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Abstract
Studies of neural repair after stroke have developed from a relatively small number of labs doing
highly creative discovery science, to field in which reproducible evidence supports distinct pathways,
processes and molecules that promote recovery. This review will focus on some emerging targets
for neural repair or recovery in stroke and on their limitations.

Blockers of Axonal Growth Inhibitors after Stroke
Myelin Growth Inhibitors

Stroke induces a process of axonal sprouting in neighboring or connected cortical neurons that
is associated with repair and recovery1–3. Adult CNS myelin or adult oligodendrocytes contain
several inhibitors of axonal sprouting. These include the myelin-associated proteins Nogo,
oligodendrocyte myelin glycoprotein (OMgp) and myelin associated glycoprotein (MAG)4,5.
Nogo has emerged as a key axonal growth inhibitory protein. Pharmacological blockade of
Nogo induces axonal sprouting and functional recovery in spinal cord injury4,5 and in
stroke6. Nogo inhibits axonal growth through Nogo receptor 1, a glycosyl-phosphinositide
linked protein, and through the recently described immunoglobulin receptor PIR17. NgR1
signals through the TNF family members TROY or p75 and Lingo-14,5. Several groups have
developed soluble Nogo antagonists, often receptor decoys or peptide antagonists8, or Lingo-1
antagonists9. A Nogo blocking antibody is currently in clinical trials in spinal cord injury as
delivered into the CSF intrathecally10. A small Nogo antagonist peptide has shown promise in
pre-clinical stroke and spinal cord injury models6,11.

MAG and OMgp clearly block axonal outgrowth in vitro, but their role in in vivo axonal growth
inhibition in the adult is less clear. Genetic knockout of MAG does not promote axonal
outgrowth in vivo4,5. OMgp knockouts do not selectively support axonal sprouting in
isolation12. Thus therapies directed toward these two molecules do not have strong pre-clinical
support in vivo. Still, an anti-MAG antibody is in clinical trial in spinal cord injury13, perhaps
reflecting interest driven by the strong in vitro action of MAG. When combined with Nogo
knockout, the triple elimination of all three myelin inhibitors promotes greater axonal
outgrowth and functional recovery than Nogo knockout alone14. This suggests a degree of
compensation within myelin signaling that may provide for adjunctive therapies in stroke or
spinal cord injury. A receptor decoy that consists of NgR1 and NgR2 motifs that blocks Nogo,
MAG and OMgp interactions with NgR1 and NgR2 has been developed and enhances axonal
outgrowth in vitro15.
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Myelin or oligodendrocyte axonal growth inhibitors also include Ephrin B3, semaphorins 4a,
4d and 6a, netrin 1 and RGMa4,5,16,17. The reactivation of these developmental axonal
guidance molecules after injury, in which growth cones are again traversing regions of the
CNS, suggests that they may be suitable targets to promote axonal sprouting after stroke.
Netrin-1 can inhibit axonal sprouting in spinal cord injury likely through the Unc-5 receptor
on neurons18. Antibody blockade of RGMa promotes axonal sprouting and recover after spinal
cord injury19. However, these developmental axonal guidance molecules likely have other
effects in the injured CNS. Sema4d is involved in microglial activation and oligodendrocyte
differentiation after stroke or spinal cord injury20. Ephrins and semaphorins are important in
forming tissue boundaries in the injured CNS, particularly astrocyte, Schwann cell and
fibroblast zones in the spinal cord scar21,22 and in brain trauma23. These findings highlight the
complex interplay of cell-cell signaling systems after injury, and that axonal sprouting after
stroke will not involve just the isolated interaction of myelin ligands and neuronal receptors.

Astrocyte or Extracellular Matrix Growth Inhibitors after Stroke
Reactive astrocytes produce growth inhibitory molecules, such as chondroitin sulfate
proteoglycans (CSPGs)24,25. Within the extracellular matrix, CSPGs may be growth inhibitory
by directly contacting and blocking growth cones, by presenting growth inhibitory molecules
or by structurally blocking dendritic rearrangement in the perineuronal net4,25. Recent work
has shown that a specific protein tyrosine phospatase receptor, PTPsigma26, can selectively
transduce the growth inhibitory signals of CPSGs27 including neurocan, which is dramatically
induced after stroke24. Digestion of CSPG side chains is one strategy to modify the CSPG
matrix and improving axonal sprouting. The bacterial enzyme chondroitinase ABC has been
delivered in spinal cord injury, digests inhibitory CSPG side chains, and promotes axonal
sprouting and recovery25. Bioengineering strategies for enhancing chABC delivery, and
modifications to promote temperature stability, may enable this therapy to be applied to
stroke28. Other secreted (Wnt5a) and membrane bound (ephrin5a) astrocyte growth inhibitors
have also recently been identified which limit functional recovery29,30, suggesting additional
specific astrocyte targeting approaches for neural repair in stroke.

RhoA Pathway Inhibition
Ephrins, semaphorins, Nogo, MAG, OMgp and RMGa signal through RhoA and its
downstream Rho kinase (ROCK). RhoA signaling accomplishes the business end of axonal
growth inhibition, by linking to the cytoskeleton and promoting microtubule depolymerization
and actin contraction4,5,31. RhoA inhibitors mediate a powerful blockade of the axonal growth
inhibition in neurite outgrowth assays in vitro for many molecules, and promote axonal
sprouting in spinal cord and other CNS injury models in vivo4,5,31. Intracellular delivery of a
Rho inactivator has been developed with tat conjugation32. A major problem with targeting a
growth inhibitory “master switch” is that it will be active for other cellular functions in non-
neuronal cells, leading to potentially widespread off-target effects. Pharmacological targets
could be utilized within Rho signaling that are more tissue specific. ROCK exits in two
isoforms. ROCKI is ubiquitous but ROCKII is concentrated in CNS, as well as muscle, liver
and lung31. Recent work with ROCKII knockouts indicates that this enzyme is a viable target
for promoting a more selective CNS RhoA inhibition and facilitating axonal outgrowth33.

Axonal Growth Stimulators
Focused re-activation of a neuronal growth state after CNS injury has emerged as a key
pharmacological target34. This is because simply blocking axonal growth inhibitors has not
resulted in substantial axonal sprouting, particularly of long axonal projections such as the
corticospinal tract, or in experimental injury models, the optic tract3,35. There is growing
evidence for a specific molecular program in sprouting adult neurons after stroke3,24,35,36.
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Several studies have uncovered pharmacological targets that promote a neuronal growth state
in the adult CNS24,26–39. Inosine triggers a serine/threonine kinase (Mst3b) to induce greater
axonal outgrowth in retinal ganglion cells, and in corticospinal neurons contralateral to the
stroke site3,39.

Interestingly, inosine induces a gene expression profile in contralateral cortex that overlaps
with the gene expression profile in other sprouting neurons36. The phosphatase PTEN also
potently controls axonal outgrowth. Blockade of PTEN after optic nerve injury promotes
substantial axonal outgrowth in the optic nerve, to a degree not seen with other molecular
manipulations40. PTEN knockout also enhances neurogenesis after stroke41. PTEN
antagonizes the action of the PI3 kinase/Akt pathways, which mediates many of the
downstream effects of neurotrophins and other growth factor receptors40,42. One downstream
effect of PTEN is the inhibition of mTOR40,42. This cascade provides a target rich environment
for the development of “pro-growth” approaches to promote axonal sprouting and recovery
after stroke or spinal cord injury. A caveat is that PTEN is a commonly altered pathway in
many cancers, such as glioblastomas42. Induction of a growth state in a post-mitotic cell such
as neuron will require careful targeting and attention to the duration of therapy, as neighboring
astrocytes, and indeed all mitotically active cells, may respond to this therapy in a deleterious
“pro-growth” manner.
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