 0.05 is calculated as:

# =
($!(2− $!) + $"(2− $"))(1.96 + 1.28)2

%20
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FILE S2 

Nondisjunction Assay Calculator 

File S2 is available for download as an Excel file at http://www.genetics.org/cgi/content/full/genetics.110.118778/DC1. 


