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Establishing the fundamental limit of nanophotonic light-trapping
schemes is of paramount importance and is becoming increasingly
urgent for current solar cell research. The standard theory of light
trapping demonstrated that absorption enhancement in a medium
cannot exceed a factor of 4n2∕ sin2 θ, where n is the refractive index
of the active layer, and θ is the angle of the emission cone in the
medium surrounding the cell. This theory, however, is not ap-
plicable in the nanophotonic regime. Here we develop a statistical
temporal coupled-mode theory of light trapping based on a rigor-
ous electromagnetic approach. Our theory reveals that the conven-
tional limit can be substantially surpassed when optical modes
exhibit deep-subwavelength-scale field confinement, opening new
avenues for highly efficient next-generation solar cells.

The ultimate success of photovoltaic (PV) cell technology
requires great advancements in both cost reduction and effi-

ciency improvement. An approach that simultaneously achieves
these two objectives is to use light-trapping schemes. Light trap-
ping allows cells to absorb sunlight using an active material layer
that is much thinner than the material’s intrinsic absorption
length. This effect then reduces the amount of materials used
in PV cells, which cuts cell cost in general, and moreover facil-
itates mass production of PV cells that are based on less abundant
materials. In addition, light trapping can improve cell efficiency,
because thinner cells provide better collection of photogenerated
charge carriers, and potentially a higher open circuit voltage (1).

The theory of light trapping was initially developed for conven-
tional cells where the light-absorbing film is typically many wave-
lengths thick (2–4). From a ray-optics perspective, conventional
light trapping exploits the effect of total internal reflection
between the semiconductormaterial (such as silicon, with a refrac-
tive index n ∼ 3.5) and the surrounding medium (usually assumed
to be air). By roughening the semiconductor–air interface
(Fig. 1A), one randomizes the light propagation direction inside
the material. The effect of total internal reflection results in a
much longer propagation distance inside the material and hence
a substantial absorption enhancement. For such light-trapping
schemes, the standard theory shows that the absorption enhance-
ment factor has an upper limit of 4n2∕ sin2 θ (2–4), where θ is
the angle of the emission cone in the medium surrounding the
cell. This limit of 4n2∕ sin2 θ will be referred to in this paper as
the conventional limit. This form is in contrast to the 4n2 limit,
which strictly speaking is only applicable to cells with isotropic
angular response, but is nevertheless quite commonly used in
the literature.

For nanoscale films with thicknesses comparable or even
smaller than wavelength scale, some of the basic assumptions of
the conventional theory are no longer applicable. Whether the
conventional limit still holds thus becomes an important open
question that is currently being pursued both numerically (5–15)
and experimentally (16–23).

In this article, we develop a statistical coupled-mode theory
that describes light trapping in general from a rigorous electro-
magnetic perspective. Applying this theory, we show that the limit
of 4n2∕ sin2 θ is only correct in bulk structures. In the nano-
photonic regime, the absorption enhancement factor can go far
beyond this limit with proper design. As a specific example, we

numerically demonstrate a light-trapping scheme, based on sub-
wavelength modal confinement, with an absorption enhancement
factor of 12 × 4n2 over a virtually unlimited spectral bandwidth
and with near-isotropic angular response. We also show theore-
tically that, in the absence of subwavelength modal confinement,
a grating structure by itself can achieve an enhancement ratio
above 4n2. Such an enhancement, however, is always associated
with a strong angular response. As a result, it is difficult to use
grating structures alone to achieve enhancement factors beyond
the conventional limit of 4n2∕ sin2 θ.

Theory
To illustrate our theory, we consider a high-index thin-film active
layer with a high-reflectivity mirror at the bottom and air on top.
Such a film supports guided optical modes. In the limit where the
absorption of the active layer is weak, these guided modes typi-
cally have a propagation distance along the film that is much
longer than the thickness of the film. Light trapping is accom-
plished by coupling incident plane waves into these guided
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Fig. 1. Light trapping with random texture and a grating structure. (A) Light
trapping by randomly textured surface. (B) Light trapping using a periodic
grating on a back-reflector (yellow); d ¼ 2 μm, L ¼ 250 nm. The depth and
width of the dielectric groove in the grating are 50 and 175 nm, respectively.
The dielectric material is crystalline silicon. (C) Absorption spectrum [trans-
verse magnetic (TM) mode, normal incidence] and dispersion relation of
waveguide modes for the structure in B. The dispersion relation is approxi-
mated asω ¼ c

n ½ðmπ
d Þ2 þ k2

==�, or equivalently in terms of free-spacewavelength
λ ¼ 2πn

ðmπ∕dÞ2þk2==
, where m ¼ 1, 2, 3, … is the band index indicating the field

variation in the transverse direction. Resonances occur when k== ¼ 2π∕L
(red dots).
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modes, with either a grating with periodicity L (Fig. 1B) or ran-
dom Lambertian roughness (Fig. 1A). It is well known that a
system with random roughness can be understood by taking the
L → ∞ limit of the periodic system (10, 24). Thus, we will focus
on periodic systems. As long as L is chosen to be sufficiently large,
i.e., at least comparable to the free-space wavelength of the
incident light, each incident plane wave can couple into at least
one guided mode. By the same argument, such a guided mode can
couple to external plane waves, creating a guided resonance (25).

A typical absorption spectrum for such a film (6) is reproduced
in Fig. 1C. The absorption spectrum consists of multiple peaks,
each corresponding to a guided resonance. The absorption is
strongly enhanced in the vicinity of each resonance. However,
compared to the broad solar spectrum, each individual resonance
has very narrow spectral width. Consequently, to enhance absorp-
tion over a substantial portion of the solar spectrum, one must
rely upon a collection of these peaks. Motivated by this observa-
tion, we develop a statistical temporal coupled-mode theory that
describes the aggregate contributions from all resonances.

We start by identifying the contribution of a single resonance
to the total absorption over a broad spectrum. The behavior of an
individual guided resonance, when excited by an incident plane
wave, is described by the temporal coupled-mode theory equation
(26, 27)

d
dt
a ¼

�
jω0 −

Nγe þ γi
2

�
aþ j

ffiffiffiffi
γe

p
S: [1]

Here a is the resonance amplitude, normalized such that jaj2 is
the energy per unit area in the film, ω0 is the resonance fre-
quency, and γi is the intrinsic loss rate of the resonance due to
material absorption. S is the amplitude of the incident plane
wave, with jSj2 corresponding to its intensity. We refer to a plane
wave that couples to the resonance as a channel. The leakage rate
γe describes the coupling between the resonance and the channel
that carries the incident wave. In general, the grating may phase
match the resonance to other plane-wave channels as well. We
assume a total of N such channels. Equivalent to the assumption
of a Lambertian emission profile as made in ref. 2, we further
assume that the resonance leaks to each of the N channels with
the same rate γe. Under these assumptions, the absorption spec-
trum of the resonance is (26)

AðωÞ ¼ γiγe
ðω − ω0Þ2 þ ðγi þ NγeÞ2∕4

: [2]

For light-trapping purposes, the incident light spectrum is typi-
cally much wider than the linewidth of the resonance. For this
case, we characterize the contribution of a single resonance to
the total absorption by a spectral cross-section:

σ ¼
Z

∞

−∞
AðωÞdω: [3]

Notice that spectral cross-section has units of frequency and has
the following physical interpretation: For an incident spectrum
with bandwidth Δω ≫ σ, a resonance contributes an additional
σ∕Δω to the spectrally averaged absorption coefficient.

For a single resonance, from Eqs. 2 and 3, the spectral cross-
section is

σ ¼ 2πγi
1

N þ γi∕γe
; [4]

which reaches a maximum value of

σmax ¼
2πγi
N

[5]

in the overcoupling regime when γe ≫ γi. We emphasize that the
requirement to operate in the strongly overcoupling regime arises

from the need to accomplish broadband absorption enhance-
ment. In the opposite narrowband limit, when the incident radia-
tion is far narrower than the resonance bandwidth, one would
instead prefer to operate at the critical coupling condition by
choosing γi ¼ Nγe, which results in ð100∕NÞ% absorption at the
resonant frequency of ω0. The use of critical coupling, however,
has a lower spectral cross-section and is not optimal for the
purpose of broadband enhancement. The intrinsic decay rate γi
differentiates between the two cases of broadband and narrow-
band. For light trapping in solar cells, we are almost always in
the broadband case where the incident radiation has bandwidth
Δω ≫ γi.

We can now calculate the upper limit for absorption by a given
medium, by summing over the maximal spectral cross-section of
all resonances:

AT ¼ ∑ σmax

Δω
¼ 1

Δω∑
m

2πγi;m
N

; [6]

where the summation takes place over all resonances (labeled
by m) in the frequency range of ½ω;ωþ Δω�. In the overcoupling
regime, the peak absorption from each resonance is in fact
relatively small; therefore the total cross-section can be obtained
by summing over the contributions from individual resonances.
In addition, we assume that the medium is weakly absorptive
such that single-pass light absorption is negligible.

Eq. 6 is the main result of this paper. In the following discus-
sion, we will first use Eq. 6 to reproduce the well-known 4n2 con-
ventional limit, and then consider a few relevant scenarios where
the effect of strong light confinement becomes important.

Light-Trapping in Bulk Structures
We first consider a structure with period L and thickness d that
are both much larger than the wavelength. In this case, the reso-
nance can be approximated as propagating plane waves inside the
bulk structure. Thus, the intrinsic decay rate for each resonance
is related to a material’s absorption coefficient α0 by γi ¼ α0

c
n.

The number of resonances in the frequency range ½ω;ωþ δω�
is (28)

M ¼ 8πn3ω2

c3

�
L
2π

�
2
�
d
2π

�
δω: [7]

Each resonance in the frequency range can couple to channels
that are equally spaced by 2π

L in the parallel wavevector k== space
(Fig. 2A). Moreover, because each channel is a propagating plane
wave in air, its parallel wavevector needs to satisfy jk==j ≤ ω∕c.
Thus, the number of channels is
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Fig. 2. Light trapping in periodic structures. (A) Blue dots represent channels
in the k space. Channels in the circle correspond to free-space propagating
modes. (B) Theoretical upper limit of the absorption enhancement factor
using a light-trapping scheme where a square-lattice periodic grating struc-
ture is introduced into a thin film. Red area represents a spectral range where
the upper limit of the absorption enhancement factor F is above 4n2.
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N ¼ 2πω2

c2

�
L
2π

�
2

: [8]

From Eq. 6, the upper limit for the absorption coefficient of this
system is then

AT ¼ 2πγi
Δω

·
M
N

¼ 4n2α0d; [9]

resulting in the upper limit for the absorption enhancement
factor F,

F ≡ AT

α0d
¼ 4n2; [10]

which reproduces the 4n2 conventional limit, appropriate for the
Lambertian emission case with sin θ ¼ 1. The theory can be gen-
eralized to the case of a restricted emission cone and reproduces
the standard result of 4n2∕ sin2 θ (SI Text).

The analysis here also points to scenarios where the conven-
tional limit is no longer applicable. Eq. 8 is not applicable when
the periodicity is comparable to the wavelength, whereas Eq. 7 is
not valid when the film thickness is much smaller than the wave-
length. Below, we consider both of these cases.

Light-Trapping in Structures with Wavelength-Scale
Periodicity
When the periodicity L is comparable to the wavelength λ, the
discrete nature of the channels becomes important (Fig. 2A).
To illustrate this effect, we assume that the film has a high refrac-
tive index (for example, silicon), such that the wavelength in the
material is small compared with the periodicity. We also assume
that the film has a thickness of a few wavelengths. In this case, all
modes have approximately the same decay rate γi ¼ α0

c
n, and

Eq. 7 can still be used to count the number of resonances.
Using Eq. 6, for normally incident light, we calculate the upper

limit of the absorption enhancement factor as a function of L∕λ
(Fig. 2B) when the structure has a square lattice. The discontin-
uous changes in Fig. 2B correspond to the emergence of new
channels. In particular, when λ > L, there is only a single channel
independent of frequency. On the other hand, the number of
resonances is frequency dependent. As a result, the maximum
enhancement factor increases quadratically as a function of
frequency. In order to maximize the absorption, one should
choose the periodicity to be slightly smaller than the wavelength
range of interest (red region in Fig. 2B). We note that the upper
limit for the absorption enhancement factor approaches 4n2 for
a large period, L ≫ λ.

The above analysis can be used to provide considerable insight
into the behavior of grating structures. In particular, one expects
that a 2D grating structure is superior to a 1D grating, because a
2D grating can provide access to a significantly larger number of
resonances. Also, an asymmetric grating profile should be bene-
ficial, because with a symmetric profile there are resonances that
cannot be coupled to incident light due to symmetry constraints.
These findings are consistent with existing literature (10, 29).

The use of grating structures on a relatively thick film to en-
hance optical absorption has been extensively explored (5, 6, 10).
This approach is practically important because it allows one to
tailor the device response for specific material parameters and
operating conditions such as concentration. From a fundamental
perspective, Sheng et al. have argued (5) that the grating may
alter the density of state within the structure, leading to enhance-
ment beyond 4n2 over particular frequency ranges. However, the
cases we consider here involve shallow gratings on the surface of
a thick medium. In such a case, the change of density of state in
the structure is substantial only in very limited frequency ranges
(25). Instead, our analysis shows that enhancement beyond 4n2 is
nevertheless achievable because the grating restricts the number

of channels available in free space. Also, in refs. 10 and 11, en-
hancement factors above 4n2 were predicted using approximate
approaches involving a summation of various scattering events
in an incoherent fashion. The analysis presented here is more
general in the sense that it is based upon electromagnetic analy-
sis. Moreover, our analysis indicates that the potential of signifi-
cantly exceeding the conventional limit, defined in terms of
4n2∕ sin2 θ, is rather limited in these structures; this conclusion
arises because, to achieve high-enhancement factors, one needs
to use a periodicity comparable to the wavelength of interest,
which leads directly to strong angular and spectral dependency,
in consistency with previous results (10). Below, we present a
strategy that overcomes these issues and exceeds the conven-
tional limit over a large range of angles and frequencies.

Light-Trapping in Thin Films
When the thickness d of the film is comparable to half wavelength
in the material, one can reach the single-mode regime where
the film supports a single waveguide mode band for each of the
two polarizations. In such a case, Eq. 7 is no longer applicable.
Instead, the number of resonances in the frequency range of
½ω;ωþ δω� can be calculated as (details in SI Text)

M ¼ 2 ×
2πn2wgω

c2

�
L
2π

�
2

δω; [11]

where the first factor of 2 arises from counting both polarizations.
(Here, to facilitate the comparison to the standard conventional
limit, for simplicity, we have assumed that the two polarizations
have the same group index nwg.) Notice that, in this case, the num-
ber of modes no longer explicitly depends upon the thickness d
of the film.

In order to highlight the effect of such strong light confine-
ment, we choose the periodicity to be a few wavelengths, in which
case the number of channels can still be calculated using Eq. 8. As
a result, we obtain the upper limit for the absorption enhance-
ment factor

F ¼ 2 × 4n2wg
λ

4nwgd
V ; [12]

where the factor V ¼ αwg∕α0 characterizes the overlapping be-
tween the profile of the guided mode and the absorptive active
layer. The absorption coefficient and group index of the wave-
guide mode are αwg and nwg, respectively.

Eq. 12 in fact becomes 4n2 in a dielectric waveguide of
d ≈ λ∕2n. Therefore, reaching the single-mode regime is not suf-
ficient to exceed the conventional limit. Instead, to achieve the
full benefit of nanophotonics, one must either ensure that the
modes exhibit deep-subwavelength-scale electric-field confine-
ment, or enhance the group index to be substantially larger than
the refractive index of the active material, over a substantial wa-
velength range. Below, using both exact numerical simulations
and analytic theory, we will design geometries that simultaneously
satisfy both these requirements.

Numerical Demonstration
Guided by the theory above, we now numerically demonstrate a
nanophotonic scheme with an absorption enhancement factor
significantly exceeding the conventional limit. We consider a thin
absorbing film with a thickness of 5 nm (Fig. 3A), consisting of a
material with a refractive index nL ¼ ffiffiffiffiffiffi

2.5
p

and a wavelength-in-
dependent absorption length of 25 μm. The film is placed on a
mirror that is approximated to be a perfect electric conductor
(PEC). A PEC mirror is used for simulation convenience. In
practice, it can be replaced by a dielectric cladding layer, which
produces similar results (details in SI Text). Our aim here is to
highlight the essential physics of nanophotonic absorption en-
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hancement. The choice of material parameters therefore repre-
sents a simplification of actual material response. Nevertheless,
we note that both the index and the absorption strength here are
characteristic of typical organic photovoltaic absorbers in the
weakly absorptive regime (30). Furthermore, there is general
interest in using thinner absorbers in organic solar cells given
their short exciton diffusion lengths of about 3–10 nm (31–33).

In order to enhance the absorption in the active layer, we place
a transparent cladding layer (nH ¼ ffiffiffiffiffiffiffiffiffi

12.5
p

) on top of the active
layer. Such a cladding layer serves two purposes. First, it enhances
density of state. The overall structure supports a fundamental
mode with group index nwg close to nH , which is much higher than
that of the absorbing material. Second, the index contrast
between active and cladding layer provides nanoscale field con-
finement. Fig. 3B shows the fundamental waveguide mode. The
field is highly concentrated in the low-index active layer, due to
the well-known slot-waveguide effect (34). Thus, the geometry
here allows the creation of a broadband high-index guided mode,
with its energy highly concentrated in the active layer, satisfying
the requirement in Eq. 12 for high absorption enhancement.

In order to couple incident light into such nanoscale guided
modes, we introduce a scattering layer with a periodic pattern
on top of the cladding layer, with a periodicity Lmuch larger than
our wavelength range of interest. Each unit cell consists of a num-
ber of air grooves. These grooves are oriented along different di-
rections to ensure that scattering strength does not strongly
depend on the angles and polarizations of the incident light
(structure details provided in the SI Text). We emphasize that
there is no stringent requirement on these grooves as long as the
scattering strength dominates over resonance absorption rates.

We simulate the proposed structure by numerically solving
Maxwell’s equations (Fig. 4A; details provided in the SI Text).

The device has a spectrally averaged absorption enhancement
factor of F ¼ 119 (red line) for normally incident light. (All
the absorption spectra and enhancement factors are obtained
by averaging s and p polarized incident light.) Tis enhancement
factor is well above the conventional limit for both the active
material (4n2L ¼ 10) and the cladding material (4n2H ¼ 50). More-
over, the angular response is nearly isotropic (Fig. 4 C and D).
Thus such enhancement cannot be attributed to the narrowing
of angular range in the emission cone, and instead is due entirely
to the nanoscale field confinement effect.

Using our theory, we calculate the theoretical upper limit
of light-trapping enhancement in this structure (details in
SI Text). For wavelength λ ¼ 500 nm, we obtain an upper limit
of F ¼ 147. The enhancement factor observed in the simulation
is thus consistent with this predicted upper limit. The actual
enhancement factor obtained for this structure falls below the
calculated theoretical upper limit because some of the reso-
nances are not in the strong overcoupling regime.

To illustrate the importance of nanoscale field confinement
enabled by the slot-waveguide effect, we change the index of
the material in the absorptive layer to nH . Such a structure does
not exhibit the slot-waveguide effect. The average enhancement
in this case is only 37, falling below the conventional limit of 50
(Fig. 4B).

Light-Trapping for Infinitesimal Inclusions
The microscopic physics of the enhancement in the numerical
example above is related to the Lorentz local field effect (35).
In this section, using Eq. 6, we provide an analytic expression
capturing the effect of local field enhancement on light trapping.
To obtain a closed-form analytic result, we examine a small inclu-
sion with relevant dimensions at deep-subwavelength scale,
of a lossy material with a low index nL and a small absorption
coefficient α0, embedded in a lossless bulk medium with high
index nH . We study the effect of absorption enhancement when
light trapping is performed on the bulk, by, for example, rough-
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Fig. 3. Structure for overcoming the conventional light-trapping limit. (A) A
nanophotonic light-trapping structure. The scattering layer consists of a
square lattice of air groove patterns with periodicity L ¼ 1200 nm. The thick-
nesses of the scattering, cladding, and active layers are 80, 60, and 5 nm,
respectively. The mirror layer is a perfect electric conductor. (B) The profile
of electric-field intensity for the fundamental waveguide mode. Fields are
strongly confined in the active layer. To obtain the waveguide mode profile,
the scattering layer is modeled by a uniform slab with an averaged dielectric
constant.
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ening the bulk–air interface (Fig. 5). To facilitate the computa-
tion, we assume a periodic boundary condition in the xy plane
with a large periodicity L, and a thickness of D for the bulk
medium.

To apply Eq. 6, we first calculate the intrinsic loss rate γi;m of
the mth resonance mode having a modal electric field ~Emð ~rÞ:

γi;m ¼ α0nL
c

R
inclusion n

2
Lj ~Emð ~rÞj2d ~rR

n2ð ~rÞj ~Emð ~rÞj2d ~r
: [13]

Because the inclusion is small, the field ~Emð ~rÞ can be derived from
a corresponding plane-wave mode in a uniform bulk medium with
an electric field ~Emð ~rÞ ¼ ~E0

mei
~km · ~r having an amplitude j ~E0

mj ¼ E0.
Outside the inclusion region, we assume ~Emð ~rÞ ¼ ~E0

mð ~rÞ. The
denominator in Eq. 13 thus becomes

Z
n2ð ~rÞj ~Emð ~rÞj2d ~r ≈ n2HE

2
0L

2D: [14]

Inside the inclusion, the electric fields ~Emð ~rÞ can be determined
by boundary conditions.

We consider the structure in Fig. 5A first, where a thin lossy
layer perpendicular to the z axis, of a thickness d, is embedded
in the high-index bulk. Inside the thin layer, applying the elec-
tric-field boundary condition, we have

~Emð ~rÞ ¼ E0
x;mð ~rÞx̂þ E0

y;mð ~rÞŷþ
�
n2H
n2L

�
E0
z;mð ~rÞẑ: [15]

Combining Eqs. 13–15, we therefore have

γi;m ¼ α0nL
c

n2LðjE0
x;mj2 þ jE0

y;mj2 þ n2H
n2L
jE0

z;mj2Þ
n2HE

2
0

d
D
: [16]

Thus, the enhancement ratio

F ¼ 1

α0d
·
2π

Δω
·
∑
m

γi;m

N
¼ 4n2L

�
2

3

nH
nL

þ 1

3

n5H
n5L

�
: [17]

In deriving Eq. 17, we note that

∑
m

jEx;mj2 ¼ ∑
m

jEy;mj2 ¼ ∑
m

jEz;mj2 ¼
1

3
ME2

0: [18]

We also use the relation

2π

Δω
M
N

·
α0nH
c

¼ 4n2Hα0D

as derived in a previous section (Eq. 9).
Eq. 17 is consistent with ref. 36. Our theoretical framework,

however, is very general and allows us to treat many other

light-trapping scenarios as well. As another example (Fig. 5B),
we calculate the light-trapping enhancement factor for a small
spherical inclusion having a volume Vs embedded in a bulk
medium, by noting that inside the sphere, the field is (37)

j ~EmðrÞj ¼
3n2H

2n2H þ n2L
E0: [19]

Following the same procedure as outlined above from the thin-
layer case, we have an absorption enhancement factor of

Fsphere ¼ 4n2L
9n5H∕n

5
L

ð2n2H∕n2L þ 1Þ2 [20]

when compared to the single-pass absorption rate of a sphere
of αVs∕L2.

The analytic results thus show that embedding low-index
absorptive inclusions in a high-index medium can significantly
enhance light absorption beyond the conventional limit, in consis-
tency with the numerical results of the previous section. The com-
bination of wave effects with local field effects may provide
significant opportunities for the design of light-absorption en-
hancement schemes with even higher absorption enhancement
factors.

Conclusion
We have developed a statistical coupled-mode theory for nano-
photonic light trapping, and have shown that properly designed
nanophotonic structures can achieve enhancement factors that
far exceed the conventional limit. Our results indicate that sub-
stantial opportunities for nanophotonic light trapping exist using
only low-loss dielectric components. The basic theory, moreover,
is generally applicable to any photonic structure, including nano-
wire (38, 39) and plasmonic structures (40). In plasmonic struc-
tures, the presence of nanoscale guided modes may also provide
opportunities to overcome the conventional limit.
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