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Abstract
Translational development – in the sense of translating a mature methodology from one area of
application to another, evolving area – is discussed for the use of benchmark doses in quantitative
risk assessment. Illustrations are presented with traditional applications of the benchmark paradigm
in biology and toxicology, and also with risk endpoints that differ from traditional toxicological
archetypes. It is seen that the benchmark approach can apply to a diverse spectrum of risk
management settings. This suggests a promising future for this important risk-analytic tool.
Extensions of the method to a wider variety of applications represent a significant opportunity for
enhancing environmental, biomedical, industrial, and socio-economic risk assessments.
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1. Introduction
Developed in the mid-1980s – but with roots going back much farther and deeper –benchmark
analysis for estimating exposure risks to hazardous agents has become a widely accepted
technology in quantitative risk assessment. As described by Crump (1984), the method relates
an adverse outcome to a quantified dose or exposure, d ≥ 0, of a hazardous agent via some
functional model. It then manipulates components of this model to yield a benchmark dose
(BMD) of the agent at which a specified benchmark risk or benchmark response (BMR) is
attained. If the exposure is measured as a concentration, one refers to the exposure point as a
benchmark concentration (BMC). The BMD or BMC is used to arrive at a level of acceptable
human or ecological exposure to the agent or to otherwise establish low-exposure guidelines.
Risk analysts increasingly use benchmark quantities as the basis for setting occupational
exposure limits (OELs) or other ‘points of departure’ when assessing hazardous stimuli/
exposures (Kodell 2005; Kobayashi et al. 2006; Nielsen and Øvrebø 2008). Indeed, both the
USA and the Organisation for Economic Cooperation and Development (OECD) provide
guidance on BMDs in carcinogen risk assessment (US EPA 2005; OECD 2008), and the use
of BMDs or BMCs is growing for quantifying and managing risk with a variety of toxicological
endpoints (US General Accounting Office 2001; European Union 2003; OECD 2006). One
critical modification is the use of statistical lower confidence limits on the BMD – called
benchmark dose (lower) limits or simply BMDLs (Crump 1995) – in order to account for
statistical variability of the BMD point estimate.
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The benchmark paradigm integrates mathematical modeling into the low-dose risk-assessment
process, moving away from the so-called no-observed-adverse-effect level (NOAEL)
technologies for estimating low exposure doses. (The NOAEL is an older method for estimating
virtually safe/low-dose exposure levels, and substantial statistical instabilities have been
identified with its use. Most contemporary analysts now recommend against this dated
technology [Chapman, Caldwell, and Chapman 1996; Crump 2002a; Kodell 2009].) Critical
to the calculation of a BMD is the construction of a mathematical risk function, R(d), to describe
how risk changes with increasing levels of dose. In many public health and environmental
scenarios, R(d) is further refined into a form of excess risk, such as the additional risk RA(d)
= R(d) − R(0) or the extra risk RE(d) = RA(d)/{1 − R(0)}. This adjusts for background or
spontaneous effects out of the control of the risk regulator (Piegorsch and Bailer 2005, §4.2).
Either form may be seen in practice, depending on context.

Under this mathematical modeling approach, the BMD is determined by setting R(d), RA(d),
or RE(d), as appropriate, equal to the BMR and solving for d. Statistically, this is a form of
inverse nonlinear regression, similar to the estimation of an ‘effective dose’ such as the familiar
median effective dose, ED50, in toxicity testing (Piegorsch and Bailer 2005, §4.1). Taken from
the unit interval, the BMR is specified in advance of any data acquisition. Calculation of the
BMDL can proceed similarly, using, e.g., an upper confidence band on the risk or excess risk
from which to base the statistical inversion on to the dose scale (Al-Saidy et al. 2003). Figure
1 from Example 2 illustrates the operations graphically.

The model construction also requires specification of the data’s statistical features, which
depends on their basic form, e.g., proportions versus continuous measurements. While this is
a necessary and critical step in the modeling process, the benchmark paradigm’s oft-
unrecognized value is its applicability to a variety of statistical models. The method can be
applied to any form of outcome and/or dose–response model from which a valid risk function
can be defined, estimated from the data, and inverted to calculate BMDs and BMDLs. The
goal herein is to highlight the flexibility available under the benchmark approach and illustrate
its widening application. It is not intended as a comprehensive review, however, since a number
of excellent examples for such already exist (Crump 2002a; Falk Filipsson et al. 2003; Parham
and Portier 2005; Sand, Victorin, and Falk Filipsson 2008). Nonetheless, by exploring different
forms in which the benchmark paradigm can be applied, readers may discover new and
effectual ways to choreograph benchmark analyses for use in quantitative risk assessments.

2. Traditional benchmark analysis with quantal data
The benchmark method is often employed with data in the form of proportions. Therein, the
numerators are taken as binomial variates Yi ~ Bin(Ni, R[di]) at each exposure or dose index
i, where the proportion denominator Ni is the number of subjects tested, and R(di) is used to
model the unknown probability that an individual subject will respond at dose di ≥ 0; i = 1, …,
n. This is called the quantal response data setting in dose–response analysis. For such cases,
the excess risk function is usually taken to be the extra risk RE(d) = {R(d) − R(0)}/{1 − R(0)}.

Typically, R(d) is assigned a parametric specification, e.g., the ubiquitous logistic dose–
response model R(d) = 1/(1 + exp{−β0 − β1d}), or the similar probit model R(d) = Φ(β0 +
β1d), where Φ(·) is the standard normal cumulative distribution function. The unknown β-
parameters are estimated from the data; maximum likelihood is a favored estimation approach
(Piegorsch and Bailer 2005, §A.4.3). The maximum likelihood estimate (MLE) for the BMD
is found by setting the estimated extra risk function, R̂E (d), equal to the chosen BMR and
solving for d. Denote this as BM̂D. Where needed for clarity, the notation imitates the well-
known ED50 and subscripts the BMR level at which each quantity is calculated:
BMD100BMR, BM ̂D100BMR, etc.
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Corresponding BMDL(s) are determined using the statistical properties of BM̂D; this can
involve simple, one-sided Wald confidence limits employing the large-sample characteristics
of the MLE, bootstrap confidence bounds, or inversion of simultaneous confidence bands on
RE(d) (cf. Crump and Howe 1985 or Moerbeek, Piersma, and Slob 2004, among many others).
In the latter case, the BMDLs inherit the simultaneous confidence features of the bands and
can therefore be applied when multiple BMRs are under study (Al-Saidy et al. 2003); see
Example 3.

The earliest uses of BMDs and BMDLs for studying low-dose risk with quantal data occurred
with laboratory animal toxicity experiments. For example, Crump’s original 1984 article
described a variety of toxicological applications, involving outcomes such as bacteriological
toxicity, developmental anomalies, and in utero mortality. Since then, the approach has been
applied to many other adverse quantal endpoints, including the important area of mammalian
carcinogenesis (Van Landingham et al. 2001; Butterworth, Aylward, and Hays 2007). To
illustrate using a contemporary dataset, consider the following example.

2.1. Example 1. Kidney carcinogenesis
The chemical 3-monochloropropane-1,2-diol (3-MCPD) is a contaminant by-product in a
variety of foodstuffs, including soy sauces, processed sausages, and breakfast cereals; it can
also appear in drinking water after certain types of water treatment. Unfortunately, the chemical
is a mammalian nephrotoxin, and ingestion of the agent via such a variety of food and drinking
water sources can lead to low-level, chronic population exposures. From a risk-analytic
perspective, clearer quantification is required of its potential for producing long-term kidney
damage and/or cancer. Towards this end, data were recorded on numbers of female laboratory
rats developing renal tumors (adenomas and carcinomas) after exposure to 3-MCPD at a series
of increasing doses (reported as mg/kg body weight) in drinking water. Table 1 presents the
quantal data, taken from Hwang et al. (2009).

To fit the dose–response data in Table 1, Hwang et al. (2009) chose a probit model, which
produced a reasonable fit. The corresponding MLEs for the data in Table 1 yield an estimated
risk function of R̂(d) = Φ(−2.252 + 0.036d). Converting to extra risk and setting BMR to, say,
0.10 – a standard level in toxicology testing – gives BM̂D10 = 28.391 mg/kg. A 95% Wald
lower confidence limit is BMDL10 = 21.305 mg/kg. (Particulars for the BMDL calculation are
detailed in Appendix 1.) Risk regulators can use these values to determine acceptable exposure
limits for ingestion of 3-MCPD in any food/drinking water sources contaminated by the
chemical.

It is important to note that Hwang et al. (2009) also considered a variety of other dose–response
models for their data, many of which operated about as adequately as the probit model featured
here. Still, cases can occur where different dose–response models fit a set of quantal data with
essentially equivalent quality over the range of observed responses, but may produce
substantively different BMDL(s) at very small BMR(s) (Allen et al. 1994; Faustman and Bartell
1997). Contemporary analysts caution against such extreme low-risk/low-dose extrapolations,
and often choose BMR(s) in a range that meets or proximates the corresponding lower response
rates in the data. In practice, levels of BMR at or between 0.01 and 0.10 are typical (US EPA
2000, §II.B; Kodell 2005). The larger issue of how to adjust or correct for problems of model
selection bias/adequacy when the correct form for R(d) is unknown remains an area of active
research. Recent work in this direction has led to some intriguing advances, including
manipulation of information measures, such as the Akaike Information Criterion (Sand, Falk
Filipsson, and Victorin 2002; Moon et al. 2005), and averaging techniques, such as Bayesian
model averaging (Bailer, Noble, and Wheeler 2005; Morales et al. 2006), or its frequentist
(non-Bayesian) analogs (Faes et al. 2007; Wheeler and Bailer 2007). Much of this research is
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still emergent, however, and the statistical science underlying this avenue of BMD estimation
remains open for further development.

Increasingly, BMDs are called upon as starting points for toxicological and biomedical risk
assessments across a wide variety of endpoints, carcinogenic or otherwise (Gaylor et al.
1999; Kodell 2005). Successful applications with quantal data include adverse developmental
endpoints (Krewski, Zhu, and Fung 1999; Zhu, Wang, and Jelsovsky 2007), genetic toxicity
(Allen et al. 2005), inhalation toxicity (Fowles, Alexeeff, and Dodge 1999; Gift et al. 2008),
and extensions to human epidemiological studies (Yeh, Lee, and Chen 2006). In all the cases,
the risk-analytic context may change with the differing endpoint(s), but the fundamentals of
the benchmark concept remain essentially unchanged.

3. Benchmark analysis with nonquantal data
In his seminal article, Crump (1984) also described how the BMD could be constructed with
nonquantal data, i.e., data not in the form of a proportion Y/N. In this case, a variety of possible
outcomes becomes possible, corresponding to many discrete and continuous statistical
distributions (See and Bailer 1998; Banga, Patil, and Taillie 2002; Morales and Ryan 2005).
Most common in mammalian toxicological studies is the normal or ‘Gaussian’ distribution;
traditional endpoints, such as weight change and hematological measurements (Slob 2002;
Piegorsch et al. 2005b), developmental damage (Razzaghi and Kodell 2004), and neurological
outcomes (Kodell, Chen, and Gaylor 1995) often generate normally distributed data, either
directly or after logarithmic transformation. Within this context, assume the nonquantal data
under study are normal with Yi ~ N(μ[di], σ2) at each exposure, concentration, or dose index
i, where the mean response varies over dose di and the variances σ2 are homogenous but
unknown; i = 1, …, n. Extensions for heterogeneous variances are also possible (cf. West and
Kodell 1993).

Different dose–response models can be chosen to represent μ(d), depending on the endpoint
under study; most common is the linear form μ(d) = β0 + β1d, or possibly curvilinear extensions
such as the parabola μ(d) = β0 + β1d + β2d2 or the general power model μ(d) = β0 + β1dk.
Modifications that allow for possible threshold effects are easily incorporated into these
constructions (Crump 1984).

The use of normal distributions and linear dose–response functions leads to questions on how
to define the BMD (Crump 2002b). A formal conceptualization of exposure risk with
nonquantal data was given by Gaylor and Slikker (1990) by focusing on the difference between
response at exposure dose d and response at the background level d = 0. Often called the
‘hybrid’ benchmark concept, Kodell and West (1993) expanded on this and defined the risk
function as:

where κ > 0 is a constant used to tune R(d) for specific applications. In this form, a response
more than κ standard deviations below the control mean is considered adverse. Suggested
values include κ = 2 or κ = 3. (This formulation assumes that increasing exposure leads to
decreases in the response. The risk function is easily modified if the reverse is true.) The
fundamental viewpoint embodied in Equation (1) is that BMDs or BMCs for continuous
responses should be defined on a probability footing, in similar fashion as that taken with
quantal data.

The Kodell–West definition of risk in Equation (1) is often employed in conjunction with an
additional risk function, RA(d) = R(d) − R(0). Under the assumption Yi ~ N(μ[di], σ2) and
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taking, say, a simple linear response function, μ(di) = β0 + β1di, the additional risk becomes
RA(d) = Φ(−γ1d − κ) − Φ(−κ), where γ1 = β1/σ. If the mean response is quadratic, μ(di) = β0 +
β1di + β2di

2, the additional risk extends to RA(d) = Φ(−γ1d − γ2d2 − κ) − Φ(−κ), where γj =
βj/σ (j = 1, 2).

To estimate the BMD for any given BMR, set R̂A(d) = BMR and solve for d. For the linear
model with μ(d) = β0 + β1d, this yields BM̂D100BMR = −CBMR/g1, where g1 is an unbiased
estimate of γ1 and CBMR = κ + Φ−1{BMR + Φ(−κ)} (Piegorsch et al. 2005b). Corresponding
BMDLs can be constructed using methods similar to those employed for quantal data; see
Appendix 2 for technical details. Extensions to the quadratic case are also possible (Piegorsch
et al. 2005a).

The next example illustrates this approach. To emphasize the translational potential of the
benchmark paradigm, however, it employs data that differ from the traditional mammalian
toxicology setting discussed in Section 2.

3.1. Example 2. Soil ecotoxicity
A growing concern in ecological risk assessment is the need to identify damage to ecosystems
and to the organisms that populate them. For example, characterization and management of
potential ecotoxicological risks to soil (micro)organisms from chemical pollutants is critical
for protecting habitat and ecosystem function. Regulators must monitor for contaminants that
trigger adverse responses in the soil-inhabiting organisms, and where possible correct for
pollutant burdens that drive the risk to unacceptable levels.

For instance, in an environmental biomonitoring study of polycyclic aromatic hydrocarbon
(PAH) contamination, Maliszewska-Kordybach et al. (2007) collected samples to study PAH
effects on nitrifying bacteria in various soils. Consider their data on light loamy sand
contamination, taken in an agricultural region within the south-eastern Polish voivodeship of
Lubelskie: measured were reductions in nitrification potential of the soil over varying
concentrations of the three-ring PAH phenanthrene (Phe), in mg/kg. A decreasing trend in
nitrification potential was observed as Phe concentrations increased (Maliszewska-Kordybach
et al. 2007, Table 3), and the authors found that a simple linear regression model for the mean
response provided an adequate fit to their data if they operated with square roots of the Phe
concentrations, i.e., . (Final results were then squared for reporting back on the
original concentration scale.) The goal was to investigate and summarize the adverse effects
of Phe soil contamination. To do so Maliszewska-Kordybach et al. employed the well-
established median effective concentration, EC50, as their summary toxicity parameter. For a
more formal risk assessment of how soil nitrification potential can be affected by Phe
contamination, however, one can also apply the Kodell–West benchmarking operation
described above.

Using the regression estimates reported by Maliszewska-Kordybach et al. (2007), the unbiased
point estimate of γ1 from Appendix 2 calculates as g1 = −0.311. At κ = 3 the resulting estimator
of the additional risk is R̂A (d) = Φ(0.311d − 3.0) − 0.0013. Setting this equal to any chosen
BMR and solving for d, yields the benchmark point estimate. (Since the d-scale here is {Phe
conc.}1/2, one should be careful and for purposes of the technical analysis write BMC1/2,
although this is admittedly somewhat cumbersome notation.) Following the example of the

original study, set BMR = 1/2. This yields , with 95% lower

confidence limit ; Figure 1 illustrates the operation. Translating
back to the original Phe scale, one finds BM̂D50 = 93.543 mg/kg and BMCL50 = 38.396 mg/
kg.
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These benchmark values allow for ecotoxicological monitoring of Phe soil contamination and
for evaluation of the ecological status of the affected soil. Measured concentrations found at
or above these limits indicate substantive adverse effects of the chemical on nitrification
potential. This can motivate soil quality managers or environmental regulators to institute
quarantines, avoid larger environmental contamination, and/or encourage remediation efforts
in support of the affected ecosystem.

As Example 2 highlights, while the biological and toxicological context for construction of
BMDs, BMCs, etc. may vary, the fundamental benchmarking concept remains unchanged.
Indeed, ecotoxicological benchmark analyses with nonquantal data are growing (Wu et al.
2006; Suski et al. 2008), and barely keep pace with applications in more traditional, nonquantal,
toxicity studies (Slob 2002) or with epidemiological investigations on nonquantal human
endpoints (Bailer et al. 1997; Budtz-Jørgensen, Keiding, and Grandjean 2001; Morales and
Ryan 2005). Expansion has even progressed into rapidly developing areas of biological
research such as genomics/gene-expression analysis (Yang, Allen, and Thomas 2007).
Opportunities therefore exist for much greater use of the benchmark paradigm, limited only
by the creativity of the risk analyst. The next section describes a more divergent possibility,
with an eye towards giving benchmark analysis greater translational standing in risk
management and practice.

4. Other forms of translational benchmark analysis
As suggested above, an under-recognized feature of the benchmark approach is its applicability
to a variety of risk-analytic scenarios. The previous examples illustrate how broadly the method
can be applied within biology and toxicology, but it takes surprisingly little effort to extend it
into distinctly separate areas of risk assessment.

At its core, the mathematical models that support the method can be manipulated across an
assortment of data scenarios. Certainly, when the context of a particular risk analysis changes
– say, from crude lethality to mammalian carcinogenesis, to ecotoxicity – the observed data
can move from proportions to continuous measurements, etc. The conceptual features are
essentially unaffected, however, since the basic statistical methodology remains fungible
across different definitions of the adverse event. This facilitates transfer of the benchmark
technology to any applicable form of adverse outcome and/or dose–response model, translating
the BMDs and BMDLs to many wide-ranging problems in quantitative risk assessment.

To illustrate, the following example highlights the method in a setting far afield from the
traditional toxicological arena: socio-geographic hazard analysis.

4.1 Example 3. Place-based terrorism vulnerability
Hazard/vulnerability indexing for populations, localities, ecosystems, and other entities at risk
to adverse events is an emergent endeavor in twenty-first-century risk assessment, which has
only recently seen substantial development (Peng, Schoenberg, and Woods 2005; Tsuzuki
2006; Mazzorana et al. 2009). For instance, a recent study on urban risk/vulnerability to terrorist
attacks (Piegorsch, Cutter, and Hardisty 2007) employed a quantitative index to characterize
how terrorism vulnerability changes across different urban locations. The vulnerability data
indicated whether any of the 132 largest cities in the USA experienced a terrorist attack over
the 35-year period 1970–2004 in which casualties (human deaths or injuries) occurred. Thus,
the observed response was a simple binary indicator: Yi = 1 if casualties had been recorded in
that locale during this time period, or 0 if not. This was compared to an index – called the place
vulnerability index (PVI) – that combined the locality’s spectrum of socio-economic, geo-
physical, and built-environment vulnerability to hazardous events. (The study also considered
other aspects of terrorism vulnerability; see the 2007 article for details and also for the complete
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132 location dataset.) The PVI had no units, and was standardized to range between roughly
−4 and 4. Its scale was uniquely defined, however, and as such the index could be viewed as
a ‘dose’ metric for urban vulnerability: as the PVI increased, urban vulnerability to terrorism
casualties also appeared to increase.

In fact, the association between urban terrorism causalities and the PVI can be modeled
effectively using common dose–response functions. It was seen that a form of quantal response
relationship known as the complementary log–log (CLL) model could describe the terrorism
‘dose response’: if di = PVI for the ith locality, then the probability of observing Yi = 1 (i.e.,
terrorist casualties) at that locality was taken as R(di) = 1 − exp{−exp[β0 + β1di]}.

Using the urban casualty data, the goal was to identify values of PVI past which a locality’s
vulnerability to terrorism casualties exceeded reasonable levels. This could be addressed via
application of the benchmark approach. The risk assessor defines one or more BMR(s) as the
distinguishing points for an unacceptable level of risk, sets the risk function equal to the BMR,
and solves for the vulnerability index d = PVI. This produces a benchmark index, BMI, at
which the risk exceeds the chosen level of BMR. Note that, because the PVI is a unitless
measure, no adjustment is needed for background or spontaneous effects. Thus, one operates
directly on the risk function: set R(d) = BMR and solve for d. Under the CLL model this
produces BMI100BMR = (log{−log[1 − BMR]} − β0)/β1.

Since these terrorism casualty data are binary, a simplified binomial model, Yi ~ Bin(1, R
[di]), is valid, and MLEs for the unknown β-parameters can be determined using similar
techniques as those in Appendix 1; see Piegorsch, Cutter, and Hardisty (2007) for details. Doing
so for the casualty vulnerability data yields an estimated risk function of R̂(d) = 1 − exp{−exp
[−1.255 + 0.474d]}. Inverting the risk produces BM̂I100BMR = (log{−log[1 − BMR]} + 1.255)/
0.474. For example, the standard quartiles 1/4, 1/2, 3/4 represent symmetric BMR cut-points
that characterize levels of increasing vulnerability. For the 132 cities data, this gives BM̂I25 =
0.018, BM ̂I50 = 1.873, and BM̂I75 = 3.335.

For the corresponding benchmark index (lower) limits (BMILs), adjustment is necessary here
for the use of multiple BMRs, which can be achieved by inverting a 95% simultaneous upper
confidence band on the extra risk (Al-Saidy et al. 2003). This yields BMIL25 = −1.820,
BMIL50 = 1.001, and BMIL75 = 1.986. Figure 2 illustrates the operations, where the similarities
to Figure 1 are evident.

Further mimicking the analysis in the original article, one could return to these data and ask
which of the 132 cities lie above, say, the upper risk quartile’s BMIL75 of 1.986? Doing so
identifies 5 of the 132 urban centers with extreme-level PVIs: New York, NY–Newark, NJ
(PVI = 2.154), Norfolk–Chesapeake–Newport News–Virginia Beach, VA (PVI = 2.326),
Charleston, SC (PVI = 2.543), Baton Rouge, LA (PVI = 3.016), and New Orleans, LA (PVI =
3.119). Intriguingly, all are port cities, hinting at an important marker for increased
vulnerability to terrorist events. (Admittedly, a number of other port cities in the list, e.g., San
Diego, CA, scored much lower PVIs. Nonetheless, these results give suggestions into the roots
of urban vulnerability to terrorism.)

This untraditional application of benchmark analysis helps focus attention on those urban
centers whose PVIs exceed defined benchmarks such as BMIL75. From it, city officials in,
e.g., Charleston, SC or Norfolk, VA may wish to consider new or updated forms of coastal
anti-terrorist protection. The analysis may also prompt increases in funding allocation(s) or
other heightened efforts to connect urban risk management programs with terrorism
vulnerability assessments (Kunreuther 2002).
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5. Discussion
As these various examples demonstrate, the benchmark paradigm’s ability to extend past its
roots in toxicity testing and its potential for further implementation are quite rich. One message
has pervaded throughout: even when the particular risk-analytic context changes – in the nature
of the subject matter problem and/or the specifics of the statistical model – the ability of the
benchmark approach to accommodate these differences is unaffected. While the context
changes, the concept retains its flexibility. This was recognized by many of the authors cited
herein as they employed the method to find BMDs, BMCs, BMIs, etc. More can be done,
however, and as Barnes et al. (1995) concluded in a report from a 1994 Benchmark Dose
Workshop, ‘to achieve general acceptance of the BMD approach, it will have to be applied to
a variety of endpoints’. A marked impact on risk assessment practice will then ensue. As is
true in many areas of scientific endeavor, by studying familiar processes in unfamiliar settings
we gain a better grasp of both the familiar processes and the new settings.
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Appendix 1. Calculating BMDs and BMDLs under a probit dose–response
assumption

Suppose data are taken as binomial variates, Yi ~ Bin(Ni, R[di]), at each exposure or dose index
i, where the proportion denominator Ni is the number of subjects tested and R(di) is the unknown
risk function; i = 1, …, n. Set fixed dose levels di ≥ 0, and assume the risk satisfies a simple
probit dose response: R(d) = Φ(β0 + β1d), where Φ (·) is the standard normal cumulative

distribution function. Estimation of the parameter vector  proceeds via maximum
likelihood: maximize the log-likelihood function

, where
Ωi is a constant not dependent upon β. Unfortunately, a closed-form solution is not possible in
this case and hence calculation proceeds via computer iteration. A number of computer
packages can perform the operations, producing MLEs b0 for β0 and b1 for β1; herein, the R
statistical language was used (R Development Core Team 2009). The resulting MLE for the
risk function is R̂(d) = Φ(b0 + b1d).

To estimate the BMD, find the extra risk as RE(d) = {R(d) − R(0)}/{1 − R(0)} = {Φ(β0+
β1d) − Φ(β0)}/{1 − Φ(β0)}. The corresponding MLE is R̂E(d) = {Φ(b0 + b1d) − Φ(b0)}/{1− Φ
(b0)}. Set this equal to the pre-specified value(s) of BMR and solve for d:

where QBMR = Φ−1{BMR[1 − Φ(b0)]+Φ(b0)}.

To compute a BMDL, a number of possible formulations exist. The simplest, and the one
employed above in Example 1, is the so-called Wald 100(1 − α)% lower limit
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where zα = Φ−1(1 − α), and se[BM ̂D100BMR] is the standard error of BM̂D100BMR. The standard
error can be approximated via the large-sample features of the ML approach (Piegorsch and
Bailer 2005, §A.5). For the probit model assumed here, the squared standard error is

where se[bj] are the standard errors of bj (j = 0, 1), and cov[b0,b1] is their estimated covariance.
These latter quantities are readily available from most software routines for performing a probit
regression fit.

Appendix 2. Calculating BMDs and BMDLs under a simple linear model
assumption

Suppose data are taken as normal or ‘Gaussian’ variates, Yi ~ N(μ[di], σ2), at each exposure,
concentration, or dose di ≥ 0, where the mean function is the simple linear form μ(di) = β0 +
β1di and σ2 is a constant, unknown variance term; i = 1, …, n. Estimation of the β-parameters
and σ2 proceeds via standard least-squares (LS) techniques (Kutner, Nachtsheim, and Neter

2004). Also, let .

Under the Kodell–West construction in Equation (1), the estimated additional risk is R̂A(d) =
Φ(−g1d − κ) − Φ(−κ), where κ > 0 is a pre-specified tuning parameter and g1 is an unbiased
estimator of the ratio γ1 = β1/σ. The latter term is shown to be , with

and where b1 is the LS estimator of β1,  is the root mean squared error, and Γ(·) is the
gamma function. Notice that this requires n ≥ 4.

To estimate the BMD for any given BMR, set Φ(− g1d −κ) − Φ(−κ) = BMR and solve for d.
This yields BM̂D100BMR =−CBMR/g1, where CBMR = κ+Φ−1{BMR + Φ(−κ)}. To compute a
BMDL, find any 100(1 − α)% lower bound Gα that satisfies P[Gα < γ1] = 1 − α. Then, a 100
(1 − α)% lower bound on the BMD100BMR is BMDL100BMR = −CBMR/Gα.

Piegorsch et al. (2005b) studied different lower bounds for Gα, and favored a choice based on

a Cornish–Fisher expansion for the random variable  given by Akahira (1995).
This led to:
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where

Piegorsch et al. (2005b) also showed that for positive doses d > 0, the BMDL can be extended
into simultaneous 100(1 − α)% lower bounds on BMD for any BMR: one first uses Gα to
construct a simultaneous upper confidence band on RA(d) satisfying P[RA(d) < Φ (− Gα d −
κ) − Φ(−κ),∀ d >0] = 1 − α, and then inverts the band to find the BMDL at the chosen BMR.
Figure 1 in Example 2, above, illustrates the operation.
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Figure 1.

 and 95%  (at BMR = 0.50) for the soil ecotoxicity data.
Note: Dark curve is estimated additional risk function R̂A(d); dashed curve is 95% upper
confidence band on the extra risk; cf. Appendix 2.
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Figure 2.
BMIs and simultaneous 95% BMILs (at BMR = 0.25, 0.50, 0.75) for the terrorism vulnerability
data. Note: Dark curve is estimated risk function R̂(d); dashed curve is 95% simultaneous upper
band on the extra risk.
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Table 1

Kidney adenomas and carcinomas in female laboratory rats after exposure to the food/water contaminant 3-
MCPD.

Dose, d (mg/kg) Number with cancer, Y Number exposed, N

0 1 50

2.68 0 50

10.34 2 50

37.03 9 50

Note: Kidney carcinogenesis data from Hwang et al. (2009).
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