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Abstract
Skin incision and nerve injury both induce painful conditions. Incisional and post-surgical pain is
believed to arise primarily from inflammation of tissue and the subsequent sensitization of peripheral
and central neurons. The role of axonal regeneration-related processes in development of pain has
only been considered when there has been injury to the peripheral nerve itself, even though tissue
damage likely induces injury of resident axons. We sought to determine if skin incision would affect
expression of regeneration-related genes such as activating transcription factor 3 (ATF3) in dorsal
root ganglion (DRG) neurons. ATF3 is absent from DRG neurons of the normal adult rodent, but is
induced by injury of peripheral nerves and modulates the regenerative capacity of axons. Image
analysis of immunolabeled DRG sections revealed that skin incision led to an increase in the number
of DRG neurons expressing ATF3. RT-PCR indicated that other regeneration-associated genes
(galanin, GAP-43, Gadd45a) were also increased, further suggesting an injury-like response in DRG
neurons. Our finding that injury of skin can induce expression of neuronal injury/regeneration-
associated genes may impact how clinical post-surgical pain is investigated and treated.

Perspective—Tissue injury, even without direct nerve injury, may induce a state of enhanced
growth capacity in sensory neurons. Axonal regeneration-associated processes should be considered
alongside nerve signal conduction and inflammatory/sensitization processes as possible mechanisms
contributing to pain, particularly the transition from acute to chronic pain.
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INTRODUCTION
Pain related to surgical incisions (incisional pain) is common even with minor surgery. It is
clear that the current clinical approaches to alleviating post-surgical pain have yielded mixed
results (e.g.,26,30,45). It is also clear that more, and broader, basic research is required to
understand the pathophysiology of this condition, as animal and clinical experimental models
addressing the currently understood range of underlying mechanisms can not account for the
full range of post-surgical pain experiences and altered nociception (e.g., 26,30,45,67). A
number of forms of neural plasticity are considered to play a role in post-surgical pain, but
anatomical plasticity is generally not among them, unless there has been injury to a peripheral
nerve (e.g.,8,67).

Incisional pain is currently considered to arise primarily from inflammatory and skin wound-
related processes, which leads to sensitization of sensory neurons, and which in turn affects
central synapses (e.g.,8,27,30,33,45,49,67,68). This condition is therefore generally treated
both prophylactically and post-surgically by addressing the skin inflammation and the
sensitization of sensory neurons and their synapses in the spinal cord. However, sensory and
autonomic axon terminals, and en passant axons in terminal-bundles, can be directly injured
by skin wounds, even if they are not separated from their target tissue at the gross-anatomical
level (e.g., 15). Given the enhanced growth state initiated by injury to the axons of neurons of
the peripheral nervous system (PNS) and the aberrant connections that might be made by
neurons in such a state, we investigated whether skin incision without injury of the peripheral
nerve might induce axon injury/growth processes. If this were to occur, it might play a role in
some of the post-incisional pathophysiology.

Numerous genes have been identified as playing a vital role in the axonal injury and
regeneration process. One of the most important of these is activating transcription factor 3
(ATF3). ATF3 is a transcription factor that is absent from intact neurons of the adult nervous
system, but has been associated with the neuronal response to overt injury of peripheral
nerves58. The relationship of ATF3 expression to the functional and anatomical characteristics
of axon injury and regeneration suggests that ATF3 plays a role in both the induction and
maintenance of the regenerative response 32,48,51,52. Many skin incisions will not overtly cut
a gross peripheral nerve but still will injure sensory axons within the skin. Although such axons
are still in contact with their terminal tissue and might receive trophic support, we hypothesized
that skin incision would induce a response in dorsal root ganglion (DRG) neurons similar to
that induced by injury to the nerve itself. We sought to determine if an incision wound of the
skin was sufficient to induce expression of injury/regeneration-associated genes, especially
ATF3, in DRG neurons innervating the incised skin.

METHODS
Surgery

All animal procedures were carried out at SUNY-SB and the University of Louisville and were
in accord with approved IACUC protocols. Adult female Sprague-Dawley rats (Taconic) (200–
250g) were anesthetized with isoflurane (5% induction, 2–3% maintenance). Body temperature
was monitored with a rectal thermistor and maintained at 36°C with a heated circulating water
pad. Groups are summarized in Table 1. For the skin-incision experimental group used for
microscopy (n=4), a full-thickness skin incision (including the underlying cutaneus trunci
muscle) was made 1cm in length, parallel to the vertebral column, 1cm lateral (left) of midline,
centered at the level of the junction of the T13 rib and vertebral bone. This was similar to a
previously reported model of incisional pain in adult rat hairy skin14. For the skin-incision
experimental group used for molecular biology (n=3), a similarly-placed full-thickness skin
incision of 2–3cm length was made, spanning 2–3 dermatomes. The incision was closed with
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surgical staples. Gross anatomical inspection confirmed that this location avoided the course
of the gross dorsal cutaneous nerves. Control groups for the microscopy experiment were naïve
animals (n=4) and a group which received only surgical staples applied to the skin as if closing
a wound (n=3). Controls for the PCR experiments were naïve animals (n=3), and the
contralateral DRG from the same animals that received the skin incision.

A nerve injury group (n=4) was included as 1) a positive control for ATF3 immunoreactivity
and 2) to provide an indication of the number of neurons in the Dorsal Cutaneous nerve (DCn)
which innervates the incision site. To injure the DCn, the skin was incised and the T11 DCn
was identified, isolated from the superficial fascia, and transected and ligated. The incision
was closed with surgical staples.

Three to four days after skin incision, staple application, or nerve injury, the animals were
euthanized with an overdose of urethane and transcardially exsanguinated with heparinized
phosphate buffered saline (PBS). For the microscopy groups, animals were then perfused with
4% paraformaldehyde (PFA) in PBS. Each DRG was retrieved, placed in 4% PFA overnight
(at 4C), then transferred to 30% sucrose in PBS (at 4C) until they were sectioned. For the PCR
groups, animals were perfused with 33% vol/vol RNAlater (Ambion) in heparinized PBS.
Tissue was then rapidly retrieved and snap-frozen in RNAlater. For all groups, postmortem
gross anatomical inspection was used to confirm the location of the incision relative to the
cutaneous nerves.

Microscopy
The ganglia were embedded in OCT compound and cryostat sectioned at 10um. Serial sections
were mounted on a series of 8 slides, such that there was a distance of at least 70um between
each section on a given slide. Immunolabelling procedures were similar to those previously
published 42. Sections were incubated in 1:30 normal goat serum in phosphate buffered saline
with 0.4% Triton-X 100 (GS-PBS) for 1 hour to block non-specific binding. Sections then
underwent 2 series of overnight incubation in primary antiserum, next-day rinse in 1% GS-
PBS and incubation in secondary antiserum for 3 hours, followed by rinse in 1% GS-PBS.
Primary antisera were mouse monoclonal anti-NeuN (1:1000; Chemicon) and rabbit polyclonal
anti-ATF3 (1:1000; Santa Cruz). Secondary antisera were goat anti-mouse AlexaFluor-594,
and goat anti-rabbit AlexaFluor-488 (both 1:300; Molecular Probes). Because we were not
certain that the incisions would induce ATF3, we included a positive control slide (DRG
sections from the nerve injury group) in each experimental run to ensure that any lack of ATF3
immunoreactivity was not due to a technical error. Other technical controls included slides in
which the secondary antisera were omitted and the sections instead incubated in the diluent
solution only. No signal was detected on any of these sections.

StereoInvestigator (MicrobrightField, Inc, Williston, VT) was used to quantify the number and
size of ATF-3+/NeuN+ neurons and NeuN+ neurons in the DRGs. Counts were made from
every 16th tissue section, 150 um apart. The DRG was outlined at 10 X magnification. Optical
Fractionator was used within the nucleator function to allow for quantification of cell number
and cell size. To quantify the number of labeled cells, a 200μm × 200μm grid was placed over
the traced contour and a sampling box size of 100μm × 100μm was used to mark identified
cells (40× magnification). After identifying labeled cells, the quick measure line function was
used to determine cell size. Four points on the ray, randomly generated by the nucleator function
in two planes, were marked to obtain area and volume measurements for labeled cells. The
total cell counts were determined from numbers collected via the Optical Fractionator function.

ATF3-positive neurons (injured) were expressed as a proportion of total neurons counted
(NeuN-positive). This proportion was used as the value for each animal. ANOVA comparing
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the skin incision and two control groups was followed by pairwise comparisons (Student-
Newman-Keuls).

Molecular biology
RNA Extraction and Quality Control—Gross anatomical examination was used to
confirm the location of the incision relative to the cutaneous nerves. DRGs housing neurons
innervating the incised dermatomes (T9, T10 and T11) were then retrieved and pooled. Pooled
samples were homogenized using a dual teflon glass homogeniser (Kontes) with a motor on
ice for 1 minute in 350ul buffer RLT (Qiagen) and 2-mercaptoethanol. RNA was extracted
from the homogenates using the RNeasy plus micro kit (Qiagen) as per manufacturer’s
protocol. Briefly, homogenates were cleared by centrifugation before selective removal of
genomic DNA using the DNA eliminator affinity spin column. RNA was purified by affinity
purification using RNA spin columns and eluted in 14μl of nuclease free water. RNA integrity
was assessed by UV spectrometry and using a Bioanalyser (Agilent Technologies) RNA
samples with 260nm/280nm ratios above 1.9, 260nm/230nm ratios and RNA integrity numbers
(RINs) above 1.8 met quality control standards and were used for quantitative PCR.

Quantitative real-time PCR—cDNA was synthesized using a Quantitect first strand
synthesis kit (Qiagen) according to the manufacturers protocol. Briefly, samples were
incubated with DNA wipeout buffer for 2 min to eliminate genomic DNA contamination at
42°C before addition of reverse transcriptase and reaction buffer. cDNA was synthesized at
42°C for 30 min and the reverse transcriptase subsequently deactivated by heating to 95°C for
3 min. 5ng of cDNA template was provided for each PCR reaction (carried out in triplicate).
SYBR green QPCR was carried out using a Rotorgene real time PCR detection instrument
(Corbett Research). Gene expression values were calculated against the stable internal
reference gene GAPDH, determined to be unchanged between experimental groups. Small
differences in QPCR reaction efficiency between primer sets were accounted for using the
standard curve quantification method.

RESULTS
ATF3-immunoreactivity (IR) was expressed in a significantly greater proportion of DRG
neurons innervating incised skin than was observed in DRGs from both control groups
(ANOVA, p<0.01; post-hoc Student-Newman-Keuls test for incision vs. naïve [2.9±1.4% vs.
0.07±0.14%, p<0.01] and incision vs. staple-only [0.7±0.9%, p<0.05]). The two control groups
did not differ from each other (Figure 1). Neuronal ATF3-IR was observed broadly in those
DRGs housing neurons that had axons in an injured nerve, but only very rarely in the DRG
neurons of naive animals, in agreement with Tsujino and colleagues58. Total DRG neuron
number (using NeuN immunoreactivity35,61 to provide an estimate) did not differ significantly
between any of the 4 groups by ANOVA.

The mean number of neurons that expressed ATF3-IR after skin incision was less than 3% of
the total. However, this represents 14.2% of the subpopulation of axons specifically innervating
the region of skin in which the incision was made (as defined by the number of neurons with
ATF3-IR after DCn transection, which amounted to 20.7±5.2% of the total). That is, although
the proportion of ATF3-IR neurons may be small when compared to the entire DRG population,
it is a much larger proportion when compared to those known to innervate the region of skin
containing the incision.

The frequency distribution of the soma sizes of neurons that expressed ATF3-IR was similar
between the skin incision and nerve transection groups (Figure 2). ANOVA tests for the
individual size intervals (Figure 2B) revealed no significant differences between the groups
for the proportions of ATF3-expressing neurons in any of the size intervals.
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To further characterize the axonal injury/regeneration-associated genetic program in response
to skin incision, we assessed other factors known to be altered by axonal injury. Using
quantitative PCR, we examined the expression of galanin (GAL), 43kD growth-associated
protein (GAP-43), and growth arrest and DNA-damage-inducible, alpha (Gadd45a). The
expression level of each gene transcript was determined relative to glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). The resulting values were then compared between post-
incision DRG and the corresponding contralateral DRG from the same animals, as well as the
corresponding DRG from naïve animals. Results are summarized in Figure 3. For each gene,
ANOVA indicated significant differences existed between groups. Post-hoc Student-Newman-
Keuls test indicated that the control groups did not differ from each other, but that the incision
group differed significantly from each control group (Figure 3).

Figure 3 indicates that the group mean expression levels of each gene were greater in the
incision-side DRG than in the contralateral control-side DRG. In addition, within each
individual animal, expression of each gene was always greater in the incision-side DRG than
in the contralateral control-side DRG (Figure 4).

DISCUSSION
We have demonstrated that skin incision without nerve damage induces expression of ATF3
mRNA and protein and alters expression of other regeneration-associated gene transcripts
(GAP-43, galanin, Gadd45a) in sensory neurons in a manner similar to what has previously
been demonstrated in models of peripheral nerve injury (e.g.,5,9,11,12,55,58,69). In addition
to being upregulated in response to nerve injury, ATF3, galanin, and GAP-43 have each been
shown to play a functional role in axonal regeneration after injury4,6,20,21,32,51,52,56,63.
Assessment of this set of genes was undertaken to determine if skin incision induced only
ATF3 expression, or if it induced a broader spectrum of regeneration-associated changes. This
was important because it was possible that ATF3 expression, although generally associated
with injury and regeneration of axons, might have been part of a different process in this model.
The regulation of other regeneration-associated genes alongside induction of ATF3 suggests
that injury to the tissue itself induces a response in DRG neurons akin to the injury and
regeneration response found after injury to the peripheral nerve.

We have shown that GAP-43 mRNA is increased in DRG after skin incision, though the
increase is small. Unlike ATF3, which essentially is absent in normal DRG, GAP-43 is
constitutively expressed by small diameter neurons expressing the NGF receptor trkA19.
TrkA-expressing neurons constitute upwards of 50% of the neuronal population of the DRG
34. The small but significant increase in GAP-43 mRNA expression likely reflects the small
proportion of neurons affected by the incision (according to the counts of ATF3-
immunoreactive neurons) compared to the large number of neurons expressing GAP-43
constitutively.

In terms of determining the necessary and sufficient stimuli for these changes, these data do
not allow us to distinguish between the overt sectioning of axons in the terminal tissue and the
sequelae (i.e., inflammation, immune cell action, remodeling of surrounding tissue, etc.) as
possible causes. Expression of ATF3 in sensory neurons has been reported to occur in other
models where inflammation or neuropathy occurs without injury to the nerve itself 7,24,25,
39–41. The factors triggering induction of ATF3 and other changes after injury to the peripheral
nerve also have not been identified, although the loss of constitutive neurotrophic factor
signalling likely is a contributing factor 3,44,60. A recent report indicated that skin incision
induced increased production of nerve growth factor (NGF) in the region immediately
surrounding the incision, and also suggested that there was a concomitant reduction in the
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transport of NGF62. If this suggestion is borne out, it might account for both the known
sensitizing effects of NGF (e.g., 43) and the induction of ATF3 reported here.

There was little difference in the cell size distribution of neurons that expressed ATF3 between
skin incision and T11 DCn transection, which induces ATF3 expression across the entire
spectrum of cutaneous afferents. This indicates that the skin incision does not induce ATF3
preferentially in any particular major subpopulation.

From the research perspective, our data indicate that design of experiments and surgical
approaches must account for changes in sensory neurons induced by skin incisions. If the
experimental design requires non-injured neurons, one must spare not only the nerve, but also
the innervation fields. This is particularly important when it is the cutaneous innervation fields
that are the subject of experiments, such as those examining the effects of nerve injuries on
sensory function. An example can be found in the sham surgery group (skin incision) of a
recent study characterizing a new model of skin/muscle incision and retraction. A greater
number of ATF3-expressing DRG neurons was found in the sham group than naïve control
group [Table 2 in Flatters (2008)18], although this was not the focus of their report. Further,
the use of contralateral ganglia as controls for ipsilateral manipulations that involve midline
incisions may be problematic, as nociceptor dermatomes overlap57 and may cross midline and
could therefore display an injury response.

The induction of ATF3 by skin incision also may play a role in some of the unexpected findings
in prior studies where ATF3 is induced in “non-injured” neurons, as suggested by Shortland
and colleagues53. That is, many studies examining ATF3 have not accounted for its possible
induction from incision of the skin, which we have shown here. Thus, certain conclusions may
need to be re-examined, and future studies must consider the current data. The proposition
offered by Shortland and colleagues53 – that the inflammatory environment may have led to
expression of ATF3 in axons without overt nerve injury – remains entirely feasible. Neither
our study nor theirs could differentiate between injury to axons and tissue inflammation as
possible cause(s) of ATF3 expression.

If tissue damage without nerve injury induces injury/regeneration-like responses in DRG
neurons innervating that tissue that are the same as, or similar to, the program induced by injury
to the nerve itself, then other nerve injury-related characteristics that may be involved in the
development of pain must be examined. For example, skin injury may induce the activation
and/or recruitment of immune cells into the DRG, as occurs in the DRG housing injured and
neuropathic neurons23,40. In addition, skin injury may induce transganglionic changes in
spinal cord as occurs with inflammation and nerve injury (e.g.,46). Recent work indicates that
this may be the case64–66, although those studies examined only acute post-incision times,
which may not reflect changes related to any putative anatomical plasticity implied by the
transcriptional changes reported herein.

Acute and long-term pain following surgery is a serious clinical problem. It is a major topic of
both basic and clinical investigation because of its prevalence (even minor surgery can induce
this type of pain), its significant and broad impact on patient care and morbidity, the relative
ineffectiveness of current treatments 26,27,30,45, and our incomplete understanding of the
transition from acute to chronic pain28. Perhaps one of the most debilitating sequela is the
development of chronic and neuropathic pain in many of these patients through a number of
incompletely understood mechanisms that may interact in unknown ways 28. Generally
speaking, post-surgical and incisional pain is treated from the anesthesiological perspective,
i.e., as a nerve conduction and inflammation condition. However, common anesthesiological
approaches such as local nerve block and numerous peri-operative options, although improving
outcomes, continue to yield limited success8,26,27.
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Brennan and Kehlet8 indicated that when considering the mechanisms of persistent
postsurgical pain, attention must be paid specifically “…to the role of nerve injury, which may
be the most important pathogenic factor leading to persistent postsurgical pain1,8,10,38.” The
current data may cast tissue damage in a new light – one which includes similarities to nerve
injury. This may be particularly important when considering damage of large areas of tissue
(a factor predicting pain outcomes38) which would presumable induce responses in an
increasing number of sensory neurons.

Prior work has demonstrated that there is hyper-reinnervation of skin wounds beginning about
3 days after injury and receding to normal over the course of weeks 2, suggesting that the axons/
neurons involved are temporarily in an enhanced growth state. It also has been shown that
injury of a peripheral nerve enhances the growth capacity of both the peripheral and central
terminals of sensory neurons, potentially leading to the establishment of aberrant connections
(e.g.,13,31,59). Further, this “priming” can have significant longevity, particularly if the first
insult occurs during neonatal periods (e.g.,16,17), or occurs repeatedly (e.g.,29,36).

Not all situations in which ATF3 and other regeneration-related genes are induced results in
chronic pain or other pain pathologies37. However, this does not indicate that these genes are
not involved in the initiation or maintenance of such conditions. The primary predictor of
postoperative pain is the existence of pre-operative pain and even minor tissue injuries can
apparently facilitate later injuries leading to pain pathologies16,17,28,50. It is known that initial
injury to sensory neurons leads to a significantly enhanced growth response to subsequent
injuries22,29,36. Thus, perhaps there is some other factor or set of factors that dictates what
ultimately comes of the regenerative program having been activated. That is, the neuron may
execute an axonal regeneration program and then return to a basal state, but one that is primed
to respond to subsequent injury. When considered in light of the current data, it is possible that
even minor tissue damage could institute a status of enhanced responsiveness in terms of
anatomical plasticity in addition to the well described physiological plasticity, and possibly
through related or shared signaling mechanisms47,54.

In sum, skin incision is capable of inducing nerve injury-like responses, including regulation
of genes known to be involved in axonal growth/regeneration, in the absence of injury to the
nerve itself. Future efforts to investigate mechanisms of pain and to improve pain management
may benefit by considering anatomical plasticity of sensory neurons (which is implied but not
demonstrated by the transcriptional changes reported herein), even in the absence of trauma to
a nerve, as a contributing factor in post-incisional and post-surgical pain and possibly in the
transition of that pain from acute to chronic.
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Figure 1.
The proportion of ATF3-positive cells, relative to total number as defined by immunoreactivity
for NeuN antibody, is significantly different between the skin-incision group and each of the
control groups, but not between the control groups (naïve and staple-only).
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Figure 2.
Size-frequency histograms indicate that the distribution of soma size (by cross-sectional area)
for neurons expressing ATF3 is similar between the skin-incision group and the T11 DCn
transection group. Both graphs represent the proportion of ATF3-expressing neurons in each
size interval from a total population of ATF3-expressing neurons. A) Mean frequency is
calculated by pooling the data from all members of each group to provide an overall result. B)
Mean frequency is calculated by expressing the number of ATF3-expressing neurons of that
size interval as a proportion of the total number of ATF3-expressing neurons in that single
animal. The proportions from individual animals are then used to determine the mean and
standard deviation for that size interval. Only those intervals that could be compared
statistically are represented graphically.
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Figure 3.
The expression of a set of known injury/regeneration-associated gene transcripts is
significantly increased in DRG innervating incised skin compared to both contralateral DRG
(same animal) and naïve DRG. P-values are for incision vs. both control groups independently;
error bars represent standard deviation.
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Figure 4.
The expression of a set of known injury/regeneration-associated gene transcripts is always
greater in the DRG innervating incised skin compared to the contralateral DRG in the same
animal. Each circle represents the ratio of relative gene expression for a single animal. Dotted
line indicates equal level of expression between sides.
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Table 1

Group descriptions.

Group Assessment Survival

Skin incision (1cm) Microscopy 3d

Naïve Microscopy -

Staples Microscopy 3d

T11 DCn TX Microscopy 3d

Skin incision (2–3cm) PCR 4d

Naïve PCR -

Groups are indicated in the left column, followed by the assessments performed with each, and the post-treatment survival times (where applicable).
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