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How Long Does It Take to Establish a Morphogen Gradient?
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ABSTRACT Amorphogen gradient is defined as a concentration field of a molecule that acts as a dose-dependent regulator of
cell differentiation. One of the key questions in studies of morphogen gradients is whether they reach steady states on time-
scales relevant for developmental patterning. We propose a systematic approach for addressing this question and illustrate it
by analyzing several models that account for diffusion and degradation of locally produced chemical signals.
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One of the key questions in studies of morphogen gradients
is whether they reach steady states on timescales relevant for
developmental patterning (1–3). Although Crick posed this
question 40 years ago (4), a general formalism for address-
ing this question is still lacking. Here we suggest a method
for tackling this problem in an important class of biophys-
ical models that account for diffusion and degradation of
locally produced chemical signals.

We begin with a simple model that is commonly used as
a first step in the analysis of more complex mechanisms of
morphogen gradient formation and interpretation (5). Let
C(x,t) be the concentration at a distance x > 0 from the
boundary, where a morphogen is produced at a constant
rate Q. Signal production begins at t ¼ 0, when C(x,t) ¼
0 throughout the system. The concentration satisfies

vC

vt
¼ D

v2C

vx2
� kC; Cðx; t ¼ 0Þ ¼ 0;

�D
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�
x ¼ N

� ¼ 0:

Here D is the diffusivity and k is degradation rate constant.
First, we consider the total amount of morphogen accu-

mulated in the system by time t:

NðtÞ ¼
ZN
0

Cðx; tÞdx:

One can show that N(t) starts from zero and exponentially
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approaches its steady-state value Ns ¼ Q/k,

NðtÞ ¼ Nsð1� expð�ktÞÞ:
To quantify the approach to the steady state, we introduce
the relaxation function, denoted by RN(t). This function is
defined as the ratio of the difference between the current
and steady-state values of N(t) to this difference at t ¼ 0,

RNðtÞ ¼ NðtÞ � Ns

Nð0Þ � Ns

¼ expð�ktÞ ¼ expð�t=tNÞ;
where the decay time, tN ¼ 1/k, is independent of the diffu-
sivity and the signal production rate. Thus, for the total
amount of morphogen in the system, the relaxation to the
steady state is exponential.

Similarly, we introduce the local relaxation function,
R(x,t), to analyze the approach of C(x,t) to Cs(x), its
steady-state value at a given x:

Rðx; tÞ ¼ Cðx; tÞ � CsðxÞ
Cðx; 0Þ � CsðxÞ ¼ 1� Cðx; tÞ

CsðxÞ :

This function monotonically decays with time from unity at
t ¼ 0 to zero as time tends to infinity. The initial and final
values of R(x,t) are independent of x, but the relaxation
kinetics clearly depends on position.

To characterize this kinetics by a single timescale we use
the fact that the fraction of the steady-state concentration at
point x accumulated between t and tþdt is given by

½ � vRðx; tÞ=vt�dt:
Therefore, the negative derivative of the relaxation function
is the probability density for the time of the local accumula-
tion process,

fðtjxÞ ¼ �vRðx; tÞ=vt:
We use this probability density to find the mean time t(x),

tðxÞ ¼
ZN
0

tfðtjxÞdt ¼
ZN
0

Rðx; tÞdt;

which is the local relaxation time to steady state at point x.
To show how this formalism works, we first use the

known solution for C(x,t) (3):
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FIGURE 1 (A) Concentration profile at three different times.

The concentration has been scaled by the maximal concentra-

tion at x ¼ 0, C0 ¼ Q=
ffiffiffiffiffiffiffi
Dk

p
. (B) The exact relaxation function,

R(x,t), is plotted as a function of dimensionless time for x ¼ l/2

and x ¼2l. (Dashed lines) Exponential approximation of the

relaxation function, Rexp(x,t).
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where erfc(z) is the complementary error function,
l ¼ ffiffiffiffiffiffiffiffiffi

D=k
p

, and Cs(x) is the steady state (Fig. 1 A):

CsðxÞ ¼ Qffiffiffiffiffiffi
Dk

p exp


�x

l

�
:

From this, we find the local relaxation function,
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and then integrate over time to obtain the local relaxation time,

tðxÞ ¼ 1

2k



1 þ x

l

�
:

The linear dependence of this time on x is surprising.
Indeed, one can think about two timescales associated
with the relaxation to steady state at point x, namely, the
characteristic times of reaction and diffusion, defined
respectively as tr ¼ 1/k ¼ tN and td(x) ¼ x2/2D. One might
expect that the relaxation is controlled by the larger of the
two times. The formula for t(x) shows that this argument
is applicable only when x << l and fails when x >> l.
Indeed, when x << l, the relaxation time is determined
purely by degradation and t(x) z tr/2. However, when
x >> l, both degradation and diffusion are equally impor-
tant, and the relaxation time is given by

tðxÞzðtrtdðxÞ=2Þ1=2:
For practical purposes, however, one is interested in the
intermediate regime, because gradients typically control
gene expression on length scales comparable to l.

We can use the derived expression for t(x) to discuss the
steady-state approximation in the analysis of the first identi-
fied morphogen gradient. This gradient is formed by Bicoid
(Bcd), a transcription factorwhich patterns the anteroposterior
axis of the Drosophila embryo by specifying the expression
boundaries of multiple genes (6). In the textbook model of
this gradient, Bcd forms an exponentially distributed concen-
tration profile, which is believed to result from the combined
effects of localized production, diffusion, and uniform degra-
dation. The observed gradient is indeed well approximated by
an exponential functionwith l~75mm.However,whether this
function can be interpreted as the steady state of an underlying
reaction-diffusion model is currently a matter of debate,
mainly due to the uncertainty in the values of Bcd diffusivity
and degradation rate constant (7).

The most distant gene expression boundary controlled by
Bcd is located 375 mm from the source of Bcd production,
Biophysical Journal 99(8) L59–L61
hence x/l z 5. Because the Bcd gradient is formed in 90
min, the expression for t(x) provides an upper limit on the
Bcd lifetime: tr > 30 min. Furthermore, based on the
expression for l, we obtain the following lower limit for
Bcd diffusivity: D > 3 mm2/s. Similar calculations can be
carried out for more complex models to evaluate the candi-
date or the experimentally measured values of Bcd diffu-
sivity and lifetime.

Above we discussed the model for which a closed form
solution for the dynamics of the morphogen field is known.
However, our approach is equally applicable to linear
models where a closed form solution is unavailable. These
models, which play an important role in the current litera-
ture on morphogen gradients, may account for the effects
of a spatially distributed source of morphogen production,
finite length of the patterned field, reversible binding of
morphogen molecules by localized traps, and cascades of
reaction-diffusion modules (5).

Analysis of these models can be based on the Laplace
transform of the relaxation function:

bRðx; sÞ ¼
ZN
0

Rðx; tÞe�stdt:

From this expression, it follows that

tðxÞ ¼ bRðx; s ¼ 0Þ:
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An important advantage of the Laplace transform-based
approach is that it does not require the explicit solution
for C(x,t).

As an example, we use a model where the source of
morphogen production is not sharply localized, as above, but
distributed in a gradient with a characteristic length scale ls:

QðxÞ ¼ ðQ=lsÞexpð�x=lsÞ:
Such a model has been recently proposed for the Bcd
gradient, based on the visualization of the spatial distribu-
tion of bcd mRNA (8). The discussion of this model in the
context of other mechanisms of the Bcd gradient formation
can be found in recent reviews (6,7). The steady state in this
model is given by the expression

CsðxjlsÞ ¼ Ql2

D
�
l2 � l2s

��le�x=l � lse
�x=ls

�
and the relaxation time is given by

tðxjlsÞ ¼ 1

2k

"

1 þ x

l

� le�x=l

le�x=l � lse�x=ls
þ 2l2s

l2s � l2

#
:

When ls << l, the formula reduces to the local relaxation
time derived above. On the other hand, when l << ls, the
relaxation time is independent of x and equal to the charac-
teristic time of reaction, t(x)¼ tr¼ 1/k. Note that if the Bcd
gradient is indeed established in the regime where l << ls,
then Bcd diffusivity can be much smaller than the values
allowed by the localized source model.

As another example, we consider the model where the
length of the patterned interval is finite. In addition to
morphogenetic patterning, this model is relevant for the anal-
ysis of intracellular chemical gradients, e.g., when a protein
is phosphorylated at the cell membrane, diffuses inside the
cell, and is degraded by a uniformly distributed phosphatase
(9). In this case, the steady-state concentration is given by

CsðxjLÞ ¼ Q coshðððL� xÞÞ=lÞffiffiffiffiffiffi
Dk

p
sinhðL=lÞ ;

where L is the size of the system. Using the Laplace trans-
form, we derived the local relaxation time:

tðxjLÞ ¼ 1

2k
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�
� L� x
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�
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�	
:

When L / N, t(xjL) reduces to the local relaxation time
for the semiinfinite interval. In the opposite extreme, when
l >> L, the relaxation time is independent of x and is equal
to the degradation time 1/k.

Based on the local relaxation time, one can estimate the
time needed to reach a specific concentration threshold
value q, at a given point x (2,3). This time, denoted by
tq(x), satisfies the C(x,tq(x)) ¼ q, which is equivalent to

1� Rðx; tqðxÞÞ ¼ q=CsðxÞ:
An approximate solution can be obtained by constructing an
exponential approximation of the exact relaxation function
(Fig. 1 B):

Rðx; tÞzRexpðx; tÞ ¼ expð�t=tðxÞÞ:
Then, the approximate solution for tq(x) is given by

tqðxÞztðxÞln
�

CsðxÞ
CsðxÞ � q

�
:

Importantly, this expression does not depend on the time-
dependent solution and can be used to analyze problems
where a closed form solution for C(x,t) is unavailable.

In conclusion, we proposed formalism for analyzing how
the local concentration of a morphogen approaches its
steady state in models that account for diffusion and
uniform degradation of a locally produced signal. For
systems where there are direct measurements of the diffu-
sivity and degradation rate constant (10,11), our results
can be used to directly calculate the timescale for reaching
the steady state. For systems where D and k are unavailable,
our results can be used to constrain their values based on the
experimentally observed gradients and estimates of the time
during which the gradient is acting.
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gradient formation. Cold Spring Harb. Perspect. Biol. 1:a001255.

6. Porcher, A., and N. Dostatni. 2010. The bicoid morphogen system.
Curr. Biol. 20:R249–R254.

7. Grimm, O., M. Coppey, and E. Wieschaus. 2010. Modeling the bicoid
gradient. Development. 137:2253–2264.

8. Spirov, A., K. Fahmy, ., S. Baumgartner. 2009. Formation of the
bicoid morphogen gradient: an mRNA gradient dictates the protein
gradient. Development. 136:605–614.

9. Kholodenko, B. N., G. C. Brown, and J. B. Hoek. 2000. Diffusion
control of protein phosphorylation in signal transduction pathways.
Biochem. J. 350:901–907.

10. Kicheva, A., P. Pantazis, ., M. González-Gaitán. 2007. Kinetics of
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