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Abstract
Recent evidence suggests that passenger leukocytes migrate after organ transplantation and produce
persistent chimerism, which is essential for sustained survival of the allograft. Here, we describe how
this hematolymphopoietic chimerism provides an important framework for interpretation of post-
transplant phenomena and for initiation of therapeutically oriented transplantation research.

Introduction
A link between bone marrow and organ transplantation was provided when microchimerism
was detected with sensitive immunocytochemical and polymerase chain reaction techniques
in the tissues or blood of 30 human kidney or liver recipients studied from 2.5 to 30 years
postoperatively [1,2]. The donor cells were multilineage, but paradoxically many appeared to
be dendritic cells (DCs), a potent antigen-presenting cell [3]. Individual samples from patients
often do not contain the donor leukocytes, which wax and wane [4]. However, disseminated
donor cells including DCs, or alternatively donor DNA, are consistently demonstrable if
rodents bearing long-term grafts are thoroughly studied [5–7].

Along with peripheral migration of the donor cells from a successfully transplanted graft, there
is an influx of host leukocytes that do not cause graft damage [2]. Thus, both the allograft and
recipient become genetic composites (Fig. 1a). A mirror image condition exists after bone
marrow transplantation [8] (Fig. 1b), proved by demonstrating a trace residual population of
host leukocytes in essentially all stable human bone marrow recipients who previously were
thought to have complete donor-cell chimerism [9].

Previous enigmas
These discoveries have provided an important framework for a better understanding of allograft
‘acceptance’, for analysis of management problems, and for therapeutically oriented
transplantation research [10••]. In the new context of this two-way paradigm, the donor
leukocytes in organ recipients constitute the small member of antagonistic but reciprocally
attenuated or abrogated host-versus-graft (HVG) and graft-versus-host (GVH) arms, each of
which can induce specific nonreactivity (tolerance) in the other [1,2,8] (Fig. 2). Deletion of the
host arm by the cytoablation before bone marrow but not before organ transplantation alters
the balance in this mutual interaction and is thus responsible for the disparities in the two
different kinds of transplantation (Table 1).
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The dynamic ‘nullification’ effect of the two arms makes it obvious why kidney recipients can
sometimes stop immunosuppression without losing their allografts [10••]. It also explains the
poor prognostic value of human leukocyte antigen matching for organ transplantation, the rarity
of GVH disease after the engraftment of immunologically active organs such as the intestine
and liver, and the characteristic cycle of immunologic crisis and resolution, first observed in
kidney recipients [11], that was most practically monitored by serial changes in organ allograft
function (Fig. 2).

The two-way paradigm defines success and failure after transplantation in a different way than
before. Success implies that chimerism has been introduced which may or may not be
immunosuppression-dependent. Failure connotes the therapeutically uncontrollable
ascendency of HVG or GVH. Pathologic evidence of both processes is frequently found in
failed liver or intestinal transplant cases, but the ultimate result is predominantly rejection or
GVH disease. In kidney recipients who are exposed to a small load of passenger leukocytes,
findings in the recipient and allograft are essentially always interpreted in the context of
rejection.

The counter-argument
In the previous conception of organ allograft acceptance, which excluded a role for lymphoid
cell microchimerism, it was axiomatic that antigens of the parenchymal (or vascular
endothelial) cells of transplanted organs permitted or induced allograft acceptance [12] in
various ways, for example via veto/suppressor cells, cytokine profile changes or enhancing
antibodies. In an extension of such reasoning, it has been contended that the microchimerism
associated with successful organ transplantation, and conversely its disappearance with or just
after irreversible rejection in experimental models [5,7], is inconsistent and epiphenomenal
[13].

Such arguments have been skilfully summarized in a debate format by Wood and Sachs
[14•]. However, there is no credible evidence to support the contention [13,14•] that the
microchimerism found in organ recipients is the effect rather than the cause of allograft
acceptance. Failure with limited tissue or blood sampling to find peripheral microchimerism
in patients after successful organ transplantation connotes an incomplete search [15]. In our
clinical studies [1,2] in which sampling was from multiple sites, the inconsistent yields from
individual locations were comparable with those reported by others [14•]. However, when the
results were pooled from the different sites in individual cases, all 30 of our originally tested
patients had microchimerism. In rat experiments where tissues can be retrieved without limit,
we have achieved a consistent association of chimerism with avoidance of chronic rejection
[5–7,15].

Post-transplant lymphoproliferative disorders
The two-way paradigm also has shed light on the pathogenesis of post-transplant
lymphoproliferative disorders (PTLDs) [16••]. Except for their frequent Epstein-Barr virus
(EBV) association, these human B-cell lymphomas are indistinguishable from those induced
by Schwartz et al. [17] in a mouse chimerism model 3 years before the PTLD complication
was first recognized clinically [18] and explained by loss of surveillance [19]. Rather than
simple loss of surveillance, Schwartz et al. ascribed the experimental tumors to an active
lymphoproliferative response by the dominant immune apparatus to the persistent subclinical
GVH counterattack of the minority donor leukocyte population. The relevance of his
observations to clinical PTLDs could only be appreciated 30 years later with the discoveries
of microchimerism.
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Now, it could be seen that PTLD is a complication of the joint activation of the coexisting
immune populations, to which the powerful cofactors of immune suppression and viral
infection (particularly with EBV [20]) are added [16••]. Because host leukocytes in most organ
recipients vastly outnumber the chimeric donor cells, with a similar obverse disproportion in
successfully engrafted bone marrow recipients, clinical PTLDs are usually of recipient origin
in the first instance and of donor phenotype in the second (summarized in [16••]).

Heavy immunosuppression typically precedes the appearance of the tumors in the human organ
recipient. Conversely, reduction or discontinuance of the antirejection drugs [21] can allow
restoration of immune surveillance, manifested by PTLD regression. Tumor involution
frequently is coincident with organ rejection, but in most cases a level of immune suppression
can be reached by trial and error that permits salvage of the allograft without precipitating
regrowth of the lymphoma [21–23].

This dissociation of lesion involution and rejection has suggested that the tumor destruction
might be by an autologous immune reaction directed to a tumor-specific antigen and that the
target was an EBV-infected immunoblast, freed from T-cell surveillance by
immunosuppression [24–27]. However, this does not explain why the less common EBV−

neoplasms also often frequently regress when immunosuppression is stopped [16••]. Thus,
although viral cofactors, and especially EBV, are undoubtedly involved in the development of
PTLD, their role has not been fully clarified.

Nevertheless, fresh insight about PTLD obtained so far can be used to map treatment strategies
of cellular immune modulation as discussed elsewhere [16••]. How to prevent PTLD is also
obvious. Because immune suppression is a dominant cofactor, particularly when it is T-cell
directed, it was not surprising to note an incremental increase in PTLD with successively more
potent immunosuppressants [21,28,29]. The risk can be reduced at the outset by avoiding the
joint use of the biologic antilymphoid agents (i.e. ALG and OKT3) with cyclosporine and
tacrolimus except as a last resort, and then with extreme caution.

When PTLD is diagnosed early in development, it is usually a trivial problem requiring only
drug dose reduction. At the Children’s Hospital of Pittsburgh, nine (13.2%) of 68 recipients
(of 69 kidney allografts) treated with tacrolimus-based immune suppression between 1989 and
1995 developed histopathologically verified PTLD [30•]. No deaths resulted, or any graft losses
except from chronic rejection 3 years later in one case. At the same institution,
histopathologically verified PTLD was diagnosed in 28 (12.1%) of the 232 consecutive primary
liver recipients treated with tacrolimus between 1989 and 1995. Although five of the 28 died
of potentially PTLD-related complications, the 4-year patient and graft survival (82.2%) is
essentially the same as in the 204 non-PTLD cases.

Therapeutic implications
Understanding the concept of the donor-recipient leukocyte dialogue inherent in the two-way
paradigm helps in predicting what can (and cannot) be accomplished with various tolerance-
inducing strategies, all of which are attempts to influence this immunologic interaction.

Adjunct leukocyte infusion
Historic efforts to improve organ transplantation results with donor-specific blood transfusion
[31] or donor bone marrow [32,33] were based on sound therapeutic principles involving the
unrecognized augmentation of chimerism. In an extension of these pioneer trials, our premise
was that the spontaneous microchimerism of organ transplantation could be greatly augmented
by the co-administration of unmodified donor bone marrow cells without a significant risk of
GVH disease, providing the two immunocyte populations were initially competent and that
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immunosuppression was delivered to both equally. It also was predicted that the timing,
severity, and frequency of acute rejection would be approximately the same as in non-marrow
augmented control patients [1,34,35].

These expectations have been fulfilled in 200 human organ recipients treated at the University
of Pittsburgh [35,36••,37], including 86 who were given kidneys. The presence of donor DNA
in myeloid and erythroid colonies generated from recipients’ peripheral blood mononuclear
cells as measured in standard [36••] or innovative clonal hematopoietic progenitor cell assays
[38•] has provided unequivocal evidence of augmented stem-cell chimerism. There were no
examples of significant GVH disease.

The hypotheses of therapeutic efficacy being tested are that the threat of delayed (acute or
chronic) rejection can be reduced and that the frequency of ultimate drug independence can be
increased by the higher persistent level of chimerism. An efficacy evaluation is expected to
take 5 to 10 years [10••,35], which is roughly the same time frame for tolerance induction
learned from clinical experience with major histocompatibility complex-incompatible liver
and bone marrow transplantation [10••,34].

Hematolymphopoietic growth factors
The use of hematopoietic growth factors is another potential chimerism-enhancing strategy
that is well established in bone marrow, but not in organ, transplantation. Granulocyte-
macrophage colony-stimulating factor (GM-GSF), and granulocyte colony-stimulating factor
are two cytokines that act at an early point in the hematopoietic cascade. The recently cloned
Flt3 ligand [39] is another example. The expression of Flt3 (a member of the type III receptor
tyrosine family) is believed to be restricted to primitive progenitor cells. These cells respond
dramatically to Flt3 ligand [39–42], an effect that is increased synergistically by co-
administration of colony-stimulating factors and c-kit ligand (stem-cell factor) [39–42,43•,
44].

Administration of Flt3 ligand to normal mice leads to dramatic increases in DC numbers, both
in lymphoid and in nonlymphoid tissues [45]. Although DCs have been implicated historically
in the induction of anti-allograft immunity, they also have tolerogenic properties [46•] and at
the ‘immature’ precursor/progenitor stage they may be capable of subverting T-cell responses
in vitro and of prolonging allograft survival [47,48,49••]. In contrast to the influence of Flt3
ligand, DGs in mouse lymphoid tissue are only enhanced to a moderate degree by GM-CSF
[45,50]. Because numbers both of donor and of host hematopoietic cells of multiple lineages
are increased by administration of GM-CSF, granulocyte colony-stimulating factor, and Flt3
ligand, these cytokines (particularly Flt3 ligand) may provide a pharmacologic means of
enhancing organ transplant chimerism.

Predictable hazards
As with donor leukocyte infusion, such cytokine therapy is expected to be safe only if both
cell populations are subject to the same conditions of immune suppression (i.e. growth factor
treatment is started perioperatively). In contrast, alterations of only one of the interacting arms
must be approached with caution, as exemplified by the historical experience with GVH disease
after cytoablation and bone marrow transplantation. When the converse tactic of leukocyte or
T-cell specific depletion of intestinal allografts was attempted as GVH disease prophylaxis in
the 1980s, virtually every bowel recipient who survived the perioperative period developed
lethal EBV- associated B-cell lymphomas [51].

Unbalance also can be caused by delayed provision of donor leukocytes (e.g. repeat infusion
of adjunct donor bone marrow to an organ recipient). To the extent that the first exposure
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(whether to infused leukocytes or to passenger leukocytes in a transplanted organ) induces
tolerance, the result of the second stage delivery can resemble the effect of a parent to
defenseless offspring F1 hybrid experiment. Investigators signing on for multicenter trials of
serial bone marrow augmentation should be made aware of the consequent increased risk of
GVH disease.

Xenotransplantation
Guidelines elucidated by the two-way paradigm will dictate strategies of xenotransplantation.
The feasibility of producing stable xenogeneic chimerism has been demonstrated in pigs given
unaltered primate bone marrow intravenously a few hours after birth, without any
immunosuppression [52•]. Because the primary source of complement is the liver, not the
hematolymphopoietic system, it is unlikely that humoral rejection caused by the interspecies
complement activation will be abrogated, no matter what the duration of chimerism [52•].
However, by inducing chimerism in pigs who already have human complement regulatory
proteins in their organs at birth, the barrier of complement activation and cellular tolerance
may be jointly approached by clinical strategies that are discussed elsewhere [52•].

Conclusion
The assumption that stem-cell driven hematolymphopoietic chimerism was irrelevant to
successful whole organ transplantation as currently practiced has led to inadequate
explanations of organ allograft acceptance and clouded the meaning of successful bone marrow
transplantation. This has therefore precluded the development of a central principle of
transplantation. Incorporation of the chimerism factor into a two-way paradigm has allowed
previous enigmas of organ as well as bone marrow engraftment to be explained and should
allow key advances in basic immunology to be more meaningfully exploited in transplantation,
including development of xenotransplantation.

Abbreviations

DC dendritic cell

EBV Epstein–Barr virus

GM-CSF granulocyte-macrophage colony-stimulating factor

GVH graft-versus-host

HVG host-versus-graft

PTLD post-transplant lymphoproliferative disorders
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Figure 1.
Two-way paradigm with which transplantation is seen as a bidirectional and mutually
cancelling immune reaction that is (a) predominantly host-versus-graft (HVG) with whole
organ grafts, and (b) predominantly graft-versus-host (GVH) with bone marrow grafts.
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Fig. 2.
Contemporaneous host-versus-graft (HVG) and graft-versus-host (GVH) reactions in the two-
way paradigm of transplantation immunology. After the initial interaction, the evolution of
nonreactivity of each leukocyte population to the other is seen as a predominantly low-grade
stimulatory state that may wax and wane, rather than a deletional one.
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Table 1

Differences between conventional bone marrow and organ transplantation

Bone Marrow Organ

Recipient cytoablation* Yes No

MHC compatibility Critical Not critical

Principal complication GVHD Rejection

Drug free state Common Rare

Term for success Tolerance ‘Acceptance’**

*
AII differences derive from this therapeutic step, which in effect establishes an unopposed graft-versus-host (GVH) reaction in the bone marrow

recipient whose countervailing immune reaction is eliminated.

**
or ‘operational tolerance’. GVHD, graft-versus-host disease; MHC, major histocompatibility complex.
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