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Abstract

Background: A promising strategy to create stimuli-responsive gene delivery systems is to exploit the redox gradient
between the oxidizing extracellular milieu and the reducing cytoplasm in order to disassemble DNA/cationic lipid
complexes (lipoplexes). On these premises, we previously described the synthesis of SS14 redox-sensitive gemini surfactant
for gene delivery. Although others have attributed the beneficial effects of intracellular reducing environment to reduced
glutathione (GSH), these observations cannot rule out the possible implication of the redox milieu in its whole on
transfection efficiency of bioreducible transfectants leaving the determinants of DNA release largely undefined.

Methodology/Principal Findings: With the aim of addressing this issue, SS14 was here formulated into binary and ternary
100 nm-extruded liposomes and the effects of the helper lipid composition and of the SS14/helper lipids molar ratio on
chemical-physical and structural parameters defining transfection effectiveness were investigated. Among all formulations
tested, DOPC/DOPE/SS14 at 25:50:25 molar ratio was the most effective in transfection studies owing to the presence of
dioleoyl chains and phosphatidylethanolamine head groups in co-lipids. The increase in SS14 content up to 50% along
DOPC/DOPE/SS14 liposome series yielded enhanced transfection, up to 2.7-fold higher than that of the benchmark
Lipofectamine 2000, without altering cytotoxicity of the corresponding lipoplexes at charge ratio 5. Secondly, we specifically
investigated the redox-dependent mechanisms of gene delivery into cells through tailored protocols of transfection in GSH-
depleted and repleted vs. increased oxidative stress conditions. Importantly, GSH specifically induced DNA release in batch
and in vitro.

Conclusions/Significance: The presence of helper lipids carrying unsaturated dioleoyl chains and phosphatidylethanol-
amine head groups significantly improved transfection efficiencies of DOPC/DOPE/SS14 lipoplexes. Most importantly, this
study shows that intracellular GSH levels linearly correlated with transfection efficiency while oxidative stress levels did not,
highlighting for the first time the pivotal role of GSH rather than oxidative stress in its whole in transfection of bioreducible
vectors.
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Introduction

Gene delivery using non-viral approaches has been extensively

studied as a basic tool for intracellular gene transfer and gene

therapy [1]. In the past, the primary focus has been on

application of physical, chemical, and biological principles to

development of a safe and efficient method that delivers a

transgene into target cells for appropriate expression. Nowadays,

the development of non-viral-based approaches to deliver nucleic

acids to cells (transfection) is an inherently interdisciplinary

endeavor and a rapidly advancing area of research [2]. Polymeric

and lipidic vectors rely on the basics of supramolecular chemistry

termed ‘‘self-assembling’’: at physiological pH, they are cations

and, after removal of small counterions, spontaneously form

complexes with anionic nucleic acids [3]. Such vectors must be

able to (i) complex nucleic acids in stable, nanoscaled and

positively charged aggregates, (ii) promote the internalization of

DNA by cells, (iii) prevent the intracellular DNA degradation

and, finally, (iv) induce exogenous gene expression [4]. In this

scenario, DNA/cationic lipid complexes (lipoplexes) have drawn

significant attention since their use in gene therapy clinical trials

is rapidly increasing (http://www.wiley.co.uk/genmed/clinical/)

although their cytotoxicity and low efficiency remain major

drawbacks.

Hence, in order to overcome limitations of currently available

non-viral vectors, the use of stimuli-responsive carriers offer novel

alternatives for the optimization of this therapy [5,6]. Redox

potential has been proposed as an efficient stimuli mechanism in

gene delivery because of the high difference (102–103 fold) existing

between the reducing intracellular space and the oxidizing

extracellular milieu [7]. Indeed, the versatility of reducible

disulfide carriers has been shown in many different approaches

[8–12] but the underlying biological mechanism and physiological

mediator(s) remain poorly understood [7,13].
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Since their introduction as gene carriers in 1987 [14], liposomes

have become one of the most studied non-viral vectors, featuring

remarkable flexibility at molecular, formulation and dimension

level [15,16]. Along this line, over the last twenty years cationic

liposomes containing 1,2-dioleoyl-sn-glycero-3-phosphatidylcho-

line (DOPC) [17,18], 1,2-dimyristoyl-sn-glycero-3-phosphatidyl-

choline (DMPC) [19], as main constituents, 1,2-dimyristoyl-sn-

glycero-3-phosphatidylethanolamine (DMPE) [20], 1,2-dioleoyl-

sn-glycero-3-phosphatidylethanolamine (DOPE) [17,21], as helper

lipids, and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)

[18,21] and 3b-[N-(N’,N’-dimethylaminoethane)-carbamoyl]cho-

lesterol (DC-Chol) [21] as cationic lipids have been extensively

used for gene delivery purposes.

In the panorama of cationic amphiphiles, gemini surfactants are a

relatively new class of molecules with peculiar physicochemical

properties, composed by two or more head groups and two

aliphatic chains, linked by a spacer [22]. Moreover, recent studies

have pointed out that suitably tailored cationic geminis are able to

yield high transfection efficiency [23]. Nevertheless, there are only

a few reports on the transfection properties of gemini lipids [24–28].

This study ensues from our report concerning the synthesis and

characterization of a new redox-sensitive triazine-based gemini

surfactant, SS14 (Fig. 1A), for gene delivery [27]. The aim of this

study was twofold. First, we studied the effects of the helper lipid

composition and of the SS14 to helper lipids molar ratio on

liposome dimension and overall charge (f-potential), parameters

that all contribute in defining transfection efficiency and cytotoxi-

city. Second and most important, we sought to determine in vitro

the physiological mechanism leading to lipoplex disassembly and

gene delivery by bioreducible SS14-containing liposomes.

Results and Discussion

Preparation and characterization of bioreducible
liposomes and lipoplexes

First, binary DOPC/SS14, DMPC/SS14 (75:25 molar ratio

each) and ternary DMPC/DMPE/SS14, DOPC/DOPE/SS14

(25:50:25 molar ratio each) unilamellar vesicles were designed

following a number of considerations: i) the chosen co-lipids

should differ both in their headgroup structure (phosphatidyleth-

anolamine vs. phosphatidylcholine groups), acyl chain length and

saturation degree (dimyristoyl vs. dioleoyl chains), to assess the

effect of these components on transfection; ii) multi-component

liposomes should be preferred to binary ones because of their well

documented, superior transfection efficiency ; iii) SS14 content

should be optimized in terms of transfection effectiveness

represented by the best compromise between high transfection

efficiency and low cytotoxicity.

All liposome formulations were extruded with 100 nm pore

membranes. The size distribution of DOPC/SS14, DMPC/SS14,

and DOPC/DOPE/SS14 liposomes was markedly narrower than

that of DMPC/DMPE/SS14 formulation for which a main

population with mean diameter centered at 110 nm could still be

evidenced (70% by integrated intensity). On the other hand, the

measured f-potential of two-component liposomes and DOPC/

DOPE/SS14 formulations were, within experimental error, the

same (Table 1).

Based on these results all developed formulations were

considered suitable candidates for further investigations as

potential gene delivery vectors. We next evaluated by fluorescence

titration assay the ability of all liposome formulations to complex

the DNA at increasing charge ratio (CR, +/2). Interestingly, all

liposomes shared the same affinity towards DNA template,

represented by the lowest fluorescence values for CR$5 (not

shown). However, DNA condensation is not sufficient to ensure

significant transfection levels [29]. On this ground, we decided to

investigate transfection ability (evaluated as % of EGFP-positive

cells) and cytotoxicity (measured by viability assay) of DOPC/

DOPE/SS14 at increasing CR in U87-MG cell line commonly

Figure 1. SS14 gemini surfactant molecule and evaluation of
transfection effectiveness of SS14-containg liposome formula-
tions. (A) Chemical structure and space-filling molecular model of
gemini surfactant SS14. Color coding: yellow = sulfur; purple =
nitrogen; grey = carbon; white = hydrogen. (B) Cytotoxicity (viability,
left axis, white bars) and transfection efficiency (% of EGFP-positive
cells, right axis, grey bars) of DOPC/DOPE/SS14 (25:50:25 molar ratio)
lipoplexes on U87-MG cell line as a function of charge ratio (CR, +/2).
(C) Cytotoxicity and transfection efficiency of binary DMPC/SS14, DOPC/
SS14 (75:25 molar ratio each), ternary DMPC/DMPE/SS14, and DOPC/
DOPE/SS14 (25:50:25 molar ratio each) lipoplexes at CR5 on U87-MG cell
line. Lipofectamine 2000 was used as positive control in transfection
experiments. All results are expressed as mean 6 SEM (n = 3).
doi:10.1371/journal.pone.0013430.g001
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used in transfection experiments [30,31]. Since use of serum

cannot be avoided in long-term cultures of eukaryotic cells in vitro

[29], transfection experiments were carried out in complete

medium (D-MEM with 10% fetal bovine serum, FBS). Although

this experimental condition is far from in vivo situation,

transfections carried out in serum-complete medium are com-

monly used to check serum resistance of lipoplexes prior to

performing animal studies [16,31]. As expected, transfection

effectiveness of lipoplexes was dramatically affected by cationic

lipid to DNA ratio in that transfection efficiency followed a bell-

shape trend and cell viability dramatically decreased as CR

increased, as previously reported by others [32–34]. Among all

CR tested, maximal transfection efficiency and reasonable

cytotoxicity for the aims of the present work were obtained with

the minimal dose of liposomes corresponding to lipoplexes at CR5

(Fig. 1B). Hence, CR5 was chosen for a comparative evaluation of

all formulations. Of note, although transfection efficiencies seemed

lower than for other reported transfectants [35–37], the method of

analysis here used and firstly described by Walker and colleagues

[38] allows very stringent discrimination between intrinsic auto-

fluorescence of mock-transfected cells and truly EGFP-positive

ones, as also exemplified in upper panels of Fig. 2C illustrating

EGFP-positive U87-MG cells after transfection. Indeed, Lipofec-

tamine 2000 yielded 12.461.4% of EGFP-positive U87-MG cells

(Fig. 1C), similar or lower than transfection efficiencies observed

with DMPC/DMPE/SS14 and DOPC/DOPE/SS14 formula-

tions, using this analytical method.

In DOPC/SS14 lipoplexes, the presence of unsaturated acyl

dioleoyl chains conferred higher transfection efficiency compared

to saturated dimyristoyl chains (3.860.1% vs. 2.060.2%, p,0.05)

with no appreciable difference in cytotoxicity (viability: 90.66

3.3% vs. 100.165.4%, not statistically significant). Our results are

in agreement with Felgner et al. that firstly showed that the

transfection efficacies in a series of homologous lipids with

symmetric saturated hydrophobic moieties were Coleyl.C16.

C18.C14 [39]. In parallel, the introduction in our liposome

formulations of helper lipids bearing phosphatidylethanolamine

polar heads increased transfection efficiency up to 7.4- and 6.5-

fold in DMPC/DMPE/SS14 and DOPC/DOPE/SS14 lipo-

plexes, with respect to each binary counterpart. These results

highlight the superior transfection efficiency of multicomponent

lipoplexes with respect to binary ones, as previously reported by

Caracciolo and colleagues [40]. Although some speculative

arguments have been proposed, the exact physico-chemical

reasons why multicomponent lipoplexes are more efficient than

binary lipoplexes have never been stated unambiguously [41]. On

the other hand, viability of cells transfected with phosphatidyleth-

anolamine-containing lipoplexes decreased by 1.7- and 1.9-fold,

respectively. The strong transfection efficiency-dependence on

DOPE and DMPE presence in liposome formulations supports the

role of the phosphatidylethanolamine headgroup as membrane

fusion or destabilization agent due to its ability to promote

transition from the bilayer phase (La) into the inverted hexagonal

phase (HII) [39,42]. Altogether, DOPC/DOPE/SS14 represented

the best compromise between the highest transfection efficiency

(24.561.4% vs. 14.861.3% for DMPC/DMPE/SS14, p,0.05)

and acceptable cytotoxicity (viability: 51.763.7% vs. 57.562.8 for

DMPC/DMPE/SS14, not statistically significant) (Fig. 1c). Cyto-

toxicities were in line with those reported by others with DOPE-

containing liposomes evaluated 48 h post-transfection [43] and

comparable to that of the gold standard Lipofectamine 2000

(Viability: 55.262.7%), as reported in Fig. 1C. Noteworthy, our

DOPC/DOPE/SS14 lipoplex formulation yielded almost two-fold

improved transfection efficiency compared to Lipofectamine 2000

(24.561.4% vs. 12.461.4% for Lipofectamine 2000, p,0.05).

Thus, we focused on developing and optimizing the DOPC/

DOPE/SS14 liposome formulation with the aim of determin-

ing its specific mechanism of transfection. In order to find the

optimal SS14 ratio for transfection experiments, three DOPC/

DOPE/SS14 formulations at different SS14 molar fractions

(29.2:58.3:12.5, 25:50:25, and 16.7:33.3:50 molar ratios) were

prepared. Next, chemical-physical properties and the correspond-

ing transfection efficiencies were examined (Fig. 2).

As reported above, an asymptotic decrease in fluorescence was

observed for all liposome formulations at CR5 (Fig. 2A), which still

represented the best compromise between high transfection

efficiency and low cytotoxicity in vitro (not shown). Therefore, we

evaluated both size and f-potential for all liposomes and for

corresponding lipoplexes at CR5 (Table 2).

Liposomes extruded at 100 nm had a hydrodynamic diameter of

circa 130 nm and a f-potential ranging from +44 to +50 mV. As

expected, after complexation with DNA at CR5, the hydrodynamic

diameter increased on average by 2.2-fold and the overall charge

decreased by almost twofold. Since transfection effectiveness

depends to a great extent on the cell type and the lipid composition

[29,41], we tested DOPC/DOPE/SS14 formulations on three

different cell lines. In spite of similar homogeneities in size and f-

potential, DOPC/DOPE/SS14 lipoplexes with the highest SS14

content (16.7:33.3:50 molar ratio) showed the highest transfection

efficiency in all cell lines tested (p,0.05), reaching up to circa 35% of

EGFP-positive U87-MG cells (Fig. 2C upper panels), while the

cytotoxicity was similar to that of DOPC/DOPE/SS14 at 25:50:25

molar ratio (not statistically significant) (Fig. 2B–D). Noteworthy, in

U87-MG cell line the transfection efficiency of DOPC/DOPE/

SS14 liposomes at 29.2:58.3:12.5, 25:50:25, and 16.7:33.3:50 molar

ratios, were 1.3-, 1.9-, and 2.7-fold higher than that of the

benchmark Lipofectamine 2000, as shown in Fig. 1C and 2C. In

agreement with a previous report [41], we found that both the

number of lipid components and their relative molar ratio in

multicomponent liposomes altered transfection activity. In partic-

Table 1. Hydrodynamic diameter, f-potential and polydispersity index (P.I.) of each liposome formulation.

Liposomes

Diameter (nm)a f-potential (mV)a P.I.

DMPC/SS14 (75:25 molar ratio) 10963 +3967 0.12

DOPC/SS14 (75:25 molar ratio) 11263 +4066 0.07

DMPC/DMPE/SS14 (25:50:25 molar ratio) 110625 +5568 0.36

DOPC/DOPE/SS14 (25:50:25 molar ratio) 12063 +4668 0.07

aMean 6 Standard Deviation.
doi:10.1371/journal.pone.0013430.t001
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ular, transfection efficiency of DOPC/DOPE/SS14 lipoplexes

peaked at 16.7:33.3:50 molar ratio when both SS14 cationic and

neutral lipid species were mixed in equimolar ratio.

Hence, neither size nor f-potential of the complexes was clearly

associated with transfection efficiency while lipid composition and

relative molar ratios affected it. In agreement with our findings,

Farhood and colleagues previously reported that, in cationic

DOPE/DC-Chol liposome formulations, transfection efficiency

was proportional to DC-Chol content, with the optimum at 50–

60% of cationic lipid [44]. Moreover, in accordance with our

results, Pinnaduwage et al. showed, in three different DOPE-

containing liposomes, that cytotoxicity was directly related to the

amount of the cationic component [45].

Effect of GSH on bioreducible lipoplexes
An important feature of our liposome formulations is the

disulfide linker moiety in SS14 that, in suitable reducing

environment, might promote lipoplex disassembly by reversion

of the gemini surfactant to single-chain amphiphiles. According to

the existing literature, the intracellular reduction of disulfide bonds

in lipo/polyplexes is most likely mediated by small redox

molecules [46]. Among antioxidants, glutathione (L-c-glutamyl-

L-cysteinyl-glycine) is the most abundant non-protein thiol in

mammalian cells, typically present in the reduced form (GSH) and

oxidized glutathione disulfide (GSSG) [47], with an overall cellular

GSH/GSSG ratio ranging from 30:1 to 100:1 [48]. Although

glutathione is ubiquitous, it is present in high levels (1–11 mM)

Figure 2. Complexation abilities of DOPC/DOPE/SS14 liposome formulations and evaluation of their transfection effectiveness. (A)
Fluorophore-exclusion titration of DOPC/DOPE/SS14 liposomes at 29.2:58.3:12.5 (grey circles), 25:50:25 (black rhombus), and 16.7:33.3:50 molar ratios
(red triangles) as a function of CR. All curves underlying data simply represent a guide to the eye and were drawn to better evidence trend variations.
Cytotoxicity (viability, left axis, white bars) and transfection efficiency (% of EGFP-positive cells, right axis, grey bars) of the three different DOPC/
DOPE/SS14 lipoplexes at CR5 on COS-7 (B), U87-MG (C), and MG63 (D) cell lines at CR5. Results are expressed as mean 6 SEM (n = 3). Examples of
cytofluorimetric analysis are reported as FL1 (green fluorescence) vs. FL2 (orange fluorescence) dot plot of U87-MG transfected cells (C, upper panels).
Mock-transfected (pCMV-GLuc) but autofluorescent population of cells lies along the 0, 0; 104, 104 diagonal. EGFP-expressing cells appear as an
additional population delineated by region 2 (R2), where FL1.FL2.
doi:10.1371/journal.pone.0013430.g002

Table 2. Hydrodynamic diameter, f-potential and polydispersity index (P.I.) of DOPC/DOPE/SS14 liposomes and lipoplexes at CR5.

Liposomes Lipoplexes at CR5

Diameter (nm)a f-potential (mV)a P.I. Diameter (nm)a f-potential (mV)a P.I.

DOPC/DOPE/SS14 (29.2:58.3:12.5
molar ratio)

13464 +4469 0.05 295612 +2064 0.32

DOPC/DOPE/SS14 (25:50:25 molar
ratio)

12063 +4668 0.07 25963 +3063 0.04

DOPC/DOPE/SS14 (16.7:33.3:50 molar
ratio)

12963 +5069 0.03 29167 +2664 0.09

aMean 6 Standard Deviation.
doi:10.1371/journal.pone.0013430.t002
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intracellularly and at low concentration (10 mM) in the extracel-

lular milieu [13]. Since the increasing content of redox-sensitive

surfactant, SS14, along DOPC/DOPE/SS14 series correlated

with higher transfection efficiency, we next examined by

fluorescence titration assay whether GSH might lead to lipoplex

disassembly and DNA release. As shown in Fig. 3A, in test tube,

only reducing GSH triggered DNA release from DOPC/DOPE/

SS14 (16.7:33.3:50 molar ratio) lipoplexes.

Although others have conferred the beneficial effects of

intracellular reducing environment to glutathione only

[46,49,50], the possible implication of the reducing milieu in its

whole on transfection efficiency of bioreducible transfectants has

been overlooked. In particular, the thioredoxin (Trx) system,

composed of thioredoxin reductases (TrxR), thioredoxins and

NADPH [51] is known to participate in modulating the

intracellular redox environment and thiol/disulfide exchange,

rendering difficult to single out the effect of GSH per se in the

context of the overall redox state [52]. Most studies have relied on

the use of the glutathione depletor L-buthionine-sulfoximine

(BSO) to demonstrate the link between glutathione content and

transfection efficiency of bioreducible transfectants. However,

although BSO does modulate glutathione synthesis inhibiting c-

glutamylcysteine synthetase [53], it has also been described to alter

expression profiles of several genes involved in redox homeostasis

[54,55]. As a consequence, the unique role of glutathione in

physiological disulfide-containing lipoplex reduction and disas-

sembly has never been strikingly demonstrated. For this reason we

here evaluated the contribution of both the overall redox status as

well as GSH only on transfection efficiency.

In this context, we studied how the intracellular redox status

and GSH content separately modulate the transfection activity of

DOPC/DOPE/SS14 (16.7:33.3:50 molar ratio) bioreducible

lipoplexes. To this end, MG63 cells were supplemented with the

GSH depletor BSO for 20 h, after which cells were treated with

either BSO, the glutathione repletor N-acetyl-L-cysteine (NAC) or

the antioxidant L-ascorbic acid (Vitamin C, Vit-C) for another

20 h before transfection (t0) (Fig. 3B). At t0 BSO treatment

increased by almost twofold oxidative stress levels with respect to

untreated cells (CTRL) (p,0.05), while the antioxidant treatment

with NAC and Vit-C equally alleviated BSO effects (Fig. 3C).

Noteworthy, antioxidants cannot indiscriminately be lumped

together. Although Vit-C is part of an antioxidant network where

GSH plays a pivotal role, recycling other antioxidants and keeping

them in their active state, it does not compensate for GSH

depletion [56–58]. In this regard, a few studies supported the use

of supplemental Vit-C in individuals predisposed to reduced GSH

levels, either due to age [59] or diseases [60,61]. Although dietary

supplementation with Vit-C restored resistance to oxidative stress

and its sequelae, it did not replenish GSH levels [62]. Indeed, in

our study only preincubation of GSH-depleted cells with NAC

partially restored GSH levels (t0; 9.760.9 vs. 2.761.3 and

1.960.4 nmol/mg of proteins for BSO and Vit-C groups,

respectively, p,0.05) (Fig. 3E). Noteworthy, both NAC- and Vit-

C-treated cells shared the same oxidative stress levels (not

statistically significant) (Fig. 3C) significantly lower than those of

BSO group (t0; 11.960.5 vs. 9.960.4 and 9.160.4 ABU/mg of

proteins for NAC and Vit-C groups, respectively, p,0.05),

highlighting the unspecific antioxidant effects of both. Afterwards,

Figure 3. GSH-mediated lipoplex disassembly in batch and effect of intracellular GSH levels on transfection efficiency. (A) Stability of
DOPC/DOPE/SS14 (16.7:33.3:50 molar ratio) lipoplexes at CR5 in presence of GSH or GSSG. Results are presented as % of fluorescence emitted with
respect to DNA. (B) Experimental procedure. MG63 cells were divided in four groups: untreated CTRL, BSO-, NAC-, and Vit-C-treated cells. Following
pharmacological treatment (t0), cells underwent 48 h transfection (tfinal) with DOPC/DOPE/SS14 (16.7:33.3:50 molar ratio) lipoplexes at CR5. Oxidative
stress and GSH content were measured at t0 ((C) and (E), respectively) and after transfection ((D) and (F), respectively). Transfection efficiency,
expressed as % of EGFP-positive cells, was also evaluated (G). A linear correlation between GSH content and transfection efficiency was observed (H).
Results are expressed as mean 6 SEM (n = 3). $ p,0.05 vs. CTRL; * p,0.05 vs. BSO; 1 p,0.05 vs. NAC; £ p,0.05 vs. Vit-C.
doi:10.1371/journal.pone.0013430.g003
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cells underwent 48 h transfection (tfinal). 9.061.5% of EGFP-

positive cells were observed in the CTRL group compared to

6.360.4% in NAC- and 3.360.7% in Vit-C-treated groups

(Fig. 3G). Remarkably, after transfection, oxidative stress levels in

NAC- and Vit-C-treated groups were equal to CTRL (not

statistically significant) (Fig. 3D), as previously shown by Shang

and co-workers in an in vitro study dealing with effects of GSH and

Vit-C in BSO-treated epithelial cells [58]. However, only the

NAC-treated group showed a significantly high, 57% repletion in

GSH content compared to BSO-untreated CTRL (tfinal; 7.460.8

vs. 0.860.3 and 2.560.8 nmol/mg of proteins for BSO and Vit-C

groups, respectively, p,0.05) (Fig. 3F) yielding improved trans-

fection efficiency (p,0.05 vs. BSO and Vit-C) (Fig. 3G). Finally we

found a linear correlation between GSH content and transfection

efficiency (r2 = 0.94, p,0.05) in cells transfected with bioreducible

DOPC/DOPE/SS14 (16.7:33.3:50 molar ratio)-based lipoplexes

(Fig. 3H). Inversely, oxidative stress levels and transfection

efficiency did not correlate at all (r2 = 0.35, p = 0.21, not

statistically significant). As a proof of concept, transfection

efficiency of non-reducible transfectant Lipofectamine 2000 did

not rely on either oxidative stress status (r2 = 0.37, p = 0.39, not

statistically significant) or GSH content (r2 = 0.39, p = 0.38, not

statistically significant), specifically attributing the above demon-

strated crucial role of GSH to bioreducible transfectants.

In summary, we have developed novel effective ternary DOPC/

DOPE/SS14 liposomes for gene delivery formulated with the

bioreducible cationic gemini surfactant, SS14, previously synthe-

sized by our group [27]. In such formulations, the presence of

unsaturated acyl (dioleoyl) chains and phosphatidylethanolamine

polar heads conferred superior transfection efficiency to the

corresponding lipoplexes. By raising the SS14 content in DOPC/

DOPE/SS14 liposome series up to 50% (mol/mol), transfection

efficiency increased, overreaching by almost three-fold the

transfection efficiency observed with the commercially available

Lipofectamine 2000 (33.460.9% vs. 12.461.4% for Lipofecta-

mine 2000, p,0.05). Moreover, we demonstrated that physiolog-

ical concentration of GSH could mediate DOPC/DOPE/SS14

(16.7:33.3:50 molar ratio) lipoplex disruption and DNA release

induced by SS14 reduction in batch. Finally, the major finding of

this work regards the linear correlation between GSH content and

transfection efficiency in cells transfected with these lipoplexes,

underscoring the fundamental role of GSH levels in modulating

transfection effectiveness of bioreducible lipoplexes.

Overall this work underlines for the first time the pivotal role of

high intracellular GSH content in gene delivery efficiency of

bioreducible carriers, opening the door towards an improved

development of these and other bioreducible transfectants as

potential therapeutics of the future in particular disease contexts,

as increased levels of intracellular GSH have been associated with

anticancer drug resistance [63–65] and xenobiotic liver detoxifi-

cation [66]. Since new bioreducible SS14-based transfectants seem

interesting for evaluating the effect of innate glutathione levels on

transfection efficiency of bioreducible transfectants, in vivo

effectiveness of DOPC/DOPE/SS14 lipoplexes will be investigat-

ed in the future.

Materials and Methods

Materials
Plasmid DNA encoding for the Enhanced Green Fluorescent

Protein (pEGFP-N1) or for the secreted Gaussia Luciferase

(pCMV-GLuc) were purchased from Clontech Laboratories

(Mountain View, CA, USA) and from New England BioLabs

(Hitchin, UK), respectively. DOPC, DMPC, DMPE, and DOPE

were from Avanti Polar Lipids (Alabaster, AL, USA). Lipofecta-

mine 2000 was from Invitrogen Life Technologies (San Giuliano

Milanese, Italy). All chemicals were from Sigma-Aldrich (Milan,

Italy) if not differently specified. SS14 gemini surfactant was

previously synthesized by our group [27]. U87-MG (human

glioblastoma-astrocytoma, epithelial-like cell line, HTB-14),

MG63 (human osteosarcoma cell line, CRL-1427) and COS-7

(African green monkey kidney fibroblast-like cell line, CRL-1651)

were purchased from the European Collection of Cell Cultures

(ECACC, Salisbury, UK).

Liposome preparation
Stock solutions of liposomes were prepared from binary

mixtures of DOPC/SS14 and DMPC/SS14 at 75:25 molar ratio

each and from ternary mixtures of DMPC/DMPE/SS14 at

25:50:25 molar ratio, and DOPC/DOPE/SS14 at 29.2:58.3:12.5,

25:50:25, and 16.7:33.3:50 molar ratios, with a final concentration

of helper lipids of 14 mM. Mixtures of dry lipid powders were

dissolved in chloroform and after solvent evaporation the lipid film

was swollen at room temperature (r.t.) with deionized water.

Multilamellar vesicles obtained upon vortexing were then

submitted to eight freeze/thaw cycles and extruded through

100 nm-pore polycarbonate membranes (27 passages; LiposoFast

apparatus, Avestin, Ottawa, Canada) to obtain monodisperse

small monolamellar vesicles. Samples were stored at 4uC.

Lipoplex formation and disruption
Each lipoplex sample was prepared at r.t. by adding a solution

of nucleic acids (pEGFP-N1) to a liposome suspension, at the

desired lipid concentration, yielding different CR. The DNA

binding ability of each liposome formulation was monitored by a

fluorophore-exclusion titration assay. For each condition, 0.12 mg

of pEGFP-N1 in 2.4 ml of SYBR Green I (lex = 497 nm;

lem = 520 nm) were added to 3.6 ml of liposome suspension at

different concentrations in order to achieve the desired CR. The

fluorescence of the intercalated dye was measured using GENios

Plus reader (Tecan, Segrate, Italy) in black 384-well microplates.

The effect of reduction on lipoplex stability was examined on

DOPC/DOPE/SS14 (16.6:33.3:50 molar ratio) complexed at

CR5 by measuring the ability of GSH to restore the fluorescence

of DNA/SYBR Green I. Five ml of lipoplexes containing 0.1 mg of

pEGFP-N1 in SYBR Green I solution were diluted 1:20 in 10 mM

aqueous solution of either GSH or GSSG. Lipoplex reduction was

monitored at 37uC by measuring the fluorescence emitted as

described above.

Liposome and lipoplex dimensions and overall charge
The size of liposomes and the corresponding lipoplexes were

determined by Dynamic Light Scattering (DLS) with a Malvern

ZS ZEN3500 particle sizer. In this apparatus the light scattered by

a laser of 532 nm wavelength, is detected at 173u with respect to

the incoming ray (Back Scattering technique), amplified and then

analyzed by a correlator. The obtained correlation function,

whose shape depends on the size of the scattering objects, was

analyzed by a procedure based on the algorithm CONTIN, which

gives mean diameter and polydispersity index of the liposome size

distribution. The f-potential was obtained by Laser Doppler

Velocimetry in the same Malvern ZS ZEN3500 apparatus. In this

case, the electrophoretic mobility was measured with Phase

Analysis Light Scattering (PALS) technique, from which the f-
potential is extracted by using the Smoluchowsky equation. All

liposome and lipoplex suspensions were diluted 1:20 for both size

and f-potential measurements, in order to meet the best sensitivity

requirements.
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Transfection experiments
U87-MG, MG63, and COS-7 cell lines were cultured at 37uC

in a humidified atmosphere of 5% CO2, with complete medium

consisting in Dulbecco’s Modified Eagle Medium (D-MEM) with

10% (v/v) FBS, 1 mM sodium pyruvate, 10 mM Hepes buffer,

100 U/ml penicillin, 0.1 mg/ml streptomycin, and 2 mM gluta-

mine. Before experiments, 16104 cells/cm2 were plated in 12-well

cell culture plates and allowed to adhere overnight. The day of

transfection, cells were washed once in phosphate-buffered saline

(PBS) and the culture medium was replaced with 800 ml/well of

complete medium containing lipoplexes (80 ng/cm2 of pDNA) at

the desired CR and transfected for 48 h. Transfection experiments

with Lipofectamine 2000 were carried in Opti-MEM according to

the manufacturer’s procedures, utilizing 80 ng/cm2 of pEGFP-N1

to easily compare results among transfectants. The cells were

trypsinized, fixed in 4% (w/v) paraformaldehyde (PFA) in PBS and

stored at 4uC. Transfection efficiency was measured evaluating the

percentage of EGFP-positive cells in each sample by means of a

flow cytometer (FACS-Calibur, Becton Dickinson, Buccinasco,

Italy); a minimum of 16104 cells was analyzed for each sample.

EGFP was excited at 488 nm and emitted light was collected at

520 nm (green fluorescence) and 575 nm (orange fluorescence) to

enable correction for autofluorescence by diagonal gating [11].

Background fluorescence and autofluorescence were determined

using mock-transfected cells (pCMV-GLuc) and subtracted to

EGFP-positive cells. Cellular debris showing reduced side

scattering (SSD) and forward scattering (FSD) were excluded

from analysis. Data were analyzed by WinMDI2.9 software

program and transfection efficiency was expressed as the

percentage of EGFP-positive cells over the total cell number.

Cytotoxicity of lipoplexes was tested using AlamarBlue cell

viability assay (Invitrogen Life Technologies, San Giuliano

Milanese, Italy) according to manufacturer’s guidelines. Viability

of untreated control cells was assigned as 100%.

GSH depletion/repletion
For GSH depletion/repletion study, MG63 cells were plated in

T25 flasks at a density of 16104 cells/cm2 in complete medium.

Eight hours after plating, cell culture medium was supplemented

with 0.05 mM BSO. After 20 h incubation, cells were washed in

PBS and the medium was replaced with fresh complete medium

supplemented either with 0.05 mM BSO, 1 mM NAC, or

0.2 mM Vit-C for further 20 h (t0). Finally, the medium was

replaced with complete medium containing either DOPC/

DOPE/SS14 (16.6:33.3:50 molar ratio) liposomes corresponding

to CR5 or 0.16 ml of Lipofectamine 2000 complexed with 80 ng/

cm2 of pEGFP-N1 and cells were transfected for 48 h (tfinal).

Mock-transfected cells were done in parallel. At t0 and tfinal cells

were trypsinized, harvested and each sample was splitted into two

aliquots. In one-half aliquots, cell rupture was achieved by five

pulses (1 min each, 20 kHz, 100 W) on Labsonic L sonicator (B

Braun, Melsungen, Germany), alternated by 1 min intervals on ice

and the cell debris were removed by centrifugation (16104 rpm

for 10 min). Protein content in cell lysate was determined by BCA

protein assay kit (Pierce, Rockford, IL, USA). After the addition of

5% (w/v) sulfosalicylic acid (SSA), GSH levels were determined

with Glutathione assay kit (Sigma-Aldrich, Milan, Italy) according

to the manufacturer’s instructions, except that Glutathione

Reductase and NADPH were not added to samples. In the

remaining half-aliquots, cells were counted (trypan blue staining),

fixed, and transfection efficiency was evaluated by means of a flow

cytometer. Oxidative stress was monitored by 29,79-dichlorodihy-

drofluorescein diacetate (DCFH-DA) assay [67]. Briefly, at the

desired time point, cells were washed in PBS, incubated for 15 min

at 37uC with 10 mM DCFH-DA in PBS and washed twice with

PBS and lysed with 50 mM Tris-HCl buffer pH 7.5, containing

0.5% (v/v) Tween 20. Finally, cells were detached and centrifuged

for 5 min at 16104 rpm to remove cell debris. Intracellular de-

esterification and oxidation of DCFH-DA produce the highly

fluorescent 29,79-dichlorofluorescein (DCF). DCF fluorescence

(lex = 485 nm; lem = 530 nm) was measured using GENios Plus

reader. Fluorescence results were normalized over protein content

of each sample.

Statistical analysis
Statistical analysis was carried out by GraphPad version 5.0

(GraphPad software, La Jolla, CA, USA). Comparisons among

groups were performed by one-way ANOVA, with Bonferroni’s

Multiple Comparison Test and correlations were analyzed by

Pearson Test. Significance was retained when p,0.05.
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