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Abstract
Dramatic advances in genotyping technology have established a need for fast, flexible analysis
methods for genetic association studies. Common complex diseases, such as Parkinson’s disease or
multiple sclerosis, are thought to involve an interplay of multiple genes working either independently
or together to influence disease risk. Also, multiple underlying traits, each its own genetic basis may
be defined together as a single disease. These effects – trait heterogeneity, locus heterogeneity, and
gene-gene interactions (epistasis) – contribute to the complex architecture of common genetic
diseases. Association Rule Discovery (ARD) searches for frequent itemsets to identify rule-based
patterns in large scale data. In this study, we apply Apriori (an ARD algorithm) to simulated genetic
data with varying degrees of complexity. Apriori using information difference to prior as a rule
measure shows good power to detect functional effects in simulated cases of simple trait
heterogeneity, trait heterogeneity and epistasis, and moderate power in cases of trait heterogeneity
and locus heterogeneity. Also, we illustrate that bootstrapping the rule induction process does not
considerably improve the power to detect these effects. These results show that ARD is a framework
with sufficient flexibility to characterize complex genetic effects.

Introduction
Over the past five years, advances in scientific technology have dramatically increased the rate
and quantity of information produced from genetic studies. Like many other disciplines, this
change is prompting a shift from traditional data analysis techniques to data mining
methodologies. In the field of genetic epidemiology, the goal of an association study is to
identify genetic variations that contribute to disease risk. Some platforms for genotyping these
variants now produce 300,000 to 500,000 variables for each individual in the study, with 1
million variables possible per individual in the near future.

At the same time, there is a growing belief in the genetics community that the common diseases
these platforms were developed to study are very complex, with tens or hundreds of genetic
variants working independently or interacting to influence disease risk [1]. Also, complex
disease phenotypes may be characterized with insufficient specificity, allowing multiple
distinct traits or diseases (each with their own genetic risk factors) to be classified clinically
as a single disorder. In this vein, ideal tools for analysis in genetic association studies should
not only scale well to the enormous amounts of data being produced, but should also be flexible
enough to model the complex genetic effects anticipated to occur in common diseases, such
as Parkinson’s disease or multiple sclerosis.

In recent years, a number of computational and statistical techniques have been developed for
or applied to the identification of gene-gene interactions, also known as epistasis. Automated
Detection of Informative Combined Effects (DICE)[2], Patterning and Recursive Partitioning
(PRP)[3], set association[4], penalized logistic regression[5], logic regression[6], and
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multifactor dimensionality reduction (MDR)[7] have been used to find combinations of genetic
variants that influence disease risk. Much less attention has been devoted to methods that can
detect trait or locus heterogeneity, where two or more genes independently contribute to disease
risk. Current statistical approaches to heterogeneity, such as the admixture test[8], are not very
powerful and aim only to identify the existence of heterogeneity rather than characterize it.
Bayesian clustering was recently applied to trait heterogeneity with moderate success[9], but
this method appears less useful when these traits have increased genetic complexity. True
models of common disease risk may involve combinations of trait and locus heterogeneity and
epistasis, resulting in a complex genetic architecture. Methods are needed that can address this
level of complexity.

Association rule discovery (ARD) was developed to identify patterns in extremely large
datasets. In a seminal work, Agrawal et al. presented the apriori algorithm for fast induction
of association rules[10]. Apriori searches for frequently occurring variable combinations
(called frequent itemsets). There may be many frequent itemsets – many millions or more
depending on the dataset size. A minimum support threshold is specified by the user to limit
the number of itemsets generated and increase computational efficiency. The support of a rule
is the percentage of transactions (or data entries) that the rule can be applied to. Once rules are
generated, they are scored by a rule measure, sometimes called rule interestingness.
Traditionally, rule confidence is used, which is the number of transactions where the rule is
true relative to the number of transactions where it can be applied.

Association rule discovery has been applied to gene expression data, searching for patterns of
differential expression across tens of thousands of genes [12,13,14]. To the authors’ knowledge
however, association rule discovery techniques have not yet been applied to genetic association
studies.

ARD is an attractive platform for conducting large scale genetic analysis. The scalability and
optimization of ARD algorithms is a well-studied problem in the data mining community
[14], and several implementations (including parallel versions) are available. It has yet to be
shown, however, if rule discovery methods can identify the complex effects inherent to genetic
diseases.

Therefore, the focus of this paper is to test the ability of an association rule discovery method
to detect complex genetic effects in simulated data, and to assess rule measures and algorithm
considerations as a starting point for further study.

Data Simulations
To characterize the ability of association rule discovery methods to identify complex genetic
effects, datasets that contain a known genetic model were needed. As real datasets with well-
characterized and replicated complex effects are not available, we simulated data. ARD is most
amenable to case-control data, consisting of individuals characterized by discrete genetic
variables or loci (typically with three states AA, AB, and BB) and a binary disease status. We
simulated a set of functional genetic variables related to disease status through four
probabilistic models, defined with increasing degrees of complexity (Fig. 1). 50 non-functional
variables were simulated to add random noise typical of real genetic data[9].

Model 1 is simple trait heterogeneity only (THO), where there is one genetic factor for each
of the two traits. Each factor acts recessively, so affected individuals have both copies of the
high risk allele (BB). For model 2, trait heterogeneity and locus heterogeneity (THL) was
simulated for one of the two traits using a recessive model as described by Li and Reich[15].
The other trait has a single recessive genetic factor. Model 3 contains trait heterogeneity and
a gene-gene interaction (THG). One trait has a non-linear, non-additive gene-gene interaction
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model described by Frankel and Schork[16]. The second trait of this model has a single
recessive locus. Model 4 contains trait heterogeneity with both a gene-gene interaction and
locus heterogeneity (THB). It uses the genetic heterogeneity model for the first trait and the
gene-gene interaction model for the second trait (both as described above). For all models,
each trait accounts for roughly half of affected individuals. A natural overlap between traits
can also occur, with some affected individuals having high-risk consistent with both traits.

All four models simulate a disease with 5% population prevalence, typical of a disease such
as prostate cancer[17]. 200 cases and 200 controls were used, a sample size similar to real
world association studies. All genetic variables were simulated to have biallelic frequencies of
0.5. 100 datasets, each with different randomly seeded variables, were simulated for each
genetic model, creating 400 datasets total. The end result of each data simulation is an input
file containing nominally encoded disease status (affected/unaffected), and a set of genotype
variables with three nominally encoded states (AA, AB, BB).

Data was simulated using a method developed by Thornton-Wells et al. (refer to figure 10 of
[9] for details). Briefly, penetrance functions are translated into two probability arrays – one
for unaffecteds containing the joint probability of being unaffected and having the multi-locus
genotype, and one for affecteds containing (1- joint probability of being unaffected) and having
the multi-locus genotype. Essentially, each affected multi-locus genotype is allotted a space
on a number line proportional to its probability. Random uniform numbers between 0 and 1
are generated for each unaffected individual to assign that individual’s multi-locus genotype.
The sum of the joint probabilities of being unaffected across all multi-locus genotypes is equal
to (1 – P), the population prevalence, in this case set to 5%, and the sum of affected joint
probabilities is equal to P. These cell values were then normalized to fall between 0 and 1.

Methods
An implementation of the apriori algorithm[10] by Borgelt and Kruse was used to generate
association rules[18]. We chose apriori with the idea that future studies might exploit
information about relationships between genetic variables that are independent of disease
status. This implementation was chosen because it offers a variety of options for execution,
including alternate rule interestingness measures and itemset generation algorithms. Apriori
was used with a minimum support threshold from 5 to 30%. Confidence was used for rule
ranking at varying thresholds. Information difference to prior (IDP) was also used as a rule
ranking measure. IDP was implemented by Borgelt and Kruse and is used by decision tree
learners like C4.5 to select split attributes[19]. All itemset generation was performed with a
minimum of 2 and a maximum of 3 items per itemset. Unless noted, all implementation defaults
were used.

To adjust for potential over-fitting, the rule induction process was bootstrapped to produce a
mean rule score. The bootstrap is a re-sampling method used to estimate the standard error of
a parameter[20]. It has also been used to provide stability to an induction process through a
technique called bagging[21]. Specifically, bootstrapping rule induction may improve rule
stability and quality[22]. In this study, bootstrapping was performed using 10 replicates.

Thousands of rules were produced for some configurations of apriori. To reduce the number
of rules to an interpretable set, we reduce the ruleset to rules containing disease status and used
rule ranking to select the top rule or top 5 rules. Rules were ranked by either the rule measure
or bootstrap estimates thereof.

Performance was assessed in several ways. For this study, power is defined as the number of
times a variable was identified as functional out of 100 datasets. The false positive rate is the
proportion of non-functional variables to the total number of variables averaged over all
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datasets. A false positive rate of 25% means on average one of four variables in the reduced
ruleset is spurious. The number of functional variables identified by each ruleset was recorded
also. An ideal method, for example, would identify all four variables in the THB model, but
some rulesets may identify three, two, one, or none of the functional variables.

Results
Rule Induction

We began analyzing the simulated datasets using default support and confidence thresholds
(>10% support, >80% confidence) (Table 1A). Keeping the highest ranked rule only, functional
variables from model 1 (THO) had 100% power, and in model 3 (THG), variables involved in
the gene-gene interaction had 95% power. Model 4 (THB) showed very poor performance,
with two interacting variables around 30% power, and model 2 (THL) detected almost no
functional variables. Using the top 5 rules did not change the power results appreciably.

Next, we tried lowering thresholds (Table 1B). Changing the confidence threshold to >50%
improved the power of all models except model 1 (THO). The power for model 1 recovered
and power improved significantly for other models when keeping the top 5 rules.

The false positive rate for confidence-based ranking was rather high, especially when using
the top five rules. The method did not consistently report a functional variable in the best rule,
and seemed to promote noise variables into the top five rules. To help alleviate this problem,
we evaluated other rule measures.

After testing on a subset of models (data not shown), the most promising measure for rule
ranking in the Borgelt implementation of apriori was information difference to prior (IDP)
[19]. The minimum cutoff for this statistic was set arbitrarily to 5 for all analyses to reduce the
number of rules reported to a manageable number.

Using this measure, apriori is still dependent on support and confidence thresholds for itemset
generation. To establish a baseline level of performance, we used extremely low cutoffs for
support (>5%) and confidence (>5%) to evaluate the ranking ability of the IDP measure (Table
1C). Compared to confidence ranking, the power generally improved and more functional
variables from model 2 (THL) were identified, using the best rule. The interacting variables
were identified for model 3 (THG) (100% of datasets) and model 4 (THB) (98% of datasets).
Also, for model 2 (THL), each of the 3 functional variables were identified with equal frequency
(50%), with only one variable identified in 47% of datasets and two variables identified in
52%. Using the top 5 rules, power improved for model 2 (THL), with all three variables
identified in 51% of the datasets. The overall increase in power was accompanied by a decrease
in false positive rate. Power improvement for other models was marginal. A functional variable
was included in the top rule consistently, and using the top five rules increased power without
a dramatic increase in false positive rate (model 2 was an exception, increasing to 23% false
positive rate). Information difference to prior seems to rank rules better than confidence.

Given that IDP showed improved power, we were curious how sensitive the power results were
to different support thresholds (Table 1E, 1G, 1I). Using a higher support threshold of >10%,
no appreciable power reduction was noted. At >20%, power for model 3 (THG) was unaffected,
and there was a slight reduction in power for model 4 (THB). Model 1 (THO) showed dramatic
power loss, with only one of the two variables identified, each at about equal frequency. Model
2 (THL) also had a power reduction, with only 18% of datasets reporting two or more of the
functional variables. Increasing the rules kept to the top 5 improved power for all models. At
>30%, there was a greater power loss for all models, almost completely for model 4 (THB).
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Using the top 5 rules recovers power completely for model 1 (THO) and marginally for model
2 (THL), but has no effect for models 3 and 4.

Bootstrapping
The rules discovered for the more complex models (3 and 4) tend to focus on one trait of the
model, and show very little power to find the other trait. Also, rules for model 2 do not
consistently find all 3 variables. We thought that instability in the induction process or
inconsistency in scoring and ranking rules could influence our ability to detect these variables.
To correct these issues, we applied a simple bootstrapping procedure (Table 1D, 1F, 1H, 1J).

Using 10 bootstrap replicates with a baseline support threshold (>5%), the power did not
improve selecting either the top rule or the top 5 rules (based on bootstrap estimates of IDP),
respectively. Increasing bootstrap replicates to 100 also did not improve power at this threshold
(data not shown). Continuing with 10 bootstrap replicates, we evaluated the other three support
thresholds, >10%, >20%, and >30%. For 10%, bootstrapping made no discernable
improvement over a standard analysis with equivalent thresholds. At 20%, power improved
for some effects when keeping the top 5 rules. For the 30% cutoff however, there was a general
improvement over standard in models 3 (THG) and 4 (THB), power for model 2 (THL)
improved slightly, and power for model 1 (THO) was largely unchanged. Most notably, using
the single best rule, all functional variables were identified in at least 15% of the datasets. The
false positive rate for model 4 (THB) increased noticeably as well, however. Increasing the
number of bootstrap replicates to 100 slightly drops the false positive rate in both the top rule
and top 5 rule sets, but does not impact power (data not shown).

Rule Quality
The generated rules are readily interpretable, in that each rule designates a single cell of a multi-
locus penetrance table. For model 1 (THO), the most common top rule illustrates that affected
individuals who are heterozygous at one locus are very likely to be recessive at the other locus.
The top five rules contain variations of this idea, but occasionally include noise variables. For
model 2 (THL), a similar pattern is observed between the two variables with locus
heterogeneity. The recessive allele for the other trait is usually identified alone as being related
to disease. Rules generated for model 3 (THG) capture the interaction effect, with the best rule
typically describing how affected individuals with an AA for one locus have BB for the other.
The other trait is occasionally identified as recessive. For model 4 (THB), the interaction effects
are detected as in model 3, and occasionally the locus heterogeneity is detected as in model 2.

Discussion
Rule Measures

Rule confidence shows appreciable power to highly rank rules including functional variables
for the case of simple heterogeneity (model 1) and gene-gene interaction effects (model 3).
The IDP measure maintains the detection ability of confidence and greatly improves power to
detect the remaining functional variables. In this regard, information difference to prior is a
superior measure for rule ranking. Increasing the minimal support threshold from 5% to 10%
had a negligible impact on power using IDP as a rule measure.

Increasing to 20% diminished power to detect heterogeneity effects in models 1 and 2, but
interaction effects maintained high power. Increasing the threshold to 30% abolished power
to detect the interaction effects in models 3 and 4, and further reduced power to detect
heterogeneity effects. This illustrates the minimum support levels may be needed to capture
specific effects in the data.
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Bootstrapping
Bootstrapping rule induction surprisingly had little effect in most cases. When the support
threshold is set to a low level (5–20%), bootstrapping does not improve power or reduce false
positive rates. In some cases, it increased the appearance of spurious variables in the rule set.
At 30% minimum support however, bootstrapping improves power broadly, fostering detection
(at some level) of all functional variables in each dataset. In this circumstance, bootstrapping
appears to help move weaker true signals higher in the rule ranking so they are more likely to
be detected. The false positive rate also increased as noisy rules or rules containing one
functional and one noise variable were promoted in some datasets. Here, increasing the number
of bootstrap replicates from 10 to 100 helps to reduce these spurious results.

It is interesting to note that while the bootstrap does not improve power at low support
thresholds, it can improve power at higher levels. This poses an interesting computational
question; is there an efficiency benefit to bootstrapping rule induction at higher support
thresholds versus general induction at lower thresholds? While the results of this study indicate
that bootstrapping does not completely recover power, other parameterizations may prove
otherwise. Further study is needed to fully determine the utility of bootstrapping in this area.

Application
In general, association rule discovery works well for the complex genetic models simulated
(Fig. 2). Using a single best rule essentially identifies a single highly penetrant allele
combination. Using the top five rules allows multiple penetrant allele combinations to be
highlighted. These may be contained to a single locus or may include multiple influential loci.
In general, a high ranking subset does not include additional spurious variables. Keeping a
larger number of rules, however likely increases the number of noisy rules taken as true
results. Ideally, a rule measure cutoff would be established rather than selecting top ranked
rules. Identifying this cutoff is non-trivial, however, as rule measure values are data dependent.
The threshold required for adequate power in one dataset would be different for another dataset.
Assigning statistical significance to a rule poses similar problems. Permutation testing could
provide p-values for a set of rules, and bootstrapping may also prove useful here, helping to
normalize data specific effects so that a defined cutoff is useful. These approaches may prove
computationally prohibitive for larger datasets.

Another option for reducing rule noise is to parse the rule list to identify similar rules. Numerous
rule comparison measures are available[23] which could help eliminate rules containing one
functional and one spurious variable. Also, including rules that do not relate to disease status
may be useful in this regard, especially in the case of gene-gene interactions. Variables that
are related independent of disease status may generate high ranking rules that help confirm
another effect. This approach would also come at the cost of some increase in noise, however.

While these results are promising, it is important to recognize the limitations of this study
design. Real data from genetic studies can be characterized by several issues that are not
addressed in our simulated data. Missing data, correlations between variables (called linkage
disequilibrium), variable allele frequencies, and small sample sizes are all potential limitations.
Also, the number of variables simulated in this study was small compared to the numbers
possible in a large scale genetic study. Nevertheless, it is important to demonstrate that this
method has utility in smaller scale studies, as techniques for characterizing the complex effects
simulated are scarce.
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Conclusion
This preliminary study demonstrates that association rule discovery using the apriori algorithm
is an effective method for identifying variables involved in trait heterogeneity, locus
heterogeneity, and gene-gene interactions, and shows moderate success with complex
combinations of these effects. To date, there are very few approaches in the genetics community
that can discover genetic effects with this degree of complexity. We also highlight that
bootstrapping the rule induction process may not improve the stability of rule ranking with low
support thresholds, but may have utility in cases where computational limitations prevent
itemset generation with very low support.
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Fig. 1.
Penetrance tables for simulated genetic models. Cell values indicate the penetrance, or the
probability of having the trait, for each genotype combination. The penetrance (X) is
constrained by the population prevalence, set to 5%.
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Fig. 2.
Best rules generated over 100 THB datasets using IDP with minimal confidence and support
> 5% (evaluation C). Using the best rule from each apriori run consistently finds functional
variable combinations
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