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Abstract
Although the complement system is centrally involved in host defense, its overactivation or
deregulation (e.g., due to inherent host genetic defects or due to pathogen subversion) may
excessively amplify inflammation and contribute to immunopathology. Periodontitis is an oral
infection-driven chronic inflammatory disease which exerts a systemic impact on health. This
paper reviews evidence linking complement to periodontal inflammation and pathogenesis.
Clinical and histological observations show a correlation between periodontal inflammatory
activity and local complement activation. Certain genetic polymorphisms or deficiencies in
specific complement components appear to predispose to increased susceptibility to periodontitis.
Animal model studies and in vitro experiments indicate that periodontal bacteria can either inhibit
or activate distinct components of the complement cascade. Porphyromonas gingivalis, a keystone
species in periodontitis, subverts complement receptor 3 and C5a anaphylatoxin receptor signaling
in ways that promote its adaptive fitness in the presence of non-productive inflammation. Overall,
available evidence suggests that complement activation or subversion contributes to periodontal
pathogenesis, although not all complement pathways or functions are necessarily destructive.
Effective complement-targeted therapeutic intervention in periodontitis would require determining
the precise roles of the various inductive or effector complement pathways. This information is
essential as it may reveal which specific pathways need to be blocked to counteract microbial
evasion and inflammatory pathology or, conversely, be enhanced to promote host immunity.

1. Introduction
Host defense and inflammation is fundamentally dependent on the complement system,
which orchestrates critical events in this regard. These include recruitment and activation of
inflammatory cells, microbial opsonization, phagocytosis, and lysis, as well as crosstalk and
regulation of other systems, including Toll-like receptors (TLR) [1,2]. In the latter context,
the TLR4-mediated inflammatory response to in vivo bacterial lipopolysaccharide (LPS)
challenge is amplified by complement [3]. In addition, complement inhibition protects
against experimental sepsis induced by high doses of LPS or by cecal ligation and puncture
(CLP) peritonitis [4]. Moreover, complement bridges innate to adaptive immunity by
regulating the activation of both B cells and T cells, either directly or through effects on
antigen-presenting cells [5–8]. Its protective role notwithstanding, complement may cause or
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exacerbate inflammatory tissue damage when overactivated or deregulated, either by
pathogens or due to inherent host genetic defects [9–12]. Indeed, complement pathways
constitute a major link between infection and various local or systemic inflammatory or
autoimmune diseases [1,9,13,14]. This communication reviews evidence implicating
complement in periodontal inflammation and pathogenesis. Furthermore, it discusses
interventional strategies that could complement current clinical periodontal treatment, which
is often not sufficient by itself to reverse destructive inflammation [15,16].

2. Periodontal inflammation
Periodontitis is a highly prevalent chronic inflammatory disease that causes destruction of
the tooth-supporting tissues. In its severe form, periodontitis may eventually lead to tooth
loss and/or exert a significant systemic impact on health [17]. The annual cost of periodontal
therapy in the U.S. exceeds $14 billion [18] and the suspected association of periodontitis
with certain systemic diseases (e.g., atherosclerosis, aspiration pneumonia, diabetes, adverse
pregnancy outcomes, and rheumatoid arthritis [17,19–24]) underscores the importance of
implementing new and effective treatments. Moreover, the fact that many treated patients
develop recurrent disease for reasons that are not clear necessitates better understanding of
the underlying immunopathology [15,16].

Although bacteria populating the tooth-associated biofilm are essential for the initiation of
periodontitis, it is actually the host inflammatory response to this challenge, rather than
direct bacterial action, that primarily causes periodontal tissue damage [25,26]. The role of
certain proinflammatory cytokines (e.g., interleukin (IL)-1β, tumor necrosis factor-α (TNF-
α), and IL-6) in destructive periodontal inflammation is well established [26,27]. Moreover,
recent clinical observations also implicate IL-17 [25,28–31]. The periodontitis-associated
bacteria comprise a group of gram-negative anaerobic organisms, among which more
prominent are the so-called “red complex” pathogens, i.e., Porphyromonas gingivalis,
Treponema denticola, and Tannerella forsythia [32,33]. The reason(s) as to why the host
response often fails to control periodontal infection and reverse disease progression are not
well understood, although disruption of host homeostasis by periodontal pathogens may be a
major contributory factor [34]. In this respect, pathogen manipulation of pattern-recognition
and response mechanisms may perturb otherwise homeostatic host-bacterial interactions,
thereby leading to non-protective and non-resolving chronic inflammation. One such
example involves P. gingivalis, a master of immune subversion in the oral cavity and a
keystone species in periodontitis, which is thought to promote the survival and virulence of
the whole biofilm community [35,36]. It, therefore, seems reasonable that periodontal
disease could be prevented or mitigated by interventions aiming to control inflammation and
counteract microbial subversion of the host response.

3. Complement and its role in periodontal pathogenesis
The triggering of the complement cascade involves sequential activation and proteolytic
cleavage of a series of serum proteins, via three distinct mechanisms, namely the classical,
lectin, and alternative [1] (Fig. 1). The activation of the classical pathway is initiated by
antigen-antibody complexes recognized by the C1q subunit of C1, whereas the lectin
pathway is triggered through interaction of a secreted pattern-recognition receptor (the
mannose-binding lectin; MBL) with specific carbohydrate groups on the surface of a variety
of microorganisms. Both the classical and the lectin pathways then proceed through C4 and
C2 cleavage for the generation of the classical/lectin C3 convertase (C4bC2b) (Fig. 1). It
should be noted that C4bC2b and C4bC2a are interchangeably used in the literature to refer
to the classical/lectin pathway C3 convertase. In this review, this convertase is referred to as
C4bC2b by designating the small and non-proteolytic C2 fragment that drifts away as C2a
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(in analogy to C3a), and the protease segment as C2b. The alternative pathway is initiated by
low-level, spontaneous hydrolysis of C3 to C3(H2O), which is a C3b analog and forms the
initial alternative pathway C3 convertase in the presence of factors B and D (C3[H2O]Bb).
As long as there is no sufficient negative regulation (e.g., in the case of non-self surfaces
such as bacteria), this initiation is followed by rapid propagation of the alternative pathway
involving an amplification loop and the formation of the predominant alternative pathway
C3 convertase (C3bBb) [6] (Fig. 1). Moreover, the alternative pathway can be induced by
bacterial lipopolysacharide and lipooligosacharide molecules in a way that strictly requires
the participation of the plasma protein properdin attached to microbial surfaces [37,38]. The
alternative pathway also serves as a positive amplification loop of complement activation
through the classical and lectin pathways, and thereby an initially weak stimulus can get
markedly amplified [6]. Despite what might be implied by its name, the “alternative”
pathway may potentially contribute to ≥ 80% of total complement activation, even when the
initial trigger is provided through the other two pathways [39]. All three pathways converge
at the third component of complement (C3) which, upon activation by pathway-specific C3
convertases, leads to the generation of a number of effector molecules. These include the
C3a and C5a anaphylatoxins which activate specific G-protein–coupled receptors (C3aR and
C5aR, respectively) and mediate mobilization and activation of leukocytes. Also important
are the C3b and iC3b opsonins that promote phagocytosis through complement receptors
(CR1 and CR3, respectively), and the C5b-9 membrane attack complex (MAC) which can
lyse targeted pathogens [1] (Fig. 1). In addition to the classic C5aR (CD88), C5a also
interacts with an alternative but quite enigmatic G protein-independent receptor, the C5a-
like receptor 2 (C5L2; GPR77), which has been assigned both regulatory and
proinflammatory roles [40–44].

Due to its potentially destructive nature for host tissues, complement activation is tightly
controlled by membrane-bound and soluble regulatory proteins. Membrane bound regulators
include the decay accelerating factor (DAF; CD55) which accelerates the decay of the C3
and C5 convertases, as well as the CD46 (membrane cofactor protein; MCP) and the
complement receptor 1 (CR1; CD35). In association with the fluid-phase protease factor I
(fI), CD46 and CR1 help degrade C3b and C4b, the latter of which is required for the
formation of the classical/lectin C3 convertase [11,45]. Host cells are protected from MAC-
mediated lysis through another membrane-bound regulatory protein, the CD59 (also referred
to as protectin), which inhibits the terminal step of MAC formation [11,45] (Fig. 1). An
important fluid-phase regulator is factor H (fH), which controls the alternative pathway by
inhibiting the formation and accelerating the decay of the alternative pathway C3
convertase. Moreover, fH contributes to cleavage and inactivation of C3b to iC3b, and thus
can also inhibit the formation and amplification of the C5 convertase [11]. On the other
hand, the newly described fH-related protein 1 (FHR-1) was shown to directly bind C5 and
block the activity of the C5 convertase and downstream formation of MAC [46]. The
circulating C4b-binding protein (C4BP), which is another cofactor for fI, accelerates decay
of classical and lectin pathway convertases, whereas the C1 inhibitor (C1INH) is an
important soluble inhibitor of the classical and lectin pathways [11] (Fig. 1).

Complement activities are not restricted to a linear cascade of events, as briefly outlined
above, but involve a network of interactions with other systems for better coordination of the
host response to infection or injury. These connections allow complement to coordinate
innate immunity through crosstalk with TLRs [2], provide a barrier against the spread of
invading bacteria by potentiating local clotting [47], and replenish the immune system
through mobilization of hematopoietic stem/progenitor cells from the bone marrow [48,49].
The elaborate system of complement effectors and regulators (Fig. 1) also impacts on the
activation and differentiation of T cell subsets [6,50–52]. However, deregulation of these
finely balanced complement activities may not only lead to failure to protect the host against
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pathogens, but could also initiate or amplify inflammatory tissue damage [9–12,53]. As
outlined below, complement deregulation or subversion may play an important role in
periodontal inflammation and pathogenesis.

A number of clinical and histological observations suggest complement involvement in
periodontitis (Table 1). Activated complement fragments are abundantly found in the
gingival crevicular fluid (GCF) of periodontitis patients, whereas they are absent or present
in lower concentrations in GCF from healthy individuals [54–58]. GCF represents the
inflammatory exudate which bathes the space between the free gingiva and the tooth
surfaces, known as gingival crevice [59] (Fig. 2). In general, complement can be found in
GCF at up to 70 to 80% of its concentration in serum, but certain activated fragments can be
found at much higher levels in GCF reflecting local generation [55,60–62]. Complement
components and cleavage products covering the whole complement cascade (e.g., C1q,
factor B, Bb, C3, C3a, C3b, C3c, C3d, C4, C5, C5a, C5b, C9) have been detected in
chronically inflamed gingiva or in GCF of patients, although undetected or at lower levels in
healthy control samples [54,55,61–67]. GCF from periodontitis patients displays
complement-dependent hemolytic activity, suggesting the presence of a functional
complement system (C1–C9) in gingival inflammatory exudates [63,67]. Importantly,
induction of experimental gingival inflammation in human volunteers causes progressive
elevation of complement cleavage products correlating with increased clinical indices of
inflammation [58]. Specifically, this study assessed cleavage of factor B, C3, and C4 in GCF
samples during the experimental period and detected, respectively, their conversion to Bb
and C3c but not to C4c, suggesting preferential activation of the alternative pathway [58].
On the other hand, the central complement component C3 is among the top 5% genes that
are most strongly downregulated following periodontal therapy [68]. Moreover, C3
conversion to C3c in GCF decreases dramatically after periodontal therapy [69].
Mechanistically, local complement activation may promote periodontal inflammation
predominantly via C5a-induced vasodilation, increased vascular permeability and flow of
inflammatory exudate, and chemotactic recruitment of inflammatory cells, especially
neutrophils [70,71] (Fig. 2). Neutrophils are thought to be key players in host-mediated
inflammatory tissue injury in periodontitis [72] and can be found in great numbers in the
gingival crevice (≥ 95% of total leukocytes) [73]. Extravasating neutrophils enter the
gingival crevice through the junctional epithelium which, under inflamed conditions, is
largely occupied (by about 60%) by trafficking neutrophils [73,74].

Interestingly, a case of aggressive periodontitis accompanied by severe gingival angioedema
was linked to dysregulated complement function, specifically C1INH deficiency [75].
Moreover, a single nucleotide polymorphism of C5 (rs17611), which is associated with
increased serum C5 levels and susceptibility to liver fibrosis (a complement-associated
disease) [76], was shown to be more prevalent in periodontitis patients than in healthy
controls [77]. An immunohistochemical study showed weaker expression of CD59 in the
gingiva of periodontitis patients compared to healthy controls, suggesting reduced protection
of diseased tissues against autologous MAC-mediated tissue damage [66]. Intriguingly, even
sublytic amounts of the C5b-9 MAC could cause periodontal tissue destruction. In this
regard, non-lethal concentrations of C5b-9 (or the intermediate C5b-8 complex) induce
activation of phospholipase A2, release of arachidonic acid, and synthesis of prostaglandin
E2 [78–80]. This mechanism can potentially cause periodontal bone loss, since complement
induces prostaglandin E2-mediated bone resorption in organ culture, in a C6-dependent way
[81].

These observations collectively suggest a role for complement activation in periodontal
inflammation and pathogenesis. However, they do not necessarily rule out possible
protective functions by at least some complement pathways. In this regard, partial C4 gene
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deficiencies are significantly more frequent in periodontal patients relative to healthy
controls [82], thus suggesting that not all complement pathways or functions necessarily
mediate destructive effects. For instance, C3b generated via the classical and/or the lectin
pathway could promote opsonization and phagocytosis of periodontal bacteria, thereby
contributing to control of infection and of bacterial-induced inflammation.

In vitro studies have shown that periodontal bacteria, such as P. gingivalis, T. denticola, and
Prevotella intermedia, interact with the complement system in complex ways that either
inhibit or activate specific complement components [60,71,83–87] (Table 2). P. gingivalis
attenuates the activation of the complement cascade, regardless of the initiation pathway
involved (classical, lectin, or alternative), via its ability to degrade and inactivate the central
complement component C3 [88,89]. This proteolytic activity is mediated by its cysteine
proteases, known as gingipains. All three gingipain enzymes participate in complement
inactivation, although the Arg-specific enzymes (HRgpA and RgpB) are more potent than
the Lys-specific gingipain (Kgp) [60]. A similar mechanism is shared by P. intermedia
which by means of a cysteine protease, termed interpain A (InpA), can degrade C3 and
thereby acquire resistance against the antibacterial activity of complement [84].
Interestingly, P. intermedia not only co-aggregates with P. gingivalis [90] but its interpain
synergizes with P. gingivalis gingipains in complement attenuation [84]. This P. gingivalis-
P. intermedia synergism may also protect otherwise complement-susceptible bystander
bacterial species in the dental plaque biofilm. As a further safety precaution against
complement, P. gingivalis employs its HRgpA to capture fluid-phase C4BP on the bacterial
cell surface, thereby acquiring the ability to negatively regulate the classical/lectin pathway
C3 convertase [91]. In a related context, T. denticola expresses a 11.4-kDa cell surface
lipoprotein which can bind fH, and could thus protect the organism against the alternative
pathway [86].

These anti-complement mechanisms notwithstanding, P. gingivalis, P. intermedia, and T.
denticola appear to generate specific complement activation fragments through direct
enzymatic action on complement proteins [60,84,87,92]. Superficially, these activities seem
counterproductive for the adaptive fitness of the bacteria. Moreover, despite their
demonstrated ability to inhibit complement at relatively high concentrations, both P.
intermedia interpain and P. gingivalis gingipains are able to activate the C1 complex (and
thus the classical pathway) at low enzyme concentrations. A possible interpretation of these
puzzling findings is that pathogens may better promote their survival by sophisticated
manipulation of the complement system rather than by its wholesale inhibition. In this
context, P. gingivalis and P. intermedia appear to inhibit critical antimicrobial responses that
could eliminate them, whereas they stimulate local inflammatory responses that result in
nutrient acquisition (e.g., GCF-derived peptides and hemin, a source of essential iron) and,
furthermore, cause collateral tissue damage [71]. Thus, the induced inflammation is non-
productive from the host point of view and may consequently become non-resolving and
chronic. P. gingivalis may additionally contribute to host tissue damage by causing
proteolytic shedding of CD46 from the surface of oral epithelial cells, thus rendering them
potentially susceptible to unintended complement attack [93]. Therefore, periodontal
pathogens appear to have evolved in ways that allow them to not only endure inflammation
but also exploit it for promoting their survival and, collaterally, causing tissue injury.

From the above discussion, it becomes necessary to identify the precise roles, protective or
destructive, of the various complement pathways and components before rational therapeutic
intervention is applied for the treatment of periodontal disease. It is also important to
identify which pathways/components are subverted by bacteria in ways that deregulate the
host response. These objectives would necessitate a systematic approach in preclinical
models of this disease, employing mechanistic and interventional studies, before

Hajishengallis Page 5

Biochem Pharmacol. Author manuscript; available in PMC 2011 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



confirmation can be pursued in human studies. Indeed, causal mechanistic relationships
cannot normally be addressed in human studies due to important ethical considerations [94].
However, once a safe and effective therapeutic compound has been identified in preclinical
models, it could justifiably move into human clinical trials.

4. Inflammatory diseases and potential for complementary therapy
In addition to periodontitis, complement is activated in a variety of systemic or local
autoimmune or inflammatory conditions, including systemic lupus erythematosus,
rheumatoid arthritis, sepsis, ischemia/reperfusion injury, myocardial infarction and
atherosclerosis, allergy and asthma, inflammatory bowel disease, Alzheimer s disease,
multiple sclerosis, organ graft rejection, and age-related macular degeneration [9,10,13].
Complement is often activated locally at sites of tissue destruction but it can also cause
disease through systemic activation as in sepsis [10]. Although complement may be
overactivated in a subset of patients as a result of inadequate complement regulation
(polymorphisms or abnormalities of complement control proteins), the precise role of
complement in immune pathology is largely unknown; therefore, animal models are often
employed to offer useful mechanistic insights [1,2,12,13,42,95,96].

Since C3 is the central complement component in which all three activation pathways
converge, therapeutic inhibition of C3 could be a reasonably effective approach to treat
complement-related diseases. However, it cannot be assumed that all three activation
mechanisms are harmful in a given disease. It is possible that a certain pathway is
overactivated and contributes to unwarranted inflammation, while another pathway is
activated in a controlled manner and contributes to host defense. For example, the classical
pathway appears to be specifically implicated in certain inflammatory conditions (e.g.,
hyperacute xenograft rejection or acute myocardial infarction), whereas the lectin pathway
has been associated with protection against upper respiratory infections and community-
acquired pneumonia [97–100]. On the other hand, the classical pathway, but not the lectin
pathway, is important for innate immunity to group B Streptococcus [101]. The alternative
pathway may represent up to 80–90% of complement activation [1,39] and is important for
protective immunity against certain pathogens (e.g., Streptococcus pyogenes [102]).
However, the alternative pathway is thought to be heavily involved in several complement-
dependent pathologic conditions [14]. Thus, there is strong rationale for selective inhibition
of specific complement pathways (or defined components) implicated in pathology, in order
to keep intact those pathways or components that may mediate protective functions
[99,103]. In fact, complete complement inhibition at the C3 level to prevent inflammatory
tissue damage may compromise host defense and thus increase the risk of infections.
However, in case of topical interventions to treat local inflammatory diseases, such risks
should be relatively minimal. Risks should also be reduced in diseases requiring short-term
treatment, such as myocardial infarction or stroke. Several complement-specific drugs are
currently under clinical development or have received approval, although this topic is
outside the purview of this paper and the reader is referred to specialized reviews [9,13].
Briefly, the first complement-targeted drugs, including recombinant C1-INH (for the
treatment of hereditary angioedema) and a blocking anti-C5 antibody (for paroxysmal
nocturnal hemoglobulinuria) have already been approved and reached the market. Moreover,
other drugs are in clinical trials for various diseases, including the C3 inhibitor compstatin
(POT-4) which completed phase I trials (for age-related macular degeneration) and the
C5aR antagonist PMX-53, which completed phase II trials (for rheumatoid arthritis and
psoriasis) [9,13]. Following below is discussion on potential complement-targeted
therapeutic interventions in periodontitis on the basis of data from preclinical models.

Hajishengallis Page 6

Biochem Pharmacol. Author manuscript; available in PMC 2011 December 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



5. CR3 in periodontal pathogenesis and implications for therapeutic
intervention

CR3 is a β2 integrin (CD11b/CD18) that plays diverse roles in immunity and inflammation,
including iC3b-mediated phagocytosis, promotion of leukocyte migration to sites of
extravascular inflammation, and induction of cytokine responses [104]. In this latter context,
CR3 was shown to co-associate with pattern-recognition receptors, such as CD14 and TLRS
(TLR2 and TLR4), in membrane lipid rafts of activated phagocytes [105,106]. In addition to
its binding affinity for host molecules (iC3b, fibrinogen, and intercellular adhesion
molecule-1 [ICAM-1]), CR3 can also interact with diverse microbial molecules. These
include enterobacterial LPS, Bordetella pertussis filamentous hemagglutinin, Leishmania
gp63, and P. gingivalis fimbriae [107–111]. The adhesive interactions of CR3 are tightly
regulated through inside-out signaling. Indeed, whereas the default conformation of CR3 in
resting cells is of low affinity, a rapid and transient shift to a high-affinity binding state can
be triggered by inside-out signals generated by other receptors, such as chemokine receptors
or TLRs [112,113].

P. gingivalis is particularly strong in activating CR3. Specifically, the fimbriae of P.
gingivalis bind CD14 and activate TLR2- and phosphatidylinositol 3-kinase (PI3K)-
mediated inside-out signaling leading to activation of the ligand-binding capacity of CR3
[113]. Activated CR3 can in turn interact directly with this bacterium [114] (Fig. 3). The
interactions of CR3 on monocytes or macrophages with P. gingivalis lead to inflammatory
responses, such as induction of certain cytokines (TNF-α, IL-1β, and IL-6) [106,110,115]
and stimulation of monocyte adhesion to endothelial ICAM-1, leading to transmigration
across endothelial cell monolayers [116].

These P. gingivalis-induced CR3-dependent responses could potentially contribute to innate
host defense. However, it is also possible that they may have pathophysiological
consequences in periodontal disease. In this regard, CR3-induced cytokines such as TNF-α,
IL-1β, and IL-6 can cause periodontal bone resorption [26], whereas CR3-dependent
migration of inflammatory cells could amplify periodontal inflammation. Neutrophils, which
are implicated as major effectors of inflammation-induced tissue damage in periodontitis
[72], express high levels of CR3 which facilitates their trafficking to sites of extravascular
inflammation [117,118]. It is thus plausible that P. gingivalis may promote periodontal
tissue recruitment of neutrophils or other inflammatory phagocytes through activation of
CR3, thereby exacerbating periodontal inflammation.

Although the above mechanistic scenario for CR3-mediated inflammation and tissue
destruction in periodontitis is hypothetical, it was nonetheless shown that CR3 indeed
participates in periodontal pathogenesis. Specifically, in a mouse model of P. gingivalis-
induced periodontitis, CR3 blockade through local application of a small-molecule
antagonist (XVA143) inhibits induction of periodontal bone loss [119]. However, it is not
known whether the beneficial effects of CR3 inhibition are mediated via direct control of
periodontal inflammation. An alternative (or additional) possibility involves a mechanism
that may enhance P. gingivalis adaptive fitness.

The alternative possibility is related to the capacity of P. gingivalis to exploit CR3 for
entering macrophages in a way that promotes its persistence. Indeed, the intracellular
survival of P. gingivalis is significantly reduced in CR3-deficient (CD11b−/−) mouse
macrophages, suggesting that CR3-dependent phagocytosis of P. gingivalis does not
promote its killing [120]. This could be attributed to the fact that CR3 is not linked to
vigorous microbicidal mechanisms, in contrast to certain other phagocytic receptors such as
the Fcγ receptor III (CD16) [121–125]. In macrophages, for instance, CD16-derived
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phagosomes fuse more readily with lysosomes than CR3-derived phagosomes [126]. A
plausible interpretation for the relatively mild CR3 post-phagocytic events is that CR3 is
heavily committed with phagocytosis of iC3b-opsonized apoptotic cells, which normally
pose minimal danger and thus do not warrant strong inflammatory responses [127,128].
Thus, P. gingivalis appears to co-opt this relatively non-inflammatory phagocytic
mechanism. Intriguingly, although T. denticola is not known to directly bind CR3, it
expresses a serine protease (dentilisin) which generates iC3b upon hydrolysis of the α chain
of C3 [92]. This is likely to promote iC3b-mediated CR3 uptake of T. denticola, which
might thereby promote its survival, like P. gingivalis does; however, direct experimental
evidence is currently lacking.

There are additional CR3-associated benefits for P. gingivalis. Although P. gingivalis
ligation of monocyte/macrophage CR3 promotes the induction of several proinflammatory
cytokines (TNF-α, IL-1β, IL-6, and IL-8), the induction of IL-12 in those same cells is
downregulated [110,119]. Specifically, CR3 ligation by P. gingivalis activates outside in
signaling and extracellular signal-related kinase 1/2 (ERK1/2) activation, which in turn
selectively inhibits mRNA expression of the IL-12 p35 and p40 subunits and production of
IL-12 protein [119]; this mechanism possibly involves suppression of the interferon
regulatory factors 1 and 8, which are critical for the transcription of IL-12 family cytokine
gens [129] (Fig. 3). Additionally, P. gingivalis blocks IL-12 induction by other bacterial
stimuli (e.g., LPS from Aggregatibacter actinomycetemcomitans, another important
periodontal pathogen), suggesting that this immune subversion strategy may also benefit co-
habiting bacteria occupying the same niche [119]. The selective CR3-dependent inhibition
of IL-12 is not specific to P. gingivalis activation, but is a general feature of CR3 outside-in
signaling [130], also occurring during phagocytosis of apoptotic cells [127]. As a result of
this mechanism (Fig. 3), CR3-deficient mice elicit higher levels of IL-12 (and, secondarily,
IFN-γ) leading to enhanced clearance of P. gingivalis infection compared to wild-type mice
[119]. Importantly, similar host-defense promoting effects are seen in wild-type mice in
which CR3 is pharmacologically blocked, suggesting the utility of CR3 inhibitors for
therapeutic control of P. gingivalis infections [119].

Like many other chronic inflammatory diseases, the prevalence and severity of periodontitis
increases with aging, although it is not clear whether, or what kind of, age-related changes in
innate immunity are responsible [131]. Interestingly, although phagocytosis generally
declines with aging [132,133], CR3-dependent phagocytosis remains intact [134].
Specifically, unlike CD16-mediated phagocytosis which declines in elderly individuals
owing to age-associated downregulation of CD16 expression, CD11b expression is
preserved in old age [134]. It could thus be expected that CR3-mediated phagocytosis of P.
gingivalis may be preserved with aging, whereas alternative uptake of the pathogen by
strongly microbicidal pathways may decline. In relative terms, therefore, CR3-mediated
internalization of P. gingivalis may increase with aging. Interestingly, not only CR3 but also
other receptors involved in the inside-out pathway for CR3 activation (CD14 and TLR2)
display increased expression in the gingiva of old mice relative to young controls [135]. This
suggests that the microbial exploitability of CR3 and its impact on periodontitis could
increase with aging. In the same study, only a subset of investigated innate immune
receptors exhibited age-associated differential expression. Among them is C5aR [135],
which could contribute to heightened periodontal inflammation, owing to its involvement in
the amplification of the host inflammatory response [10].

6. Rationale for targeting the C5a-C5aR axis in periodontitis
The complement-activated fragment C5a is perhaps the most powerful effector of the
complement cascade, mediating, among other functions, chemotactic recruitment and
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activation of neutrophils and other inflammatory cells [136]. Although the
immunostimulatory and inflammatory properties of C5a can potentially protect the host
against pathogens, they can also contribute to the pathogenesis of a number of acute or
chronic inflammatory diseases, such as sepsis, acute lung injury, ischemia-reperfusion
injury, and rheumatoid arthritis [136,137]. C5a-induced inflammation is predominantly
mediated via C5aR (CD88), although recent evidence suggests that C5L2 (GPR77) may
synergize with C5aR at least in septic inflammation [42].

In addition to their role in acute inflammation, neutrophils have been implicated in chronic
inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, chronic
obstructive pulmonary disease, and periodontitis [72,138–141]. Intriguingly, although
gingival crevicular neutrophils form what looks like a “defense wall” against the advancing
microbial hordes (Fig. 2), they largely fail to control the bacteria despite being viable and
capable of eliciting responses, including release of reactive oxygen species [73,142–145].
Since reactive oxygen species do not discriminate between microbial and host cells, they are
more likely to cause collateral damage to periodontal tissues [146–148] than to control the
infection. In this regard, many oral bacteria, including P. gingivalis, are resistant to
oxidative burst killing [71,149]. The reasons for the relative impotence of neutrophils to
control periodontal infection (and in failing to do so to promote non-resolving inflammation)
are largely unexplored. However, P. gingivalis may contribute to subversion of leukocyte
function by employing specific C5 convertase-like enzymes to generate high levels of C5a,
which the bacterium exploits to promote its survival and non-productive inflammation that
is destructive for the host [71,87,150].

Specifically, P. gingivalis employs its Arg-specific gingpains to generate functional C5a
through limited degradation of C5, whereas the C5b remnant is proteolytically destroyed
[60,150], to apparently prevent activation of the terminal complement pathway. The
bacterium can actually generate high concentrations of C5a (> 30 nM) after a 30-min
incubation in heat-inactivated human serum [87]. This activity is curious and seemingly
counterproductive (if not suicidal) for P. gingivalis, especially since this organism goes at
great lengths to suppress all three mechanisms of complement activation [60]. It is also
antithetical to the strategy of Staphylococcus aureus which actually blocks C5a binding and
C5aR activation, via a secreted chemotaxis inhibitory protein [151]. A possible
interpretation of this unusual behavior is that proactive release of C5a by P. gingivalis can
contribute to stimulation of inflammatory exudate for acquisition of essential nutrients like
hemin [71].

Another possible scenario is that local generation of excessive levels of C5a (through
gingipain activity and/or immunological means) could paralyze the antimicrobial function of
crevicular neutrophils rendering them less effective against P. gingivalis and bystander
bacteria. Indeed, neutrophils become immunologically paralyzed, both in vitro and in vivo,
when in the presence of high concentrations (10–100 nM) of C5a [10,152,153]. Consistent
with this, the ability of neutrophils to kill P. gingivalis is inhibited by C5a; however, this
occurs even at low C5a concentrations that could not cause paralysis but, on the contrary,
enhance the oxidative burst (J.L. Krauss and G. Hajishengallis, unpublished data). Whether
the underlying mechanism involves alteration of specific signal transduction pathways is
currently under investigation. On the other hand, it has been firmly established that P.
gingivalis exploits C5a to impair the killing function of macrophages via manipulation of
specific signaling events in the absence of generalized immune suppression [87]. In fact,
macrophages express modest levels of C5aR relative to the neutrophils and are, therefore,
quite resistant to the deleterious effects of high C5a concentrations [10].
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The above alluded C5a-dependent evasive mechanism of P. gingivalis in macrophages
involves synergistic production of high and sustained cAMP levels, which inhibit nitric
oxide-dependent killing of P. gingivalis [87]. This synergism requires a crosstalk between
C5a-activated C5aR and P. gingivalis-activated TLR2, whereas downstream players include
cAMP-dependent protein kinase A and glycogen synthase kinase-3β, the interplay of which
inhibits the inducible nitric oxide synthase [87] (Fig. 3). Importantly, specific blockade of
C5aR with the PMX-53 antagonist abrogates this evasive strategy and facilitates the immune
clearance of P. gingivalis in vivo [87]. In the periodontal environment, macrophages can
interact with P. gingivalis in the gingival crevice, where they can be chemoattracted (though
at lower numbers than neutrophils), and in the underlying connective tissue where P.
gingivalis may invade (Fig. 2). Additionally, P. gingivalis-macrophage interactions can also
occur in the setting of systemic inflammatory diseases such as atherosclerosis [71,73,154].

The above discussed findings suggest that C5aR inhibitors may have important therapeutic
implications in periodontitis, and perhaps other infections or inflammatory diseases where P.
gingivalis is thought to be implicated (e.g., oral aspiration pneumonia and atherosclerosis
[155,156]). Interestingly, at least in the mouse model, C5aR is expressed at higher levels in
aged macrophages or in the periodontal tissues of aged mice, compared to their young
counterparts [135,157]. In addition to its potential exploitation by P. gingivalis for immune
evasion, C5a may amplify periodontal tissue damage through its ability to recruit and
activate inflammatory cells, and stimulate the induction of reactive oxygen species
[136,148]. On the other hand, P. gingivalis and many other oral bacteria are resistant to
oxidative killing [149,158]. Moreover, C5aR signaling has been implicated in bone
immunopathology, at least in rheumatoid arthritis [137,159]. Therefore, there is sufficient
rationale for testing C5aR antagonists in the treatment of periodontitis, although direct
implication of C5aR signaling in periodontal tissue destruction remains to be established.

7. Conclusions and future directions
Clinical, animal model-based, and in vitro mechanistic studies strongly suggest an important
role for complement in periodontal inflammation and pathogenesis. However, there have not
been as yet any systematic approaches to comprehensively identify the precise roles of the
various complement pathways in the context of periodontal pathogenesis. Given that
complement plays an orchestrating role in host immunity and inflammation [1,2,6,95,160],
its functional mapping in periodontitis will greatly facilitate complement-targeted
therapeutic intervention. Indeed, such information will indicate which specific pathways
need to be blocked to reverse inflammatory pathology or, conversely, be enhanced to
promote host defense. Moreover, neutralization of identified microbial tactics for
complement subversion could help restore normal regulation of complement activation. In
this translational context, a number of complement-specific drugs are already in clinical
trials for other inflammatory diseases [9,13]. Information on the safety and efficacy of these
drugs will also be of relevance in human periodontitis. The current challenge, however, is to
use appropriate preclinical models to elucidate the precise roles, protective or destructive, of
the various pathways or components of the complement system, in order to rationally apply
suitable therapeutic intervention. At a first stage, these studies may take advantage of the
availability of a panel of transgenic mice deficient in key complement components
[3,42,161–163]. Complement knockout mice could be tested against wild-type controls in
periodontitis models. These include human pathogen-induced periodontitis in young mice
(e.g., inflammatory periodontal bone loss induced by oral infection with P. gingivalis)
[94,119,164] and naturally occurring periodontitis developed by aged mice, in a way
analogous to elderly humans [131,135]. In the latter model, specific complement-deficient
mice could be raised in parallel with normal controls and monitored over time for possible
differential susceptibility to periodontitis. The same models could subsequently be used for
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translational studies, followed by validation of possible safety and efficacy of therapeutic
interventions in primate models of periodontitis [27,165], prior to initiating human clinical
trials. If proven effective, complementary therapeutic intervention in parallel with
established clinical periodontal treatment could revolutionize the way periodontal patients
are managed.
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Fig. 1. Activation and regulation of the complement system
All three pathways converge at the third component of complement (C3) which is activated
by pathway-specific C3 convertases [1]. The classical pathway is initiated by antigen-
antibody (Ag-Ab) complexes and requires the participation of C1, C2, and C4. The lectin
pathway is triggered through interaction of the mannose-binding lectin (MBL) with specific
microbial carbohydrate groups, followed by activation of MBL-associated serine proteases
(MASPs) and cleavage of C2 and C4. The alternative pathway is initiated by spontaneously
hydrolyzed C3 [C3(H2O)] which can thereby form a complex with factor B (fB), followed
by fB cleavage by factor D (fD) and formation of the initial alternative pathway C3
convertase [1]. Morerover, the alternative pathway can be induced by bacterial
lipopolysacharide and lipooligosacharide in a properdin-dependent way [38]. Proteolytic
cleavage of a series of proteins downstream of C3 leads to the generation of potent effector
molecules. These include the inflammatory anaphylatoxins C3a and C5a, which activate
specific receptors (C3aR and C5aR, respectively), although C5a also interacts with the so-
called C5a receptor-like 2 (C5L2), which appears to mediate both regulatory and
proinflammatory effects [40–44]. In the terminal pathway, C5b initiates the assembly of the
C5b-9 membrane attack complex (MAC), which in turn induces microbial cell lysis [1] or
host cell signaling at sublytic concentrations [78,168]. Complement activation is regulated at
multiple steps by various regulatory proteins, as indicated by the characteristic inhibitory
symbols. C1NH, C1 inhibitor; C4BP, C4b-binding protein; CR1; complement receptor 1;
DAF, decay accelerating factor; fH, factor H; FHR-1, fH-related protein 1.
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Fig. 2. Chemotactic recruitment of inflammatory cells in the gingival crevice
Inflammatory cells, the majority of which are neutrophils, are recruited to the gingival
crevice in response to chemotactic signals such as the complement anaphylatoxin C5a
[71,73,74], which can be generated either immunologically or through microbial action
[87,150]. Although gingival crevicular neutrophils form what looks like a “defense wall”
against the tooth-associated bacteria, they largely fail to control the infection and may cause
collateral inflammatory tissue damage [71,73,142–144]. The cartoon (on the left) represents
magnification of the demarcated tooth area on the right.
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Fig. 3. Complement cross-talk pathways and their exploitation by P. gingivalis
P. gingivalis is recognized by the CD14/TLR2/TLR1 receptor complex [106]. This
interaction induces PI3K-dependent inside-out signaling, which induces the high-affinity
conformation of CR3 [113,169]. Once in the high-affinity state, CR3 binds P. gingivalis
leading to induction of ERK1/2 signaling. This in turn downregulates IL-12 p35 and p40
mRNA expression [119], possibly through suppression of critical transcription factors (the
interferon regulatory factors 1 and 8; IRF-1, −8), required for the expression of IL-12 family
cytokines [129]. This suppressive effect is specific for IL-12 since induction of
proinflammatory cytokines (e.g., IL-1β, IL-6, and TNF-α) is upregulated. Inhibition of
bioactive IL-12 through this mechanism in vivo results in impaired immune clearance of P.
gingivalis [119]. Moreover, P. gingivalis uses its gingipains to attack C5 and release
biologically C5a [87,150]. Upon C5aR binding, C5a stimulates Gαi-dependent intracellular
Ca2+ signaling which synergistically enhances the otherwise weak cAMP responses induced
by TLR2/TLR1 activation alone. The ensuing activation of the cAMP-dependent protein
kinase A (PKA) pathway inactivates glycogen synthase kinase-3β (GSK3β) and impairs the
inducible nitrogen synthase (iNOS)-dependent killing of the pathogen in macrophages in
vitro and in vivo [87] .
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Table 1

Complement-related clinical associations in periodontitis

Observations Refs.

Activated/functional complement components at significantly higher levels in the GCF of patients than in healthy
controls (e.g., factor B, Bb, C3, C3b, C3c, C4, C5a, C9)

[54–
58,63,67,69,73,166]

Activated/functional complement components abundantly found in chronically inflamed gingiva (e.g., C1q, factor
B, Bb, C3, C3a, C3b, C3c, C3d, C5, C5b, C9); undetected or at lower levels in healthy control samples

[54,62,64–67]

Induction of experimental human gingivitis causes progressive elevation of complement cleavage fragments (Bb,
C3c) correlating with increased clinical indices

[58]

C3 among the top 5% genes that are most strongly downregulated after periodontal therapy [68]

C3 conversion to C3c in GCF increases with increasing periodontal pocket depth but decreases dramatically after
periodontal therapy

[69,167]

Aggressive periodontitis with severe gingival angioedema linked to C1INH deficiency [75]

Weaker expression of the CD59 regulatory protein in the gingiva of periodontitis patients compared to healthy
controls

[66]

Partial C4 gene deficiencies significantly more frequent in periodontal patients compared to healthy controls [82]

Single nucleotide polymorphism of C5 (rs17611) significantly more prevalent in periodontitis patients than in
healthy controls

[77]
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Table 2

Interactions of periodontal pathogens with complement

Interaction Pathogens (effector molecules) Refs.

Inhibition of complement activation through digestion of the central C3 component P. gingivalis (HRgpA, RgpB)
termedia (InpA)

[60,84]

Hijacking complement regulatory proteins (C4BP, Factor H) P. gingivalis (HRgpA)
T. denticola (11.4-kDa lipoprotein)

[86,91]

Proteolytic shedding of complement regulatory proteins (CD46) from host cell surface P. gingivalis (Kgp) [93]

Microbial enzyme-dependent generation of specific complement fragments
(anaphylatoxins, iC3b)

P. gingivalis (HRgpA, RgpB)
P. intermedia (InpA)

T. denticola (dentilisin)

[84,87,92,150]

Direct binding of complement receptors (CR3) P. gingivalis (fimbriae) [119,120]
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