Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1991 Sep;88(3):783–788. doi: 10.1172/JCI115377

Na/H antiporter mRNA expression in single nephron segments of rat kidney cortex.

R Krapf 1, M Solioz 1
PMCID: PMC295462  PMID: 1653275

Abstract

Renal cortical tubules consist of polarized epithelial cells where Na/H antiport activity has been demonstrated on the apical and/or basolateral membrane. Apical Na/H antiport activity plays an important role in transcellular bicarbonate (HCO3-) reabsorption, whereas basolateral Na/H antiport activity could be involved in transcellular HCO3- secretion as well as cell volume and pH control. To determine whether this heterogeneity in both localization and function is due to the existence of more than one Na/H antiporter, we studied the tissue distribution of Na/H antiporter mRNA by use of reverse transcription (RT) and polymerase chain reaction (PCR) in isolated nephron segments from rat renal cortex. The primers used were directed against the rat renal cortical Na/H antiporter cDNA which is homologous to the human growth factor-activatable Na/H antiporter. RT/PCR of beta-actin mRNA were performed as positive controls. Na/H antiporter mRNA expression in the proximal tubule was not detectable in S1 and S2 segments from superficial and most midcortical nephrons, which exhibit exclusively luminal Na/H antiport activity. It was expressed in S1 and S2 segments from juxtamedullary nephrons which have also basolateral Na/H antiport activity. Beta-actin mRNA was expressed uniformly in all segments of the proximal tubule. Na/H antiporter mRNA was also expressed in cortical thick ascending limb and cortical collecting duct, segments with basolateral Na/H antiport activity as well as in the glomeruli. In conclusion, at least two different Na/H antiporters exist in the renal cortex, i.e., the proximal tubule. The close correlation between functional localization of basolateral Na/H antiport activity and mRNA expression suggests that the rat kidney Na/H antiporter DNA homologous to the human growth factor activatable Na/H antiporter encodes a basolateral exchanger. The observed expression in a minority of midcortical proximal tubules could reflect a certain heterogeneity in these nephron segments.

Full text

PDF
783

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern R. J., Chambers M. Cell pH in the rat proximal convoluted tubule. Regulation by luminal and peritubular pH and sodium concentration. J Clin Invest. 1986 Aug;78(2):502–510. doi: 10.1172/JCI112602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baum M. Neonatal rabbit juxtamedullary proximal convoluted tubule acidification. J Clin Invest. 1990 Feb;85(2):499–506. doi: 10.1172/JCI114465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyarsky G., Ganz M. B., Cragoe E. J., Jr, Boron W. F. Intracellular-pH dependence of Na-H exchange and acid loading in quiescent and arginine vasopressin-activated mesangial cells. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5921–5924. doi: 10.1073/pnas.87.15.5921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chaconas G., van de Sande J. H. 5'-32P labeling of RNA and DNA restriction fragments. Methods Enzymol. 1980;65(1):75–85. doi: 10.1016/s0076-6879(80)65012-5. [DOI] [PubMed] [Google Scholar]
  5. Chaillet J. R., Lopes A. G., Boron W. F. Basolateral Na-H exchange in the rabbit cortical collecting tubule. J Gen Physiol. 1985 Dec;86(6):795–812. doi: 10.1085/jgp.86.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedrich T., Sablotni J., Burckhardt G. Species differences between rat and rabbit renal Na+/H+ exchangers. Biochem Biophys Res Commun. 1987 Apr 29;144(2):869–875. doi: 10.1016/s0006-291x(87)80045-1. [DOI] [PubMed] [Google Scholar]
  7. Geibel J., Giebisch G., Boron W. F. Basolateral sodium-coupled acid-base transport mechanisms of the rabbit proximal tubule. Am J Physiol. 1989 Nov;257(5 Pt 2):F790–F797. doi: 10.1152/ajprenal.1989.257.5.F790. [DOI] [PubMed] [Google Scholar]
  8. Good D. W. Sodium-dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am J Physiol. 1985 Jun;248(6 Pt 2):F821–F829. doi: 10.1152/ajprenal.1985.248.6.F821. [DOI] [PubMed] [Google Scholar]
  9. Haggerty J. G., Agarwal N., Reilly R. F., Adelberg E. A., Slayman C. W. Pharmacologically different Na/H antiporters on the apical and basolateral surfaces of cultured porcine kidney cells (LLC-PK1). Proc Natl Acad Sci U S A. 1988 Sep;85(18):6797–6801. doi: 10.1073/pnas.85.18.6797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ives H. E., Yee V. J., Warnock D. G. Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell. J Biol Chem. 1983 Nov 25;258(22):13513–13516. [PubMed] [Google Scholar]
  11. Krapf R., Alpern R. J., Rector F. C., Jr, Berry C. A. Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule. J Gen Physiol. 1987 Dec;90(6):833–853. doi: 10.1085/jgp.90.6.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Krapf R. Basolateral membrane H/OH/HCO3 transport in the rat cortical thick ascending limb. Evidence for an electrogenic Na/HCO3 cotransporter in parallel with a Na/H antiporter. J Clin Invest. 1988 Jul;82(1):234–241. doi: 10.1172/JCI113576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krapf R., Pearce D., Lynch C., Xi X. P., Reudelhuber T. L., Pouysségur J., Rector F. C., Jr Expression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis. J Clin Invest. 1991 Feb;87(2):747–751. doi: 10.1172/JCI115057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nudel U., Zakut R., Shani M., Neuman S., Levy Z., Yaffe D. The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucleic Acids Res. 1983 Mar 25;11(6):1759–1771. doi: 10.1093/nar/11.6.1759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Preisig P. A., Ives H. E., Cragoe E. J., Jr, Alpern R. J., Rector F. C., Jr Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest. 1987 Oct;80(4):970–978. doi: 10.1172/JCI113190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sabolić I., Burckhardt G. Proton pathways in rat renal brush-border and basolateral membranes. Biochim Biophys Acta. 1983 Oct 12;734(2):210–220. doi: 10.1016/0005-2736(83)90119-0. [DOI] [PubMed] [Google Scholar]
  17. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES