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Abstract

Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of
stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this
balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal
epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal
epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells,
resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening,
whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or
Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell
lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes,
with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the
importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and
demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan.
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Introduction

Lifespan of many organisms can be increased by optimizing both

genetic and environmental conditions, including reducing calorie

intake [1–3], increasing oxidative stress protection [4,5] and

reducing Insulin/IGF1 signaling (IIS) [6–8]. These different

interventions are likely to be acting through related mechanisms,

notably by increasing stress-protective gene expression in differen-

tiated somatic cells, prolonging their functional lifespan and

delaying tissue degeneration [7,9–12]. In addition to such stress-

protective mechanisms, metazoans also maintain tissue homeostasis

through regenerative processes that rely on the long-term

maintenance of a functional population of somatic stem and

progenitor cells. For these cells, a similar, and perhaps more

significant, relationship between stress protection and lifespan is

expected, as their long-term maintenance is critical to conserve

regenerative capacity. This relationship is complicated, however, by

the fact that such cells are mitotically active, and their deregulation

thus has the potential to promote dysplasia and increase the

incidence of cancer [13,14]. Accordingly, mammalian stem cells

generally exhibit a robust intrinsic ability to limit and repair

intracellular damage [15–19], yet also employ strong anti-

proliferative mechanisms that prevent cancer, but limit the

regenerative capacity of stem cells in old age [18,20–22]. The

regenerative decline of many tissues is thus caused by oxidative

stress and DNA damage in stem and progenitor cells, as well as by

cell-autonomous up-regulation of cell cycle inhibitors like p16, and

by changes in the systemic environment [13,20,23–27]. According-

ly, processes that maintain the regenerative capacity of stem and

progenitor cell populations, but prevent hyper-proliferation and

cancer (i.e. processes that promote proliferative homeostasis), are

expected to significantly influence longevity of the organism [28].

Recent studies in mouse hematopoietic stem cells (HSCs)

indicate that the IIS pathway and its downstream transcription

factor Foxo constitute an important regulatory system that controls

stem cell stress protection while also influencing proliferation

[18,29–32]. Foxo (Daf-16 in C.elegans) is repressed by IIS and is

required for the lifespan extension observed when IIS activity is

reduced either systemically, or specifically in adipose tissue [6–8].

Foxo induces the expression of genes involved in scavenging

reactive oxygen species (ROS) and repairing damage to DNA and

proteins, while also inducing cell cycle inhibitors [33–37]. Loss of

Foxo in HSCs therefore results in increased proliferation of the

HSC population, while boosting ROS levels and increasing

apoptosis. As a consequence, the long term repopulating ability of

HSCs is reduced [18,29,30,32].

Drosophila is emerging as a genetically tractable model to assess

the importance of regeneration in lifespan and aging [38–43].
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Recently identified somatic stem cells in Drosophila include

intestinal stem cells (ISCs) in the posterior midgut epithelium, as

well as stem cells in malpighian tubules [44] and the hindgut

[45,46]. ISCs are critical for regeneration and maintenance of the

midgut epithelium [47–50]. These cells are characterized by the

expression of the marker genes escargot and Delta, and divide

asymmetrically to give rise to a new ISC and an Enteroblast (EB)

that differentiates into one of two cell types: Enterocytes (ECs) and

Enteroendocrine cells (EEs). In contrast to the mammalian lineage,

no transit amplifying cell population exists in Drosophila; ISC being

the only dividing cell type in the midgut epithelium [47–49]. In

young animals, ISCs divide rarely, as less than 5 mitoses can be

observed at any given timepoint in the intestine [42,47–49]. In

response to stressful challenges, however, ISC proliferation is

strongly increased, a regenerative response that allows restoring

large parts of the intestinal epithelium in response to damaging

agents, such as pathogens, genotoxins, or ROS inducing

compounds [42,43,50–53]. Interestingly, this regenerative func-

tion of ISCs can have deleterious consequences for the organism,

as excessive proliferation of ISCs in response to stress is

accompanied by the accumulation of mis-differentiated cells in

the intestine, which ultimately disrupts epithelial integrity with a

dysplastic phenotype [43]. In the aging gut, such dysplasia is

widely observed under normal culture conditions, suggesting that

an age-related over-proliferation of ISCs (due to either elevated or

chronic oxidative stress or to pervasive inflammation) contributes

to the loss of intestinal function and to the increased mortality of

aging flies [42,43,54]. This phenotype is caused by an age-related

increase in the activity of the stress-responsive Jun-N-terminal

Kinase (JNK) signaling pathway [43,54].

The Drosophila intestine thus constitutes an accessible model

system to study whether preserving proliferative homeostasis of

aging tissues can influence overall lifespan of metazoans. We

initiate such studies here by assessing the effects of intestinal

dysplasia on lifespan. Our results reveal a significant correlation

between the loss of proliferative homeostasis in the intestinal

epithelium and fly lifespan. Importantly, we show that limiting

proliferation rates by moderately reducing IIS or JNK activities in

the somatic stem cells lineages is sufficient to extend lifespan. We

further find that the beneficial effects of reducing IIS activity in

this lineage can be recapitulated by selectively over-expressing

stress-protective Foxo target genes. In such flies, intestinal

dysplasia is delayed, accompanied by improved maintenance of

metabolic health, and by increased lifespan. Our results demon-

strate that promoting proliferative homeostasis in somatic tissues is

sufficient to extend lifespan in metazoans.

Results

Intestinal regeneration influences lifespan
Recent studies suggest a significant influence of intestinal

regeneration on fly viability. Flies in which intestinal dysplasia is

accelerated are short lived [43], while animals with impaired ISC

proliferation or daughter cell differentiation die faster when infected

by enteropathogenic bacteria than wild-type flies [50,54]. These

observations indicated that genetic conditions in which intestinal

homeostasis is preserved might result in increased lifespan.

To start testing this hypothesis, we first tested the requirement of

ISC-mediated tissue renewal for optimal lifespan. Ectopic

activation of Notch signaling in ISCs was previously shown to

irreversibly impair their function by promoting differentiation

[43,49]. In order to abolish ISC function, we thus transiently

expressed an activated form of Notch (IntraCellular Domain;

NICD) in ISCs and EBs using the esgGal4 driver. In young adult

esgGal4 heterozygous flies, Gal4 activity is restricted to ISCs and

EBs in the intestine, to malpighian tubule stem cells, as well as to

the testis and salivary glands, and is not detected in other tissues

(Figure S1). To prevent developmental effects of the expression of

UAS-driven transgenes, we used a heat-inducible system in which

esgGal4 is combined with a temperature-sensitive Gal80 (TAR-

GET system, [55]; Figure S2D). Transient expression of NICD for

7 days in young flies, significantly shortens lifespan (Figure S2A),

supporting the notion that maintaining somatic stem cell function

is critical for optimal lifespan. Importantly, longevity is not

significantly affected when these flies are kept at a permissive

temperature throughout life, confirming that lifespan shortening is

caused by transient adult expression of NICD, and not by ectopic

expression of the protein during development (Figure S2B; further

confirming the selective inducibility of the employed TARGET

system, UAS-linked transgene expression is detectable in esgG4,

tubGal80ts flies only at the restrictive temperature, 29uC, Figure

S2D, S2E).

We next assessed the relationship between ISC proliferation

rates, intestinal dysplasia and lifespan (Figure 1). In wild-type flies,

the number of dividing ISCs detectable at a given timepoint (as

measured by the number of pH3+, phosphorylated Histone H3

positive, cells in the gut) increases 10-fold between 3 days and 30

days of age when reared at 25uC or between 3 days and 18 days of

age when reared at 29uC (Figure 1A, [42]). This increase is

accompanied by a progressive accumulation of polyploid, mis-

differentiated cells that accumulate at the basal membrane of the

epithelium and can be visualized by their continuous expression of

the ISC/EB marker escargot (esg; [42,43,54]). This dysplastic

phenotype is readily observed in old flies expressing GFP under

the control of the esgGal4 driver, and can be classified into four

distinct categories that correlate with the frequency of pH3+ cells

per gut and thus serve as an accessible quantitative criterion for

intestinal dysplasia within a fly population (Figure 1B and Text

S1). Importantly, age-related dysplasia is not accompanied by

aberrant proliferation of ISC daughter cells, as confirmed by

Author Summary

Somatic stem cells are critical for regeneration of many
tissues, thus ensuring long-term maintenance of tissue
function. Proliferation of stem and progenitor cells has to
be limited, however, to prevent hyperproliferative diseases
and cancer in aging animals. This conflict between the
need for stem cell proliferative potential and cancer
prevention compromises regeneration in many high-
turnover tissues of aging animals, including humans. It
remains to be established whether and how proliferative
homeostasis can be optimized to positively influence
lifespan. Our work addresses this question using fruitflies
as a model, taking advantage of the recent discovery of
regenerative processes in adult flies. In old flies, intestinal
stem cells (ISCs) hyperproliferate, causing an accumulation
of mis-differentiated daughter cells (a phenotype termed
intestinal dysplasia). We show that the balance between
regeneration and dysplasia in this tissue significantly
influences lifespan. When ISC proliferation rates are
reduced, but not completely inhibited, dysplasia is limited
and lifespan is increased. This can be achieved by
moderately reducing insulin and stress signaling activities,
as well as by expressing protective proteins in somatic
stem cell lineages. Our results show that optimizing
proliferative homeostasis (i.e. limiting dysplasia, but
allowing sufficient regeneration) in high-turnover tissues
is an efficient strategy to extend lifespan.

Proliferative Homeostasis and Lifespan
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analysis of pH3+ cell frequencies and clonal growth rates in

individual marked ISC lineages in old flies or in stress conditions

(Figure S3). This is consistent with previous ISC lineage analysis

demonstrating that no transit amplifying population of cells exist in

the Drosophila midgut [48]. The frequency of pH3+ cell numbers in

the gut is thus a direct measure of ISC proliferation rates.

To influence intestinal proliferation rates in aging flies, we

modulated the activities of the JNK or IIS pathways in ISCs and

EBs using the esgGal4 driver. Activation of both pathways with

this driver increases ISC proliferation [43,53,54]. We activated or

inhibited JNK by expressing the JNK Kinase Hemipterous (Hep)

or dsRNA against the JNK Bsk (BskRNAi), respectively, or activated

Figure 1. Intestinal homeostasis and tissue regeneration is critical for normal lifespan. A. Age-related increase in the frequency of pH3+ cells
in the aging intestine of wild-type flies (Average and SEM is shown). ISC over-proliferation is accelerated at higher temperature (29uC). Intestines were
dissected at the indicated age and phosphorylated Histone H3 was detected by immunohistochemistry. B. The size of GFP+ cell clusters can be used to
evaluate dysplasia in esgGal4, UAS-GFP flies (see also Text S1). The 4 categories defined visually in the panels on the left correlate with the frequency of
pH3+ cells in the gut (right). C. Activation of JNK and IIS pathways in ISC (esg.Hep and esg.inR respectively) induces over-proliferation as early as 5
days, while inhibition of JNK (esg.BskRNAi) prevents tissue regeneration as shown by much reduced frequency of pH3+ cells. The TARGET system was
used to prevent developmental effects of esg-driven transgenes expression (Genotypes: w1118;esgGal4,UAS-GFP/+;tubGal80ts, w1118;esgGal4,UAS-GFP/
UAS-HepWT;tG80ts, w1118;esgGal4,UAS-GFP/UAS-InRWT;tG80ts, and w1118;esgGal4,UAS-GFP/UAS-BskRNAi;tG80ts). Flies were reared at 18uC and then aged
at 29uC to restrict expression of transgenes to adulthood. Averages and SEM are shown. * p,0.001 compared to Control at 5 days; # p,0.001 compared
to Control at 18 days using Student’s t-test. D. Intestinal dysplasia in the flies described above was monitored using the method described in Figure 1B
(see also Text S1) after 18 days. Activation of JNK and IIS pathways causes accelerated dysplasia, reduction of JNK signaling leads to a complete
prevention of tissue regeneration. p-value from Pearson XiSquare test. E. Flies with impaired intestinal homeostasis and tissue regeneration are short-
lived. The mortality of the flies described above was recorded at 29uC. Detailed lifespan analysis is shown in Table S1.
doi:10.1371/journal.pgen.1001159.g001

Proliferative Homeostasis and Lifespan
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IIS by expressing the Insulin receptor (InR). We used the heat-

inducible esgGal4, tubGal80ts system to prevent expression of

transgenes before adulthood, and therefore assessed age-related

changes in ISC proliferation and intestinal homeostasis at 18 days

of age at 29uC (Figure 1C and 1D). Consistent with previous

findings, activating JNK or insulin signaling activity resulted in

dramatically increased dysplasia at 18 days and elevated

proliferation rates even in young flies (5 days of induction), while

when JNK signaling was impaired in the ISC lineage, dysplasia

was almost entirely prevented and ISC proliferation was strongly

impaired.

Interestingly, both of these extreme conditions, accelerated

dysplasia and strongly inhibited ISC proliferation, resulted in

significant lifespan shortening, supporting our hypothesis that

intestinal homeostasis and the regenerative capacity of the

intestinal epithelium are critical for fly lifespan (Figure 1E, Table

S1). Maintaining intestinal proliferation rates at levels that

preserve regenerative capacity while limiting dysplasia might thus

influence lifespan positively.

Reduced age-associated dysplasia in long-lived IIS loss-
of-function conditions

To test this idea, we first evaluated proliferative homeostasis in

long-lived fly populations (Figure 2). Intestinal dysplasia in non-

labeled intestines can be quantified by defining categories based on

the extent of BrdU incorporation in the intestinal epithelium

(reflecting both ISC divisions and endoreplication of daughter

cells), and the loss of tissue architecture observed when staining

with the membrane marker armadillo (arm, Figure 2A, see Text S1).

Since reduced IIS activity extends lifespan in flies, we assessed

whether long-lived fly lines with reduced IIS activity would exhibit

delayed dysplasia. Indeed, limiting IIS activity systemically reduces

the age-associated increase in the frequency of pH3+ cells, as well

as the increase in intestinal BrdU incorporation and the loss of

epithelial architecture in the gut (Figure 2B and 2C). IIS activity

was reduced by ablating insulin-producing cells (IPCs) through

expression of the pro-apoptotic gene reaper (rpr) under the control of

dilp2Gal4, by reducing the genedose of the insulin receptor

substrate-homologue Chico, or in trans-heterozygotes for the

insulin receptor loss-of-function alleles InRE19 and InR05545. Flies

with all three genetic conditions are robustly long-lived [56–59],

suggesting that the reduction in intestinal dysplasia observed here

is associated with longevity.

Interestingly, in these long-lived lines, IIS activity is reduced,

but not absent, since the insulin receptor can signal directly to

PI3K, bypassing the requirement for Chico [60], and ablation of

IPCs results in loss of selected insulin-like peptides, whereas

insulin-like peptides expressed in other tissues, such as the fatbody

and germline, are retained [61–64]. Accordingly, the average

number of pH3+ cells decreased significantly, but moderately,

indicating that in these long-lived animals, proliferative homeo-

stasis is preserved without negatively impacting regenerative

capacity (Figure 2C and 2D).

Repression of IIS in the ISC lineage inhibits ISC
proliferation and shortens lifespan

The Insulin signaling pathway has wide-ranging functions in

growth, metabolism, and reproduction [6–8,65–68]. The observed

correlation between the extent of age-related dysplasia and lifespan

in the genetic conditions tested above could thus be a secondary

consequence of other physiological changes. To test more directly

whether impairing IIS activity in the ISC lineage would influence

age-related dysplasia and affect lifespan, we over-expressed a

dominant-negative Insulin receptor (InRDN; [69], dominant-

negative PI3Kinase (DP110DN [70]), a dsRNA targeting the IIS

downstream kinase Akt (AktRNAi, Figure S4), as well as wild-type

Foxo under the control of heat-inducible esgGal4 (esgGal4,

tubGal80ts). In all four cases, we observed strongly reduced age-

Figure 2. Reduced IIS activity delays tissue degeneration in the
intestine. A. Evaluation of intestinal dysplasia in aging wild-type flies.
BrdU incorporation identifies proliferating cells (nuclear, red), while
immunohistochemistry with anti-Armadillo antibodies detects changes
in epithelial structure (membrane, red). Flies were aged at 25uC, and fed
BrdU for 48 hrs. B. Reducing systemic insulin signaling by ablation of
Insulin Producing Cells (IPCs) delays aging-associated dysplasia.
Representative pictures of the midgut from aging (30 days old at
25uC) control flies (w1118;dilp2Gal4.+) and flies with ablated IPC’s
(w1118;dilp2Gal4.rpr) are shown in the center. Scoring was performed
based on the classification shown in B. Significant delay of dysplasia in
dilp2Gal4.rpr can be observed compared to dilp2G.+ controls (left
panel, Pearson Xi Square test). This correlates with reduced numbers of
pH3+ cells in dilp2Gal4.rpr (Average and SEM; Student’s t-test). C.
Frequency of pH3+ cells in aging chico1/1 homozygotes and InrE19/05545

compared to isogenic wild-type controls (ry506) (Average and SEM,
Student’s t- test). Representative BrdU/Armadillo-stained midguts from
aging chico1 mutant flies and sibling controls (ry) are shown on the left.
doi:10.1371/journal.pgen.1001159.g002

Proliferative Homeostasis and Lifespan
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related dysplasia of the intestinal epithelium, confirming that IIS

activity in ISCs is required for the age-related over-proliferation of

these cells (Figure 3A). However, this reduction was as strong as

when JNK was repressed by expression of BskRNAi, suggesting that

impaired regeneration in these guts might also limit viability and

reduce lifespan. We tested this prediction and found indeed that

expression of Foxo, AktRNAi, or DP110DN under the control of

esgGal4, Gal80ts (at 29uC) or of Foxo under the control of esgGal4

(25uC) caused significant lifespan shortening (Figure 3B–3D, Figure

S5, Table S2, Table S3).

Reduced IIS activity in the ISC lineage thus shortens lifespan

most likely by preventing regeneration. Supporting this interpre-

tation, we found that ISC clones (induced by somatic recombi-

nation using the MARCM system; [71,72] homozygous for InRE19

or InR353, or over-expressing Foxo, have a strongly reduced ability

to grow (and thus to generate newly differentiated ECs and EEs,

Figure 3E). The extent of this growth repression was significantly

more severe than in chico1 homozygous mutant clones (Figure 3E).

Interestingly, InRE19 homozygous mutant flies are short-lived (as

opposed to InRE19/InR05545 transheterozygotes; [56]), further

strengthening the notion that impaired regeneration of the

intestinal epithelium of these flies is associated with shorter

lifespan.

Lifespan extension by limiting IIS and JNK signaling in
somatic stem cells

Taken together, the results described above support the notion of

a critical relationship between proliferative homeostasis, regenera-

tion and lifespan: reduced ISC proliferation, and thus limited age-

related dysplasia (as in dilp.rpr, chico1 homozygotes and InRE19/

InR5545 transheterozygotes), is beneficial, while impaired ISC

proliferation, and thus reduced regenerative capacity (as in InRE19

homozygotes or in flies over-expressing Foxo in the ISC lineage),

shortens lifespan. This relationship can be illustrated by comparing

relative lifespan with the fraction of flies with low, intermediate or

high frequencies of ISC proliferation at 30 days (reared at 25uC) for

the genotypes discussed above (Figure 3F).

To test this model more directly, and to confirm that improved

proliferative homeostasis is sufficient to extend lifespan, we

repressed IIS and JNK activities in ISCs and EBs using 5961

Geneswitch-Gal4 (5961GS; Figure 4, [73]). This RU486-inducible

driver recapitulates the esgGal4 expression pattern in the intestine,

albeit at much lower levels, allowing moderate repression of IIS

and JNK activities in an RU486-dependent manner ([73],

Figure 4A–4C; we assessed GFP expression under the control of

5961GS in various tissues, and observed weak RU486-dependent

induction only in the intestine, Figure S6). Female flies expressing

InRDN, DP110DN, AktRNAi, BskDN, or BskRNAi under the control

of this driver show moderately, but significantly, reduced intestinal

proliferation at old age (Figure 4D–4J). Importantly, these flies are

significantly longer lived when exposed to RU486 than isogenic

siblings exposed to mock treatment (median lifespan extended at

least 10% for all conditions); whereas control flies show almost no

RU486-dependent change in longevity (1% change in median

lifespan; Figure 4D–4K and Table S4; expression of the same

transgenes in males resulted in no significant lifespan effect, not

shown). All together, these results strongly support the model

outlined above.

Expression of stress-protective genes in the ISC lineage
limits age-associated dysplasia

IIS and JNK signaling activities thus have to be carefully

balanced to maintain intestinal homeostasis and regenerative

capacity. This balance will ultimately influence the expression of

Foxo target genes, which encode stress-protective proteins as well

as cell cycle inhibitors and pro-apoptotic factors that are expected

to have antagonistic consequences for stem and progenitor cell

maintenance and proliferation. Accordingly, a critical and

pleiotropic function of Foxo proteins in stress-protection, prolif-

eration and apoptotic control of stem cells has been described for

the hematopoietic system in mice [18,29–32]. Selectively increas-

ing the expression of stress-protective Foxo target genes in the ISC

lineage might thus be sufficient to limit age-related dysplasia

without impairing regeneration, thus recapitulating the conse-

quences of organism-wide moderate reduction of IIS activity, and

potentially extending lifespan.

To test this hypothesis, we used esgGal4 to express Hsp68, a

heatshock protein that extends lifespan when expressed in the

whole fly [74], and Jafrac1, a peroxiredoxin that detoxifies ROS

and can increase lifespan when expressed in the brain [75,76].

Both genes are Foxo targets (Figure S7; [75]) and strikingly, we

found that both caused a significant delay in dysplasia (both in the

posterior midgut, as well as when assessing invasion of the

proventriculus by GFP-positive cells; Figure 5A and Figure S8),

accompanied by moderate reduction in the frequency of pH3+

cells in the gut (Figure 5B). Since dysplasia in aging intestinal

epithelia is accompanied by increased expression of Dl [43], we

further tested the expression of Dl in these intestines and found a

significant decrease in Dl accumulation compared to wild-type

animals, confirming that the accumulation of mis-differentiated

ISC progeny in these flies is reduced (Figure 5C).

Improved metabolic homeostasis in flies expressing
stress-protective genes in somatic stem cell lineages

Dysplasia in the aging intestinal epithelium is expected to cause

defects in nutrient absorption, resulting in deficient nutrient stores

in the organism and disrupting metabolic homeostasis. Since hsp68

and jafrac1 expression in ISCs and their daughter cells significantly

delays intestinal dysplasia, we tested whether the maintenance of

metabolic homeostasis was improved in these flies. The amount of

free glucose, triglycerides and glycogen stored by old wild-type flies

is significantly reduced compared to young animals (Figure 5D).

When jafrac1 or hsp68 were expressed under the control of

esgGal4, however, high levels of these nutrient stores were

maintained in aging flies. This rescue of metabolic homeostasis

correlates with increased starvation tolerance (Figure 5E), further

supporting the idea that maintenance of intestinal homeostasis by

protecting somatic stem cells is critical for metabolic health of

aging flies.

Lifespan extension by stress-protective gene expression

in stem cell lineages. To assess whether over-expressing stress-

protective genes using the esg-Gal4 driver would be sufficient to

extend lifespan, we compared demographies of multiple independent

populations of flies expressing jafrac1 and hsp68 under the control of

esgGal4 to isogenic wild-type controls. Strikingly, we observed

consistent and significant lifespan extension in both males and females

when jafrac1 and hsp68 were expressed (Figure 6A and 6B; Table S5).

To exclude that the esgGal4-driven expression of stress-protective

genes in salivary glands is causing the observed lifespan extension, we

also tested the lifespan of flies in which hsp68 was expressed using

GMR-Gal4, an eye-specific driver that also expresses Gal4 in salivary

glands, and found no effect (Figures S1B, S1C, S9). We further

confirmed the beneficial consequences of Jafrac1 and Hsp68

expression on lifespan using the weaker 5961GS driver, and found

moderate but significant extension of lifespan in flies expressing both

transgenes (Figure 6C, Table S6). Evidently, expressing selected

Proliferative Homeostasis and Lifespan
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stress-protective Foxo target genes in the ISC lineage is sufficient to

recapitulate the effects of reducing IIS or JNK activity in these cells.

Discussion

Our results indicate that proliferative homeostasis in high

turnover tissues is limiting for Drosophila lifespan and highlight the

importance of mechanisms that balance pro- and anti-mitotic

activities. In the ISC lineage, this balance involves fine-tuning the

activities of the pro-mitotic IIS and JNK signaling pathways to

ensure appropriate supply of newly formed ISC daughter cells

while limiting dysplasia. Accordingly, we observe moderately

reduced intestinal proliferation rates in long-lived IIS mutants, as

well as lifespan extension when IIS or JNK signaling are

moderately reduced in the ISC lineage. This association between

proliferative activity in the intestinal epithelium and lifespan is

illustrated in Figure 7. Strikingly, intestinal proliferation rates

correlate with relative lifespan over a wide range of genotypes.

Our results further show that the stress-protective components

of the Foxo-regulated gene expression program are sufficient to

maintain proliferative homeostasis, extending lifespan of the

organism. Reduction of IIS activity, which extends lifespan in

many organisms, is thus accompanied by the preservation of

regenerative processes. While reducing IIS activity or activating

Foxo in adipose tissue is sufficient to extend lifespan of flies, mice

and worms [65–68], our results suggest that the anti-proliferative

and stress-protective consequences of Foxo activation in high-

turnover tissues also contribute to lifespan extension in IIS loss-of-

function conditions. Interestingly, a tumor-suppressing role for

Foxo in mice and C.elegans has been reported [77–79], while Foxo

regulates redox homeostasis in mouse HSCs [18,29,30,32,77].

Reduced IIS activity thus optimizes somatic maintenance,

metabolism and regenerative processes in complex metazoans,

and all three physiologic consequences of IIS repression seem to

contribute to achieve maximum lifespan.

It remains to be tested whether the lifespan extension commonly

observed in flies exposed to dietary restriction (DR) is also

associated with delayed intestinal dysplasia. Reduced IIS activity

contributes to lifespan extension in DR conditions [80–82]

suggesting that reduced intestinal dysplasia might contribute to

DR-induced lifespan extension.

Interestingly, the effects of JNK signaling on lifespan are more

complex. JNK can extend lifespan when activated in the brain by

repressing the expression of insulin-like peptides [37,74,83,84],

thus systemically repressing IIS activity [37,74]. Our findings

reported here, however, show that JNK activation in the ISC

lineage can have deleterious effects and needs to be limited to

ensure longevity. Such pleiotropic consequences of JNK have also

been reported in other contexts and have significant implications

for the development of therapies targeting this pathway [85–87].

The importance of anti-oxidant Foxo target genes in regulating

proliferative homeostasis highlights the challenging environment

to which the intestinal epithelium is exposed. Apart from

extraneous toxins and oxidants, the intestinal epithelium also

mounts strong oxidative responses to inflammation, potentially

exposing ISCs and daughter cells to high levels of oxidative stress

[50,52,88–91]. Our results show that over-expressing stress-

protective proteins in the ISC lineage is sufficient to limit and

optimize cellular responses to these challenges, thus preserving

intestinal homeostasis longer (but not indefinitely, as a significant

fraction of these animals do develop dysplasia at older ages).

Intestinal dysplasia is caused by over-proliferation of ISCs in

concert with mis-differentiation of ISC progeny, and in long-

lived animals both processes are prevented. Due to technical

limitations of the Gal4 drivers used, however, we cannot exclude

that the expression of stress-protective genes, or of IIS or JNK

repressors with esgGal4 or 5961GS affects primarily the

differentiation process of EBs rather than the ISC itself. While

the inability of IIS mutant clones to grow, and the significant

reduction in the number of pH3+ cells in IIS and JNK loss-of-

function conditions and in Hsp68 and Jafrac1 over-expressing

flies, demonstrates that ISC proliferation is indeed influenced by

these manipulations, it is conceivable that this effect might be

mediated by indirect, non-cell-autonomous limitation of ISC

proliferation by EBs in these conditions. Such a feedback control

of ISC division would be interesting, and further studies are

needed to test this possibility.

The pattern of esgGal4 and of 5961GS expression further

requires considering effects of IIS and JNK activities in other

tissues on lifespan: While we can exclude the testes and salivary

glands as sources of the observed effects (lifespan effects are

observed in both males and females using esgGal4, expression of

Jafrac1 and Hsp68 in salivary glands has no effect on lifespan, and

5961GS is not expressed in salivary glands), we cannot currently

exclude a contribution of malpighian tubule stem cells. These cells

also appear to respond to proliferative signals such as Hep or InR

over-expression, and over-proliferate in stressed flies (GFP-labeled

cells accumulate in malpighian tubules in these flies; Biteau,

unpublished), but the exact mechanism of regeneration and a

potential age-related dysplastic phenotype in this tissue remain

unexplored. Importantly, a contribution of this somatic stem cell

population to the lifespan effects reported here would further

support our model of the importance of proliferative homeostasis

in high-turnover tissues for Drosophila lifespan.

Figure 3. Strong reduction of insulin signaling in the somatic stem cell lineages delays age-related dysplasia and shortens lifespan.
A. Intestinal degeneration was monitored in aging control flies (w1118;esgGal4,GFP;Gal80ts and y1w1;esgGal4,GFP;Gal80ts) and flies with impaired
insulin signaling activity in ISCs (w1118;esgGal4,GFP;Gal80ts/UAS-AktRNAi, y1w1;esgGal4,GFP;Gal80ts/UAS-Dp110DN, y1w1;esgGal4,GFP;Gal80ts/UAS-
InRDN, y1w1;esgGal4,GFP;Gal80ts/UAS-Dp110DN, y1w1;esgGal4,GFP/UAS-Foxo;Gal80ts). Strong inhibition of IIS in ISC prevents age-related intestinal
dysplasia. p-value from Pearson XiSquare test. B,C. Flies with impaired intestinal homeostasis and tissue regeneration are short-lived. The mortality of
the flies described above was recorded at 29uC. Detailed lifespan analysis is shown in Table S2. D. EsgGal4 was used to express Foxo in the ISC
lineage. Fly lines were backcrossed into the w1118 background (10 generations) and sibling populations derived from crosses of w1118;esgGal4/+
females with y1w1;UAS-Foxo/UAS-Foxo males were compared. Flies were reared at 18uC to minimize driver activity during development, and adults
were maintained at 25uC. Lifespan is significantly shortened in flies expressing Foxo under the control of esgGal4. A detailed analysis of the mortality,
as well as the mortality of isogenic controls (w1118/y1w1), flies is shown in Table S3. E. Growth of InR and chico1 homozygous mutant ISC clones and
clones over-expressing Foxo in the intestinal epithelium. Clones were induced using the MARCM system by heat-shock at three days of age and clone
size was evaluated at 7 days after heat shock. chico1 clones exhibit reduced, but not absent growth, while InR mutant clones and Foxo over-
expressing clones remain mostly single cells. Representative images are shown in top panels (Green: GFP; Red: Armadillo/Prospero). Clone size
quantification is shown in lower graphic (Averages and SEM). p-values from Student’s t-test. InR homozygous mutant clones and clones over-
expressing Foxo grow significantly less than chico1 mutant clones (p-values in red). F. Comparison of the proliferation rate in the intestine of controls,
long-lived and short-lived flies, after 30 days at 25uC, suggesting that long-lived mutants achieve the proper balance between tissue dysplasia and
absence of regeneration. p-value from Pearson XiSquare test.
doi:10.1371/journal.pgen.1001159.g003
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Figure 4. Moderate inhibition of IIS and JNK pathways in somatic stem cell lineages extends lifespan. A. The 5961GS driver is expressed
in the intestine and responsive to RU486. GFP can be detected in the posterior midgut of 5961GS.GFP flies after RU486 exposure, no GFP is detected
when flies are kept on control food. B. In the intestine, the activity of the 5961GS driver is restricted to ISC and EB. Only LacZ-positive cells express GFP
in 5961GS.GFP/esg-LacZ flies. The expression of the reporter esg-LacZ identifies ISC and EB, immunostaining against prospero identifies EE. C.
Western-blot analysis of total extract from dissected guts shows that GFP can be detected in the intestine of 5961GS.GFP flies after RU486 exposure.
However, the expression level remains much lower than in the intestine of esgGal4.GFP flies. D–J. Moderate reduction of the IIS (F, G, I) and JNK (H,
J) pathways using 5961GS extends lifespan. The mortality of sibling flies of the indicated genotypes placed on control food (-RU486) or food
supplemented with RU486 (+RU486) was compared at 25uC. The treatment has minimal effect on the longevity of control flies (5961GS,UAS-GFP.+
in w1118 and OreR background), but causes significant increase in longevity of flies with reduced IIS and JNK pathways (5961GS,UAS-GFP.UAS-InRDN,
5961GS,UAS-GFP.UAS-Dp110DN, 5961GS,UAS-GFP.UAS-AktRNAi, 5961GS,UAS-GFP.UAS-BskDN, 5961GS,UAS-GFP.UAS-BskRNAi). The relative exten-
sion of the median lifespan is shown for each genetic condition. For each condition, the reduction of ISC proliferation by the treatment was
confirmed, as measured by the number of pH3+ cells in the intestinal epithelium, in 50 to 70 days old females (n.12 guts; Averages and SEM; p-
values from Student’s t-test * p,0.05, ** p,0.01). K. Summary of lifespan statistics including mean and median lifespan (days) for all conditions.
Detailed lifespan analysis is shown in Table S4.
doi:10.1371/journal.pgen.1001159.g004
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It is interesting that using the weaker 5961GS driver, lifespan

extension in IIS and JNK loss-of-function conditions is only observed

in females. This sexual dimorphism might be a consequence of a

slight difference in driver activity between the sexes (no significant

difference in driver activity can be observed, however), or might

indicate selective sensitivity of females to intestinal dysplasia.

Interestingly, intestinal turnover rates in females are higher than in

males [50], indicating a potential reason for such a selective

sensitivity. Accordingly, lifespan extension by esg-mediated expres-

sion of Hsp68 and Jafrac1 is also stronger in females than in males.

Based on the highly conserved regulation of regenerative

processes in flies and vertebrates [13,14,25,47–49], our findings

suggest that interventions that focus on maintaining regenerative

capacity by improving stem and progenitor cell stress-protection

Figure 5. Overexpression of stress-protective genes in the somatic stem cell lineages delays intestinal degeneration and limits
metabolic decay. A. Overexpression of Jafrac1 or Hsp68 delays age-related loss of intestinal architecture. Intestinal degeneration in aging (3, 35,
and 50 days) control flies (esgGFP.+) and flies overexpressing cytoprotective genes in the ISCs (esgGFP.Jafrac1 and esgGFP.Hsp68) was scored in
the posterior midgut. p- values from Pearson Xi Square test. B. Overexpression of Jafrac1 or Hsp68 under the control of esgGal4 also limits the
increase in the frequency of pH3+ cells in aging intestines (Averages and SEM; Student’s t-test). C. Dl expression relative to rp49 in the aging intestine
measured by real-time RT-PCR (Averages and SEM; Student’s t-test). D. Over-expression of Jafrac1 or Hsp68 delays age-related changes in nutrient
levels. Triglycerides, free glucose and glycogens were measured in young (3–4 days old) or old (40–50 days old) flies. Concentration is shown as mg
nutrient per mg fresh fly. The number at the bottom of each bar represents the number of samples. All error bars represent standard deviation, p-
value from Student’s t-test. E. Jafrac1 and Hsp68 expression in ISCs increases starvation tolerance in old flies. Wet starvation resistance was
determined in the indicated populations of flies aged for three days (left) or for 30 days (right).
doi:10.1371/journal.pgen.1001159.g005
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hold significant promise for slowing aging in higher organisms,

including humans. Interestingly, vertebrates seem to have evolved

more efficient and extensive cell autonomous anti-proliferative

mechanisms in stem cells than flies [20–22], resulting in longer-

lasting maintenance of homeostasis in high-turnover tissues. The

rapid decay of intestinal homeostasis in flies indicates that such

control mechanisms have not been acquired in these short-lived

animals, yet our data also suggest the potential for active control of

proliferation rates in the intestinal epithelium by systemic insulin-

like peptide levels. Interestingly, the regulation of stem cell

proliferation by IIS and Foxo is conserved in mammalian systems,

suggesting that similar systemic control of stem cell proliferation

could be harnessed to regulate regenerative capacity and lifespan

in vertebrates [18,31]. How the maintenance of intestinal

homeostasis is influenced by environmental parameters that affect

systemic IIS activity is an interesting subject of further studies.

Materials and Methods

Drosophila stocks and culture
The following strains were obtained from the Bloomington

Drosophila Stock Center: w1118, ry506, y1w1, UAS-InRDN, UAS-

Dp110DN, UAS-rpr, and tub-Gal80ts. UAS-AktRNAi and UAS-

BskRNAi were obtained from the Vienna Drosophila RNAi Center

(transformant ID 2902 and 34138). esg-Gal4 was kindly provided

by S. Hayashi; chico1 and UAS-FoxoTM by M. Tatar; dilp2-Gal4

by E.Rulifson; UAS-Hep and sep-Gal4 by M. Mlodzik; UAS-

NICD by N.Perrimon. MARCM stocks were gifts from N.

Perrimon (hsFlp; tub-Gal4,UAS-GFP;FRT82B tubGal80) and

B.Ohlstein (hsFlp; FRT40A tub-Gal80; tub-Gal4,UAS-GFP).

5961GS was a gift from B.Ohlstein. FRT chromosomes were

kindly provided by D. Drummond-Barbosa (FRT40A chico1,

FRT82B InRE19 and FRT82B InR353). The UAS-Foxo and

Figure 6. Over-expression of stress-protective genes in the somatic stem cell lineages extends lifespan. A. Survival curves of
esgGFP.Jafrac1 and esgGFP.Hsp68 flies compared to their respective wild type isogenic controls. UAS lines were backcrossed 10 generation into
w1118 background. Wild type and UAS siblings were crossed to esgGFP and mortality of the progeny was recorded at 25uC. B. Summary of lifespan
statistics including mean and median lifespan (days). C. Over-expression of Jafrac1 and Hsp68 using the 5961GS driver moderately extends lifespan.
The mortality of sibling flies (5961GS,GFP.UAS-Jafrac1,UAS-Hsp68) placed on control food or food supplemented with RU486 was compared at 25uC.
Due to the weak activity of the 5961GS driver, both UAS-Jafrac1 and UAS-Hsp68 transgenes were combined to observe a significant effect. The
relative extension of the median lifespan is shown for all curves. Detailed lifespan analysis is shown in Table S5 and S6.
doi:10.1371/journal.pgen.1001159.g006
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UAS-Hsp68 were described previously [37,74]. The UAS-Jafrac1

transgene was constructed by cloning the coding sequence of the

jafrac1 gene, amplified from cDNA by using the following primers:

59-ATGCCCCAGCTACAGAAGC-39 and 59-TTAGGAGGTG-

GTCTCGAAG-39, into a pUAST vector. Transgenic flies were

generated using standard procedures.

All flies were raised on the following food: 1 liter distilled water,

13.8 g agar, 22 g molasses, 80 g malt extract, 18 g Brewer’s yeast,

80 g corn flour, 10 g soy flour, 6.25 mL propionic acid, 2 g

methyl-p-benzoate, 7.2 mL of Nipagin (20% in EtOH). Flies were

kept at 25uC and 65% humidity, on a 12 h light/dark cycle, unless

otherwise indicated.

Conditional expression of UAS-linked transgenes
The TARGET system was used to conditionally express UAS-

linked transgenes in ISCs [55]; the esg-Gal4 driver was combined

with a ubiquitously expressed temperature-sensitive Gal80 inhib-

itor (esg-Gal4;tub-Gal80ts). Crosses and flies were kept at room

temperature (permissive temperature), then shifted to 29uC to

allow expression of the transgenes.

Generation of marked homozygous mutant clones
chico and InR mutant clones were generated by somatic

recombination using the MARCM stocks described above and

FRT40A and FRT82B chromosomes carrying chico1 and InR

mutations, respectively. Using Flp/FRT-mediated somatic recom-

bination with a repressible cell marker, MARCM allows

generating homozygous mutant clones of cells that are positively

marked (by GFP in this case). 2–4 days old flies were heat-shocked

for 45 minutes at 37uC to induce somatic recombination. Clones

resulting from mitotic recombination were observed 7 days after

induction.

Immunostaining and microscopy
Intact guts were fixed at room temperature for 45 minutes in

100 mM glutamic acid, 25 mM KCl, 20 mM MgSO4, 4 mM

Sodium Phosphate, 1 mM MgCl2, 4% formaldehyde. All

subsequent incubations were done in PBS, 0.5% BSA, 0.1%

TritonX-100 at 4uC.

The following primary antibodies were used: mouse anti-BrdU

(Becton Dickson) 1:200; mouse anti-Prospero and anti-Armadillo

(Developmental Studies Hybridoma Bank) 1:250 and 1:100; rabbit

anti-pH3 (Upstate) 1:1000. Fluorescent secondary antibodies were

obtained from Jackson Immunoresearch. Hoechst was used to

stain DNA.

Confocal images were collected using a Leica SP5 confocal

system and processed using the Leica software and Adobe

Photoshop.

BrdU incorporation
Flies were cultured on standard food supplemented with BrdU

(final concentration 0.2 mg/ml) for 2 days. Intact guts were fixed

as previously described and DNA was denatured by incubating

tissue in 3M HCl for 30 minutes. Samples were then processed for

immunostaining as described above.

Metabolite measurements
4 to 5 females (without the head) were homogenized in 150 ml of

buffer (10 mM KH2PO4, 1 mM EDTA, pH 7.4). 10 ml of cleared

extract was used to measure triglycerides, glucose and glycogen

concentrations according to the manufacturer instructions (Tri-

glyceride Liquicolor, Stanbio; Glucose and Starch Assay Kits,

Sigma).

Lifespan analysis
For lifespan experiments at 29uC using the TARGET system,

virgin females (esgGal4, UAS-GFP; tubGal80ts) were crossed to

the following UAS transgenes or the respective wild-type controls:

UAS-Hepwt, UAS-BskRNAi, and UAS-AktRNAi (back-crossed at

least 10 generations into w1118); UAS-Foxowt and UAS-Dp110DN

(in y1,w1 background); and UAS-InR (in w1118 background).

Crosses were kept at room temperature. After collection and

sorting (60–100 flies/cage), flies were placed at 29uC to age.

The UAS-Jafrac1 and UAS-Hsp68 transgenes were backcrossed

10 times into the w1118 background and kept as an unbalanced

stock. Of this stock, 10 to 15 homozygous males (+/+ or UAS/

UAS) were independently crossed to 40 yw; esgGal,UASGFP/CyO

virgins. To control for the effect of over-expressing Hsp68 in

salivary glands, males (+/+ or UAS/UAS) from the same

backcrossed UAS-Hsp68 stock were independently crossed to w;

GMR-Gal4,UAS-GFP homozygous virgins. Crosses and progeny

were kept at all times at 25uC.The progeny of these crosses was

collected 2 days after hatching and allowed to mate in bottles for 3

days. Flies were finally separated according to their sex and

genotype into cages (50–100 flies/cage).

To test the effect of Foxo over-expression using the esgGal4

driver on lifespan, the driver was backcrossed 10 times into the

w1118 background and kept as an unbalanced stock. 40 w1118;

esgGal4/+ virgins were crossed to 10–15 yw; UAS-Foxo homozygous

males. Crosses were kept at 18uC to minimize driver expression

and potential developmental defects associated with Foxo

expression. The progeny of these crosses was collected 4 to 5

days after the first fly hatched. Flies were allowed to mate in bottles

for 2 days at room temperature. Siblings were finally separated

according to their sex and genotype into cages (20–50 flies/cage)

and transferred at 25uC.

Figure 7. A model for the impact of regenerative capacity on
lifespan. Genetic conditions that moderately decrease ISC proliferation
(thus limiting dysplasia) are associated with increased lifespan, while
strong repression of ISC proliferation is deleterious for regeneration and
shortens lifespan. The association of lifespan and regenerative capacity
of the intestine in aging flies is illustrated by comparing ISC
proliferation rates and lifespan. Relative ISC proliferation rates were
calculated for each genotype using the three categories defined in
Figure 3F (low, intermediate and high frequencies of pH3+ cells) and
the following formula: 6 = (proportion in cat.1) + 2*(proportion in
cat.2) + 3*(proportion in cat.3). This model includes lifespan and
intestinal proliferation analysis from experiments conducted at 25uC
(red dots) or 29uC (blue dots). The relative proliferation data is from this
study. These data are plotted against lifespan changes in the respective
genotypes relative to corresponding isogenic controls, from this work
and from published studies [56,57,59]. Polynomial regression curve (3rd

degree) was fitted using Excel.
doi:10.1371/journal.pgen.1001159.g007
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For RU486 food supplementation, 100 ml of a 5 mg/ml

solution of RU486 or vehicle (ethanol 80%) were deposited on

top of a food vial and dried for at least 16 hours to ensure

complete evaporation, resulting in a 0.2 mg/ml concentration of

RU486 in the food accessible to flies (determined using a dye

control as previously described for drug treatments [92].

For all populations, plastic cages (175 ml volume, 5 cm

diameter from Greiner bio-one) were used for lifespan experi-

ments. Food, changed every 2 days, was provided in vials inserted

into a foam plug (4.9 cm in diameter, 3 cm thick from Greiner

bio-one), dead flies were visually identified (flies not moving, not

responding to mechanical stimulation and laying on their side or

back were deemed dead), and the number of dead flies was

recorded. Cages were replaced after 20 days (flies were transferred

into new cages without anesthesia). Survival of the different

populations was analyzed using the SAS JMP7 statistical software.

The driver lines (esgGal4 and 5961) used to collect females for

all lifespan studies are Wolbachia negative, the lifespan effects

observed in flies with reduced JNK or IIS activity in somatic stem

cells are thus Wolbachia independent.

Analysis of GFP expression by western blot
Analysis of esgGal4, 5961GS and GMR-Gal4 expression

pattern by western blot 5 females (esgGal4.UAS-GFP,

5961GS.UAS-GFP, GMRGal4.UAS-GFP or OregonR) were

dissected into heads, guts, salivary glands, ovaries and the

carcasses of the thorax and abdomen. Tissues were homogenized

in protein sample buffer; proteins were separated by SDS-PAGE

and transferred to nitrocellulose membrane using standard

procedures. GFP was detected using rabbit anti-GFP antibody

(Invitrogen; 1:5000), HRP-conjugated anti-rabbit and chemi-

luminescence, according to manufacturer instructions. Total

proteins, detected using Ponceau staining, or Heterochromatin

Protein 1 (detected by immune-staining, anti-HP1, DSHB; 1:5000)

are used as loading controls.

Analysis of gene expression
Total RNA from 5 guts, from embryos, or from dissected 3rd

instar larval eye imaginal discs, was extracted using Trizol and

cDNA synthesized using Superscript II (Invitrogen). Real time

PCR was performed using SYBR Green, a Biorad IQ5 apparatus

and the following primers pairs (Delta: 59-TGA GCA CTT TCT

CCT CGC ACA TCT-39and 59-AGG CTT GTA CTG CAA

CCA GGA TCT-39; Rp49: 59-TCC TAC CAG CTT CAA GAT

GAC-39 and 59-CAC GTT GTG CAC CAG GAA CT-39; Akt:

59-AAG CGT TTG GGA GGT GGA AAG GAT-39 and 59-

TCA ACT CCA CAC TCT CTC CCG TAA-39; Actin: 59-CTC

GCC ACT TGC GTT TAC AGT-39 and 59- TCC ATA TCG

TCC CAG TTG GTC-39; Jafrac1: 59-CAA GTT GAG CGA

CTA CAA GG-39 and 59-TCA TCG AGC ACT CCA TAG TC-

39). Data was calculated using the DCt method and normalized to

actin levels. Results are average +/2 standard deviation of at least

3 independent biological samples run in triplicate.

Supporting Information

Figure S1 Expression pattern of the esgGal4 driver. A. All

accessible tissues from flies expressing GFP under the control of

the esgGal4 driver were dissected. GFP can exclusively be detected

in the Intestinal Stem Cells (ISCs) in the midgut, the Renal Stem

Cells (RNSCs) in the malpighian tubules, the testis and the salivary

glands. No Fluorescence can be detected in the crop, the hindgut,

the ovaries, the brain or the abdominal fat body. B. GMRGal4,

used as a control for lifespan experiments, overlaps with esgGal4

expression in the salivary glands. C. Western-blot analysis of

dissected tissues from adults in which esgGal4 or GMRGal4 drive

expression of GFP. Extracts from OreR (wild-type) flies are shown

as controls. Note the overlap of expression of the two drivers in

salivary glands, and the exclusive expression of esg-GFP in the

intestine and salivary glands. Mobility shift between the GFPs

expressed in either line is due to expression of different GFP

constructs in esgGal4 or GMRGal4 recombinants. Ponceau Red

staining is shown as loading control.

Found at: doi:10.1371/journal.pgen.1001159.s001 (4.01 MB TIF)

Figure S2 ISC function is critical for normal lifespan. A.

Inducing differentiation in the ISC lineage (using activated notch

intra-cellular domain; esgGal4, UAS-GFP;tubGal80ts/UAS-

NICD) results in shortening of lifespan compared to wild-type

controls (esgGal4, UAS-GFP;tubGal80ts/+ (y1w1)) in both males

and females. Flies used in these experiments were reared at a

permissive temperature (22 u C, promoting activity of the Gal80

repressor), then transiently shifted to 29 u C at 5 days of age (for 7

days) to deactivate the repressor and irreversibly impair stem cell

function through over-expression of NICD. Flies were aged at 25 u
C. B. Longevity (of esgGal4, UAS-GFP; tubGal80ts/UAS-NICD)

is minimally affected when flies are kept at a permissive

temperature (22 u C, promoting activity of the Gal80 repressor)

throughout life. This suggests that the TARGET system

(tubGal80ts) approach can inhibit developmental effects of

transgenes, thus limiting the lifespan effects strictly to changes in

the adult. C. Summary of lifespan statistics for all populations

including mean and median lifespan (days), as well as XiSquare

value and p-Value using log rank test. D. Western blot showing

GFP levels in wild-type (no GFP) whole larvae as well as esgGal4,

UAS-GFP whole larvae with (esgGal4, UAS-GFP; tubGal80ts) and

without the Gal80 repressor. At a permissive temperature (22 u C),

no GFP is detected in the presence of ubGal80ts. E. Shifting adult

flies (esgGal4, UAS-GFP; tubGal80ts) to 29 u C strongly induces

GFP expression in the gut.

Found at: doi:10.1371/journal.pgen.1001159.s002 (0.94 MB TIF)

Figure S3 ISC are the only proliferating cells in the midgut

epithelium. A. Confocal image of a representative MARCM clone

induced in the intestinal epithelium. The arrowhead indicates the

unique pH3+ cell among GFP+ cells. B. Analysis of proliferating

cells in the ISC lineage in young (7 days), old (40 days) or stressed

flies, as well as ISC over-expressing Hep. For each condition,

MARCM clones were observed 7 days after induction. The

number of clones containing 1 pH3+ cell, 2 pH3+ cells or more is

indicated. The size of the clones is also reported. No clones with

more than 2 pH3+ cells could be detected in any of the conditions

tested (.200 clones observed for each), and the clones induced in

older or stressed animals are not larger than the clones induced in

young animals, suggesting the absence of transient amplifying cells,

even in older animals.

Found at: doi:10.1371/journal.pgen.1001159.s003 (1.00 MB TIF)

Figure S4 qRT-PCR confirming the reduction of Akt expression

using the UAS-AktRNAi line. RNA was obtained from wild-type

and daG4.UAS-AktRNAi embryos, at 25 u C (Daughterless-Gal4

(daG4) is a ubiquitous driver). Actin5C served as internal control.

Bars represent the average of 3 independent samples 6 standard

deviation, and p-value is calculated using Student’s t-test.

Found at: doi:10.1371/journal.pgen.1001159.s004 (0.08 MB TIF)

Figure S5 Lifespan analysis of esgGal4 heterozygous flies. A.

Survival curves of esgGal4/+ flies compared to their respective

wild-type co-isogenic controls. The esgGal4 line was backcrossed

10 generation into w1118 background. esgGal4/+ females were
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crossed to y1w1 males and survival of the progeny was recorded.

These flies represent the isogenic controls for the experiment

presented in Figure 3D. B. Summary of the lifespan analysis of

esgGal4/+ flies. See Table S3 for complete analysis.

Found at: doi:10.1371/journal.pgen.1001159.s005 (0.33 MB TIF)

Figure S6 Expression pattern of the 5961GeneSwitch driver. A.

Western-blot analysis of dissected tissues from adult 5961GS.GFP

females. GFP can exclusively be detected in the intestine after

exposure to RU486. Heterochromatin Protein 1 (detected by

immuno-staining) and total protein levels (Ponceau Red staining)

are shown as loading controls. B. Bright field and fluorescence

images of dissected esgGal4.GFP and 5961GS.GFP (fed RU486

for 3 days) females, confirming that 5961-driven transgene

expression is much weaker than esg-mediated expression. C.

Western-blot analysis of head extracts from adult 5961GS.GFP

females, compared to standard neuronal drivers (elavGal4 and

elavGeneSwitch), as well as esgGal4. No GFP can be detected in the

extracts from 5961GS.GFP flies, further suggesting that the

activity of the 5961GS driver is restricted to the intestine and the

malpighian tubules.

Found at: doi:10.1371/journal.pgen.1001159.s006 (4.96 MB TIF)

Figure S7 Induction of Hsp68 and Jafrac1 by Foxo. qRT-PCR

demonstrating induction of hsp68 and Jafrac1 in response to

expression of constitutively active Foxo (FoxoTM) in third instar

eye imaginal discs, using the sepGal4 driver. Average and

standard-deviation from 3 independent experiments are shown.

p-value is calculated using Student’s t-test. RNA was collected

from 10 discs for each experiment. Expression levels are reported

as relative to actin5C expression.

Found at: doi:10.1371/journal.pgen.1001159.s007 (0.15 MB TIF)

Figure S8 Overexpression of stress-protective genes in ISC lineage

delays dysplasia in the anterior midgut. A. The age-related loss of tissue

can be scored in the anterior midgut. This phenotype can be scored

using three distinct categories, based the presence of individual esg+
cells (category 1), the formation of esg+ cell clusters (category 2) or the

invasion of the proventriculus by esg+ cells (category 3). The white bars

mark the limit between the anterior midgut and the proventriculus

(PV). B. Intestinal degeneration in aging (3, 35, and 50 days) control

flies (esgGFP.+) and flies overexpressing cytoprotective genes in the

ISCs (esgGFP.Jafrac1 and esgGFP.Hsp68) was scored using the

method described above. Overexpression of Jafrac1 or Hsp68 delays

age-related loss of intestinal architecture in the anterior midgut. p-value

from Pearson XiSquare test.

Found at: doi:10.1371/journal.pgen.1001159.s008 (0.67 MB TIF)

Figure S9 Expression of Hsp68 under the control of the

GMRGal4 driver doesn’t affect lifespan. A. Survival curves of

GMRGal4. Hsp68 compared to their respective wild type co-

isogenic controls. The UAS-Hsp68 line was backcrossed 10

generation into w1118 background. Wild type and UAS siblings

were crossed to GMRGal4,UAS-GFP and survival of the progeny

was recorded. B. Summary of the lifespan analysis of GMRGAl4.

Hsp68. No significant difference in longevity was observed

between Hsp68 over-expressing flies and their controls.

Found at: doi:10.1371/journal.pgen.1001159.s009 (0.26 MB TIF)

Table S1 Lifespan analysis of flies with impaired intestinal

regeneration. Sex, genotypes, and mean lifespan statistics of the

populations used for demographic analysis (Figure 1E) are listed.

Experimental and control populations are compared using Log-

Rank and Wilcoxon tests (ChiSquare and p-values). All the

analysis was performed using the JMP7 statistical software.

Found at: doi:10.1371/journal.pgen.1001159.s010 (0.26 MB PDF)

Table S2 Lifespan analysis of flies with strong reduction of IIS

using the esgGal4 driver. Sex, genotypes and mean lifespan

statistics of the populations used for demographic analysis

(Figure 3B and 3C) are listed. Experimental and control

populations are compared using Log-Rank and Wilcoxon tests.

All the analysis was performed using the JMP7 statistical software.

Found at: doi:10.1371/journal.pgen.1001159.s011 (0.25 MB PDF)

Table S3 Lifespan analysis of flies overexpressing Foxo using the

esgGal4 driver and corresponding controls. Sex, genotypes, and

lifespan statistics of individual cohorts used for demographic analysis

(Figure 3D) are listed. Mean lifespan and days at which 25% or 75%

of the population were dead are shown for each cohort. Flies from

the same population are siblings from individual crosses. ChiSquare

and p-values are derived from Log-Rank and Wilcoxon Tests. All

the analysis was performed using the JMP7 statistical software.

Found at: doi:10.1371/journal.pgen.1001159.s012 (0.35 MB PDF)

Table S4 Lifespan analysis of flies with moderate reduction of IIS

and JNK signaling using the 5961GS driver. Genotypes and lifespan

statistics of individual cohorts used for demographic analysis in

Figure 4 are listed. Mean lifespan, median lifespan and days at which

25% or 75% of the population were dead are shown for each cohort.

Flies from the same population (-RU486 and +RU486) are siblings

from individual crosses. Only females are shown. The significance of

the changes observed when the flies are raised on RU486 was tested

using Log-Rank and Wilcoxon Tests (ChiSquare and p-values). All

the analysis was performed using the JMP7 statistical software.

Found at: doi:10.1371/journal.pgen.1001159.s013 (0.35 MB PDF)

Table S5 Lifespan analysis of flies with increased stress

protection using the esgGal4 driver (esgGal4,GFP. Jafrac1 and

esgGal4,GFP. Hsp68). Sex, genotypes, and lifespan statistics of

individual cohorts used for demographic analysis (Figure 6A) are

listed. Mean and median lifespan and days at which 25% or 75%

of the population were dead are shown for each cohort. ChiSquare

and p values are derived from Log-Rank and Wilcoxon Tests. All

the analysis was performed using the JMP7 statistical software.

Found at: doi:10.1371/journal.pgen.1001159.s014 (0.34 MB PDF)

Table S6 Lifespan analysis of flies with moderate expression of

Jafrac1 and Hsp68 using the 5961GS driver. Genotypes and lifespan

statistics of individual cohorts used for demographic analysis

(Figure 6C) are listed. Mean and median lifespan and days at which

25% or 75% of the population were dead are shown for each cohort.

Flies from the same population (-RU486 and +RU486) are siblings

from individual crosses. Only females are shown. The significance of

the changes observed when the flies are raised on RU486 was tested

using Log-Rank and Wilcoxon Tests (ChiSquare and p-values). All

the analysis was performed using the JMP7 statistical software.

Found at: doi:10.1371/journal.pgen.1001159.s015 (0.34 MB PDF)

Text S1 Description of scoring methods used to monitor

intestinal degeneration in aging flies.

Found at: doi:10.1371/journal.pgen.1001159.s016 (0.03 MB

DOC)
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