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 Introduction 

 An important methodological issue in association 
studies of complex disorders is differentiating between 
true predisposing etiological allele variants and those
that are only in linkage disequilibrium (LD) to those loci 
[Koeleman et al., 2000; Cordell and Clayton, 2002]. Our 
objective here is to provide methods for selecting a subset 
of markers in a gene which explain the disease marker as-
sociation seen in the entire set. There is a complicated re-
lationship between LD and association as described in de-
tail in Nielsen et al. [2008]; strong LD between markers 
does not always guarantee redundant association results. 
However, testing each marker at a time, when there is even 
one DSL in the region, is likely to result in multiple signif-
icant  �  2  test statistics due to the LD between the markers. 
In our example, multiple SNPs in the IL10 gene test as sig-
nificant for association with lung function. A test is needed 
that can evaluate the contribution of a marker while allow-
ing for an effect at one or more nearby markers.

  Case-control methods are used in genetic studies be-
cause they can have higher power than family-based tests, 
but family-based tests of a main genetic effect can have the 
advantage of being constructed to be completely robust to 
population substructure and model-free [Laird and Lange, 
2006]. In family-based designs, testing a genetic effect at 
one marker, while conditioning on another marker, has 
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 Abstract 

 We introduce a stepwise approach for family-based designs 
for selecting a set of markers in a gene that are indepen-
dently associated with the disease. The approach is based on 
testing the effect of a set of markers conditional on another 
set of markers. Several likelihood-based approaches have 
been proposed for special cases, but no model-free based 
tests have been proposed. We propose two types of tests in 
a family-based framework that are applicable to arbitrary 
family structures and completely robust to population strat-
ification. We propose methods for ascertained dichotomous 
traits and unascertained quantitative traits. We first propose 
a completely model-free extension of the FBAT main genet-
ic effect test. Then, for power issues, we introduce two mod-
el-based tests, one for dichotomous traits and one for con-
tinuous traits. Lastly, we utilize these tests to analyze a con-
tinuous lung function phenotype as a proxy for asthma in 
the Childhood Asthma Management Program. The methods 
are implemented in the free R package fbati. 
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been partially considered in the literature. Koeleman et al. 
[2000] propose a likelihood-based approach to test for one 
marker in the presence of another. In a more general 
framework, Cordell and Clayton [2002], Cordell [2004], 
and Cordell et al. [2004] suggest a model-building ap-
proach using the retrospective likelihood of the genotype 
conditional on the trait and parental haplotype distribu-
tion to model multiple loci. This model based approach is 
completely robust to population substructure, but is lim-
ited to dichotomous traits and families with both parents 
genotyped. Dudbridge [2008] extends this model-based 
likelihood approach to missing parents and to quantita-
tive traits using a normal model, but the results can be 
biased if the normal model does not hold. In principle, the 
normal model can be extended to using ascertained traits, 
unlike the approach we will present for quantitative traits. 
The approach by Dudbridge [2008] is not completely ro-
bust to population stratification when there are missing 
parents, but in practice it performs well when this as-
sumption is violated. We present here methods that are 
applicable to arbitrary family structures, are completely 
robust to population stratification, and do not require dis-
tributional assumptions on the traits.

  When using a test based on multiple genetic markers, 
we need to consider the difficulty in reconstructing the 
parental genotypes. When parents are effectively present, 
as is required in the test by Cordell and Clayton [2002], 
Cordell [2004], and Cordell et al. [2004] or available 
through nuisance parameters as in the test by Dudbridge 
[2008], the haplotype density and phase resolution is not 
very difficult to compute, even for larger numbers of mark-
ers. However, once there are missing parents, reconstruct-
ing the haplotype density and phase resolution is more dif-
ficult, and can be computationally infeasible if there are 
more than a few markers. Thus it is advantageous when-
ever possible to avoid reconstructing the haplotype den-
sity of all of the markers when parents are missing and 
testing multiple markers. Our approaches are constructed 
with this thought in mind.

  We first propose a model-free test for any trait that is 
completely robust to population substructure and pheno-
typic model misspecification, and allows for arbitrary 
pedigrees. We then propose separate model-based tests 
for dichotomous and continuous traits based on a linear 
model. The advantage of the model-based method for di-
chotomous traits over the previous methodology is its 
method of handling missing parents. This advantage is 
also shared by the method for quantitative traits, which 
has the additional advantage of being less restrictive on 
the phenotypic model than previous approaches. The 

model-based tests are still completely robust to popula-
tion substructure, but not to phenotypic model mis-
specification. We assess the robustness of the model-
based tests to phenotypic model misspecification via sim-
ulation. In our tests, we avoid reconstructing the full 
haplotype density by instead conditioning on the haplo-
type density of small subsets of the markers, or, prefera-
bly, the univariate densities of each of the markers. This 
results in more informative families, especially when par-
ents are missing. We utilize the proposed test to analyze 
a lung function phenotype in the Childhood Asthma 
Management Program (CAMP) study.

  Methods 

 We propose several methods, all of which are completely ro-
bust to population stratification. We first propose a model-free 
test for any trait, and then propose separate tests for dichotomous 
and continuous traits that assume a log-linear and linear disease 
model, respectively. The latter tests are more powerful, but not 
completely robust to phenotypic model misspecification. Suppose 
that  Y  ij  indicates an individual’s trait. Suppose the genotypes of 
the  k -th marker for the  j -th individual in the  i -th family are given 
by  g  ij  ,  k , and  X  ij  ,  k  =  X ( g  ij  ,  k ) is some coding of the marker, e.g. addi-
tive or genotype. We are interested in testing the set of  M  markers 
 X  ij  ,  m  = ( X  ij  ,  m  1  ...  X  ij  ,  m M  ) conditional on the set of  C  markers  X  ij  ,  c  = 
( X  ij  ,  c  1  ...  X  ij  ,  c C  ). Suppose that the sufficient statistic for parental 
mating type at marker  a  is given by  S  a . Let  S  {  a  ,  b  }  = { S  a ,  S  b }, i.e. the 
sufficient statistic for parental mating type at marker  a  and the 
sufficient statistic for parental mating type at marker  b , and let 
 S  H  ({  a  ,  b  })  be the sufficient statistic for the haplotype density of the 
parental mating type of those markers. The distribution of the 
sufficient statistics for the SNP and haplotype density is given in 
Rabinowitz and Laird [2000] and Horvath et al. [2004]. All tests 
proposed are completely robust to population substructure by 
conditioning on the sufficient statistic for parental mating type, 
although some will use the haplotype density, and some will use 
just the SNP density.

  Model-Free Method for Binary and Continuous Traits
(FBAT-C Robust) 
 A model-free test can be constructed similar to that of the 

FBAT main genetic effect statistic [Rabinowitz and Laird, 2000; 
Schaid, 1996]. However, instead of basing the test statistic on 
 P ( X  ij  ,  m k    �   S  i  ,  m k  ), we additionally condition on the other markers us-
ing the distribution

   P ( X  ij  ,  m k    �   X  ij  , c  ,  S  i  ,  H  (  m k   , c ) ). (1)

  Conditioning on  Y  i  is not necessary since under the null hy-
pothesis, the distribution does not depend on  Y , as shown in the 
Appendix. Let  T  ij  be the mean centered  Y  ij  –  Y  for quantitative 
traits or an indicator of disease status for dichotomous traits [Lu-
netta et al., 2000]. Let 
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U T E |S ccX X g                              (2)
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  This is essentially the standard FBAT main genetic effect test 
[Laird et al., 2000; Rabinowitz and Laird, 2000] in the univariate 
case, except we have replaced  E [ X   �   S ] by  E [ X  ij  ,  m   �   S  i  ,  H  (  m k   ,c) , g ij  ,c ]. 

 The distribution of  P ( X  ij  ,  m k  ,  X  ij  , c    �   S  i  ,  H  (  m k   , c ) ) is given by Horvath 
et al. [2004], but we do not need to estimate weights for the phas-
es of the offspring in the cases where phase is not completely re-
solved. It is a very technical detail as we shall explain. We condi-
tion on the sufficient statistic for parental mating type and phase 
resolution to make the test robust to population substructure. It 
is easiest to think of the sufficient statistic as a partition of the 
sample space, or a set of possible outcomes consistent with what 
was observed or can be reconstructed about the parental mating 
type [Rabinowitz and Laird, 2000; Horvath et al., 2004]. Con-
struction of this set in Horvath et al. [2004] involves finding the 
set of unphased genotypes that are consistent with all possible 
phased parental mating types. Horvath et al. [2004] then estimate 
the phases of the offspring; however, this is not necessary here as 
the disease model does not depend on phase. A similar but less 
general conditioning argument is given in Cordell and Clayton 
[2002].

  Let  U  i  ,  m  = ( U  i  ,  m  1  ...  U  i  ,  m M  ). Then the resulting test statistic 
 �  j   U  i  ,  m  is similar to the FBAT main genetic effects test in the uni-
variate case, or the multimarker test [Rakovski et al., 2007; Chap-
man et al., 2003] when multiple markers are being analyzed. How-
ever, here we have a more restrictive conditioning set for comput-
ing the expected value of  X  ij  ,  m k  . Proof that this has expectation 
zero under the null hypothesis is provided in the Appendix. The 
resulting test, using the empirical variance, is given by 

, , , ,

T
T

i i i i
i i i

U U U Um m m m

 which asymptotically follows a �2 distribution with rank 
( �  i  ( U  i  ,  m ) ( U  i  ,  m ) T ) degrees of freedom. We will refer to this test as 
the FBAT-C Robust test. 

 Model-Based Methods 
 Despite the attractiveness of the completely robust test, the 

FBAT-C Robust test is a lot less powerful than a test based on a 
disease model. Thus we introduce two model-based methods. We 
will explore how robust the tests are to phenotypic model mis-
specification by simulation.

  Model-Based Method for an Ascertained Binary Trait 
(FBAT-C Log-Linear) 
 For a dichotomous trait, we can alternatively base the likeli-

hood on the joint distribution of the markers being analyzed and 
conditioned on

   P ( X  i  ,  m ,  X  i  , c    �   Y  i ,  �  i ;  � ), (3)

  where  �  i  =  S  i  ,{  H  ({  m  1  ,c}), ...,   H  ({  m M   ,c}),  H  (c)} , rather than equation 1. By not 
conditioning on X i  ,c , the resulting likelihood provides a more 
powerful test than the model-free approach, but one must assume 
a model for the trait, as we allow Y i  to possibly depend on X i  ,c . 

 For a binary trait, suppose that the probability of disease is 
given by the generalized linear model  

log( P ( Y  ij  = 1  �   X  ij  ,  m ,  X  ij  , c  ,  �  i ;  � )) =  �  i  +  �  T   m X  ij  , m   +  �  T   c  X  ij  , c     
=  �  i  +  �  T  X  ij . (4)

  Notice that the disease model does not depend upon phase. 
The intercept  �  i  allows for other individual or family effects. Co-

variates are not necessary to model, as we will see that they cancel 
out of the retrospective likelihood proposed below. Our null hy-
pothesis is that  �  m  = 0, i.e. none of the markers in m are in linkage 
disequilibrium with any disease locus after adjusting for the 
markers in c. Suppose we additionally assume that we have phe-
notypic independence of the sibs, so that 

 , ; 1 , ; .i i i ij i
j

P | P Y |� � � �Y 1 X X ij                                (5)

  Such an assumption is fairly reasonable in this case since all 
family-specific covariates and any family factors that might be 
modeled in equation 4 will cancel out of the likelihood in equa-
tion 3, along with  �  i . Using this likelihood, equations 4 and 5, and 
using the distribution for  P (X i   �   S  i  ,  H  ({  m k   ,c}) ) as described in the mod-
el-free test, we can construct a score test of  H  0 :  �  m  = 0. The log 
link function in equation 4 is necessary for the baseline disease 
prevalence to cancel out of the formula. This also requires that we 
only use the affected offspring, i.e. unaffected sibs are used only 
to reconstruct parental haplotype transmissions. This restriction 
was not necessary in the model-free test, although being able to 
use the unaffected siblings will generally not allow to overcome 
the power gained from assuming a disease model. The first differ-
ence between this retrospective likelihood and the one given by 
Cordell and Clayton [2002] is that this likelihood conditions on 
the sufficient statistic for parental mating type, and so can be used 
when there are missing parents. Unlike the extension proposed by 
Dudbridge [2008], we do not estimate nuisance parameters for the 
parental genotypes, and so the test is completely robust to popula-
tion stratification. We also use the likelihood in equation 3 in-
stead of the product of the marginals  �  j   P (X ij   �   S  i  ,  H  ({m,c}) ,  Y  ij  = 1;  � ) 
as done by Cordell and Clayton [2002] and Dudbridge [2008], al-
though when parents are observed under the assumption in equa-
tion 5 they are equivalent. Both Cordell and Clayton [2002] and 
Dudbridge [2008] also use the haplotype density of all of the 
markers  S  H  ({m,c}) , whereas we will use a less restrictive set. 

 To help us define our estimating equations, let 

                                                                                                        (6)
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 The derivatives of the log-likelihood based on equation 3 gives
us the estimating equations  �  i   U  i  , m  ( �   m  ,  �   c  ) and  �  i   U  i  , c  ( �   m  ,  �   c  ). 
Details and proof that these have expectation zero under the
null hypothesis are provided in the Appendix. We estimate the 
nuisance parameter  �   c   by solving the estimating equation
 �  i   U  i  , c  ( 0 ,  �   c  ) = 0. The contribution of the  i -th family, adjusted
for estimation of the nuisance parameter, is given by 

, , , ,, , , , .i i i i i
ˆ ˆ ˆ ˆˆ ˆW U E U E U U� � � �

� �
m m c c c c c

c c

0 0 0 0c      (7)

 Then the test statistic is given by ( �  i  W  i ) T  ( �  i  W  i  W  T  i  ) –  ( �  i  W  i ). Under 
weak regularity conditions, this follows a �2 distribution with de-
grees of freedom given by rank ( �  i  W  i  W T  i   ) – . We will denote this 
test by FBAT-C Log-Linear. 
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 If we had instead based the likelihood on  P ( X  i  ,  m k    �   X  i  , c  ,  Y  i  = 
 1 ,  S  i  ,  H  ({  m k   , c }) ;  � ), the resulting score test is identical to the model-
free FBAT-C Robust test. This is because then the likelihood at 
 �   m   = 0 no longer depends on  Y  i  = 1 or on  � . The added power in 
the FBAT-C Log-Linear test comes from modeling  X  ij  , c   rather 
than conditioning on it.

  In practice, we would code each of the markers  X  ij  ,  c k   using in-
dicator variables for each genotype to prevent model misspecifi-
cation, i.e.  X  ij  ,  c k   = ( I  g ij   , ck    =   AA   I  g ij   , ck    =   Aa ). In contrast, the coding of  
X  ij  ,  m k   does not affect the validity of the test. However, using either 
the additive coding (i.e. the number of disease alleles) or indicator 
variables for genotype for  X  ij  ,  m k   is necessary when we are testing 
multiple markers conditional on another marker. With the addi-
tive coding and indicator variable coding in the bi-allelic case, the 
value of the test statistic does not depend on which allele is coded 
as the disease allele. This is not the case for a dominant or reces-
sive coding. Using indicator variables would be most appropriate 
in the case of a dominant or recessive gene.

  Linear Model for an Unascertained Continuous Trait
(FBAT-C Linear) 
 We take a slightly different approach for quantitative traits, 

assuming a model only for the mean of the trait. Assume that the 
mean of the trait follows a linear model

   E ( Y  ij   �   X  ij  , m  ,  X  ij  , c  ,  S  i  ,{ m , c } ) =  �  ij ( S  i  ,{ m , c } ) +  �  T   m    X  ij  , m   +  �  T   c    X  ij  , c  .       (8)

  We additionally assume only that Mendel’s laws hold and 
make no distributional assumptions on the error, rather than nor-
mal error as in Dudbridge [2008]. The term  �  ij  =  �  ij ( S  i  ,{m,c} ) en-
codes the dependence of the trait on the parental mating type. We 
leave this term unspecified, so that the test is completely robust to 
population stratification. 

 Let    X  ij  ,  m k   =  X  ij  ,  m k   –  E ( X  ij  ,  m k    �   S  i  ,  m k  ), and    X  ij  , m   = (   X  ij  ,  m  1  ...
   X  ij  ,  m M  ). The parameters  �   m   and  �   c   could be estimated using G-
Estimation [Robins et al., 1992] as in Vansteelandt et al. [2008]. 
However, here we are instead interested in testing  �   m  , treating  �   c   
as a nuisance parameter; that is, here we are coding each allele 
instead of grouping them as a single haplotype. Since we also as-
sume no haplotype effect, we use a slightly different parental mat-
ing type conditioning set than Vansteelandt et al. [2008], and a 
very similar G-Estimator. Define the residual phenotype

   e  ij ( �   m  ,  �  c ) =  Y  ij  –  �  ij  –  � T   m     X  ij  , m   –  �  T   c    X  ij  , c  .

  To define the estimating equations, similar to before, we let 
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  with  U  i  ,m  and  U  i  ,c  defined as before in equation 6. Then our esti-
mating equations can be given by  �  i   U  i  ,m  and  �  i   U  i  ,c . Note that 
these equations do not depend on the haplotype density at all, and 
so will have more informative families than the other proposed 
methods. The estimating equation has expectation 0 (see Appen-
dix) for every choice of  �  ij . Thus the choice of  �  ij  will not affect 
the validity of the test, only the power. A powerful two-step ap-
proach for estimating  �  ij  is as follows. In the first step, we estimate 
 �  ij  by the sample mean of the trait, possibly after adjustment for 
covariates. We then estimate  �  c  using the data. In the second step, 

we let  �  ij  be the predicted value of the residual  e  ij ( �  m ,  �  c ) from 
each strata of parental mating type. Misspecification of this sec-
ond step will not invalidate the approach, but may at worst lead to 
some loss in power. 

 Construction of the test statistic then proceeds as in that of the 
FBAT-C Log-Linear test. The nuisance parameter is solved as be-
fore under the null hypothesis from the equation  �  i,j   U  ij  , c  ( 0 ,  �   c  ) = 
0, which has the following closed form estimate 

1

, , ,
, ,

.T
ij ij ij ij ij

i j i j

ˆ Y� �c c c cX X X

 Intuitively, the estimating equation for the nuisance parameter  �  c  
is very similar to the FBAT main genetic effects test. Let the con-
tribution of the  i -th family, adjusted for estimating the nuisance 
parameter, be given by 
 

, , , ,

, ,

, , , , ,
, ,

, , , ,

.

i i i i i

T
ij ij ij ij

ij ij ij ij ij ij ij

j

i j i j j

ˆ ˆ ˆ ˆˆ ˆW U E U E U U

ˆY

Y

� � � �
� �

�

�

m c m c c c c c
c c

m c c

m c c c c

0 0 0 0

X X

X X X X X

�

  Then the test statistic is given by ( �  i  W  i ) T  ( �  i  W  i  W T  i   ) –  ( �  i  W  i ). Under 
weak regularity conditions, this follows a �2 distribution with 
rank ( �  i  W  i  W T  i   ) –  degrees of freedom, as shown in the Appendix. 
This test statistic is intuitively similar to a test constructed by first 
regressing the effect of the marker being conditioned on the trait, 
and second using this residual as a new trait in the standard FBAT 
main genetics effect test of the marker being analyzed; however, 
the G-Estimation approach uses Mendel’s laws and evaluates the 
contributions of all markers simultaneously. Additionally, if we 
were to avoid modeling  X  c  in equation 8, and use  S  {  H  (  m  1  ,c), ...   H  (  m M   ,c)} , 
then the G-Estimation would yield the FBAT-C Robust test. 

 Stepwise Strategy 
 Each test described above (FBAT-C Robust, Log-Linear, and 

Linear) can be applied using a stepwise approach to determine a 
set of markers that best explain the association with the disease. 
The stepwise approach is intended to be used after a significant 
result has been found from a multimarker test [Chapman et al., 
2003; Rakovski et al., 2007]. The stepwise approach begins with a 
univariate analysis of each marker, with the FBAT main genetic 
effects test by Rabinowitz and Laird [2000], choosing the most 
significant marker. Then the FBAT-C test can be applied by con-
ditioning on the markers from the previous step, and testing each 
of the other markers. A step-down approach is then applied to 
ensure all of the markers are really necessary.

  Simulations 

 Power 
 In all plots and tables displayed here, unless otherwise 

noted, we ran 10,000 simulations with an empirical type 
I error rate of 0.05. Each consisted of 500 families, of dif-
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ferent structures as will be indicated. Results are dis-
played under an additive disease model.

  We first compare the power of the model-based FBAT-
C Log-Linear and FBAT-C Linear tests to the FBAT-C 
Robust test, and the other approaches proposed in the 
literature. For power, we simulate the data under the 
models given in equation 4 for dichotomous traits and 
equation 8 with standard normal error for continuous 
traits.  Figure 1  and  2  show that the model-based methods 
can be substantially more powerful than the robust meth-
od for dichotomous and continuous traits, respectively. 
They also show that the test will not have much if any 
power if the markers being analyzed are too highly cor-
related ( R  2 , rather than  D �  ) with the markers being con-
ditioned on, depending on the sample size and magni-
tude of the effect size. If the markers are perfectly corre-
lated, then they are indistinguishable. Results in this plot 
are shown for allele frequencies of 0.2 for both alleles, but 
the relative power difference between the tests does not 
change much as a function of allele frequency. We vary 
the allele frequencies in  figure 3 ; both the allele frequen-
cy of the marker being tested and that being conditioned 
on affect the power of the disease. In  figure 1 , the FBAT-
C Log-Linear test has the same power as the likelihood 
ratio test introduced by Cordell and Clayton [2002], since 
for trios the FBAT-C Log-Linear test is a score test of the 

same likelihood. The FBAT-C Linear model is more pow-
erful than the normal model implemented in the soft-
ware of Dudbridge [2008], largely because the latter is
a two degree of freedom test while the former is a one 
 degree of freedom test. Results are similar for discor-
dant sibpairs; the nuisance parameters for parents do
not increase the power of the test much, if at all (results 
shown in online supplementary figures 1 and 2, www. 
karger.com/doi/10.1159/000264447).

  Next, we explore the power of different family struc-
tures in  figure 4 ; results are similar to that of the usual 
FBAT main genetic effect test. Under a quantitative trait, 
we compare trios, sibships with two offspring and no par-
ents (sibpairs), and sibships with three offspring and no 
parents (sibtrios). For the sibpairs and sibtrios, when par-
ents are missing, we then consider the case when only one 
offspring in the sibship is phenotyped, which would be 
more common in a dichotomous trait. In this case trios 
are more powerful than sibtrios, which are more power-
ful than sibships. This relationship is preserved no matter 
what the allele frequency of the other model parameters 
are. However, with a quantitative trait, often more off-
spring are phenotyped, so we then compare to the cases 
when all of the offspring are phenotyped. When all off-
spring are phenotyped, the sibpair is about as powerful 
as trios, and the sibtrio is the most powerful.
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  Fig. 1.  Power for trios with a dichotomous trait of the test of  X  m  
conditional on  X  c .  R  2  is between the markers  X  m  and  X  c , where  X  m  
is the DSL. 

  Fig. 2.  Power for trios of the test of  X  m  conditional on  X  c  for a con-
tinuous trait. 
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  Robustness 
 Secondly, we test the robustness of the two model-

based tests. The FBAT-C Robust test always preserves the 
type I error rate, so we focus here on the performance of 
the model-based tests. The results we display for all of the 
robustness tests are all done with an allele frequency of 
0.2. Other allele frequencies were simulated, but the main 
parameter that inflated the type I error was the correla-
tion between the markers. In the cases where the type I 
error was inflated, it was generally more inflated for more 
highly correlated markers, and for higher  �  c  values, un-
less otherwise specified. Thus most charts focus on show-
ing a range of  R  2  values or just more extreme  R  2  values 
when other parameters are of interest, and reasonable  �  c  
values. We begin by considering the robustness of the 
FBAT-C Log-Linear method. One potential misspecifica-
tion is if the scale of the model is wrong, for example if 
the link function in equation 4 should instead be on a lo-
gistic scale, although they should be similar for a rare 
enough disease. To investigate the robustness of the test, 
we simulated data under the logistic model. In the results 
in online supplementary table 1, the model-based test is 
generally overly conservative, but preserves the nominal 
type I error rate. This does not generally translate into 
more power for the FBAT-C test than the FBAT-C Robust 

test under the misspecified case, except for the cases 
when the markers are very highly correlated, and there is 
low power of the test anyway (results not shown).

  Next, we tested the robustness of the model-based 
tests for continuous traits to the disease model. We mod-
eled the mean as in equation 8 with a uniform and �2 
variance distribution.  Figure 5  shows that FBAT-C Lin-
ear performs as expected and desired, while the approach 
based on a normal likelihood [Dudbridge, 2008] has an 
inflated type I error. Second, we simulated what would 
happen if the mean was really specified by a log-normal 
distribution, to test what would happen when the linear 
model did not hold for the mean. We see very little depar-
ture from the nominal type I error rate in  figure 5  for the 
FBAT-C Linear test. Third, we tested whether phenotyp-
ic correlation amongst the siblings would bias the test. 
Even under strong phenotypic correlation, the test shows 
little if any departure from the nominal type I error rate 
(results not shown). Last, we found that the approach by 
Dudbridge [2008] did not inflate the type I error rate 
much, if at all, for discordant sibpairs (results shown in 
the supplementary material).

  In summary the model-based method for a dichoto-
mous test often preserves the type I error rate, but is over-
conservative when the log-linear conditional mean mod-
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  Fig. 3.  Power of the test of  X  m  conditional on  X  c  for a continuous 
trait using FBAT-C Linear for different allele frequencies. The two 
power curves, where  p  m   0   p  c , cannot be perfectly correlated (bi-
nary data), and are shown only as far as they can be correlated. 

  Fig. 4.  Power of the test of  X  m  conditional on  X  c  for a continuous 
trait using FBAT-C Linear. For the sibpair and sibtrio simula-
tions, those indicated with ‘proband only’ have only the proband 
phenotyped; the others have phenotyped all offspring.           
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el is misspecified. The model-based method for continu-
ous traits also performs well.

  Stepwise Strategy 
 Lastly we test how well our overall strategy performs. 

We apply this for our FBAT-C Linear test and our FBAT-
C Robust test. We additionally consider one other ap-
proach, where all markers are univariately tested, and 
those with a significant p value after Bonferroni correc-
tion are chosen; we denote this approach the Bonferroni 
approach. To simulate data to test the strategy, we use the 
haplotype frequency from the dataset ( table 1 ) in our ap-
plication with 682 trios. We consider validity in this case 
to be when the approach finds a marker (or markers), but 
there is no association, i.e. no markers should be found 
because there is no DSL. Recall that the FBAT-C ap-
proaches all begin with a multimarker test, and so should 
be conservative in this case. When testing the validity of 
the test, the FBAT-C Linear and FBAT-C Robust have an 
empirical type I error rate of 0.018, and the Bonferroni 
approach has an empirical type I error rate of 0.032 (500 
simulations, approximate SE 0.01). We then simulated 
three different cases to test how well the approach works 
if there really was a DSL, or two DSLs, in the set of typed 
markers. Lastly we looked at how well the approach would 
work if a DSL was untyped; we took the two most highly 
correlated SNPs from our dataset (correlation 0.93), using 
one as the untyped DSL, and saw how often the other cor-
related marker was chosen. Results for a continuous trait 
are shown in  table 2 , and are similar for a dichotomous 
trait (results not shown). With one DSL, the FBAT-C Lin-
ear and FBAT-C Robust tests perform similarly, as the 
initial univariate step is the same. However, when there 
is more than one DSL, then the FBAT-C Linear approach 
performs better than the FBAT-C Robust test. The Bon-
ferroni approach generally does better for the case of 
picking up only non-DSL markers, but has a lot more cas-
es where it picks up only one of the DSLs or one of the 
DSLs and additional markers (the ‘at least one DSL’ col-
umn), as would be expected.
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  Fig. 5.  FBAT-C Linear validity results for trios. The plots of the  �  2  
and uniform distribution follow a linear model, but have non-
normal variance. The log-normal model follows a non-linear 
model.                   
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Table 2. Empirical results for different strategies using the haplotype frequencies from the CAMP data with 682 trios

Strategy � FBAT-C Linear FBAT-C Robust Bonferroni

exactly
all DSLs

at least
one DSL

only
non-DSL
markers

exactly
all DSLs

at least
one DSL

only
non-DSL
markers

exactly
all DSLs

at least
one DSL

only
non-DSL
markers

1 DSLa 0.25 0.396 0.032 0.150 0.392 0.112 0.150 0.238 0.028 0.040
0.5 0.832 0.082 0.084 0.814 0.194 0.104 0.118 0.078 0.000

2 DSLa 0.25 0.242 0.470 0.052 0.116 0.540 0.084 0.026 0.646 0.000
0.5 0.672 0.300 0.000 0.450 0.362 0.028 0.088 0.794 0.004

Untyped DSLb 0.25 0.372 0.058 0.064 0.354 0.056 0.066 0.352 0.166 0.046
0.5 0.834 0.162 0.002 0.846 0.132 0.016 0.254 0.744 0.002

When the true model is one DSL, the column ‘at least one DSL’ indicates the case when the DSL is found and additional non-DSL 
markers are found. When the true model is two DSLs the column ‘at least one DSL’ included the case when only one of the two DSL 
markers is found, with or without any additional markers. The columns for each strategy do not sum to 1, as the case when no mark-
ers are found is not included in the table.

a For 1 and 2 DSLs, random markers were chosen as the DSL(s).
b For the untyped DSL, rs1800872 was chosen as the DSL, but was omitted from the marker set, and rs1800871 was considered to 

be ‘the true DSL’ because of the high correlation (0.93). Based on 500 simulations; approximate SE <0.01.

Interleukin-10

kbp

205007 205008 205009 205010 205011 205012 205013 205014

rs1800872rs3024492 rs1800896rs1800871rs3024509rs3024496

3� UTR 5�

  Fig. 6.  The SNPs in the IL10 gene of the CAMP dataset.                       

Table 1. R2 (D�) of markers in the CAMP dataset

rs3024509 rs3024492 rs3024496 rs1800896 rs1800872 rs1800871

rs3024509 1
rs3024492 0.02 (1.00) 1
rs3024496 0.07 (0.96) 0.33 (0.99) 1
rs1800896 0.07 (0.96) 0.33 (0.99) 0.90 (0.95) 1
rs1800872 0.02 (0.95) 0.10 (0.98) 0.30 (0.96) 0.31 (0.99) 1
rs1800871 0.02 (0.88) 0.10 (0.94) 0.29 (0.93) 0.29 (0.95) 0.93 (0.98) 1
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  Application to SNPs in the IL10 Gene 

 We apply our test to six SNPs in the Interleukin-10 
(IL10) gene and its promoter regions in the Childhood 
Asthma Management Program (CAMP), as previously 

described in Lyon et al. [2004]. The SNPs are shown in 
 figure 6 . We use the continuous measurement of post-
bronchodilator forced expiratory volume (FEV) as a 
proxy for lung function, adjusted for age, height, gender, 
weight, and race [CAMP, 1999]. There are 682 pheno-

Table 3. Univariate results of the CAMP dataset

Marker Allele frequency Quantitative trait Dichotomized trait

# Inf FBAT normal # Inf FBAT

rs3024509 0.057 127 0.6462 0.7033  64 0.3390
rs3024492 0.222 341 0.0290 0.0310 181 0.8946
rs3024496 0.457 446 0.0019 0.0032 235 0.0106
rs1800896 0.455 395 0.0751 0.0278 209 0.0351
rs1800872 0.280 365 0.7894 0.8714 196 0.3778
rs1800871 0.284 378 0.6233 0.7812 199 0.3266

Results are first given for the quantitative trait; p values are given using the FBAT main genetic effects test (FBAT), and using the 
normal model (normal) as proposed by Dudbridge [2008]. Then results of the median-dichotomized trait are presented using the FBAT 
main genetic effects test. The number of informative families, i.e. the number of families with non-zero contributions to the test sta-
tistic, is given in the ‘# Inf ’ column.

Table 4. Stepwise results using the FBAT-C Linear and FBAT-C Robust approaches presented in the paper

Step Marker 
analyzed

Marker
condition

Quantitative trait Dichotomized trait

FBAT-C Linear FBAT-C Robust normal
model

FBAT-C Log-Linear FBAT-C Robust

# Inf p value # Inf p value p value # Inf p value # Inf p value

Up rs3024509 rs3024496 121 � (121,315) 0.7996 71 0.3509 0.9673 60 � (136,235) 0.6535 40 0.5271
rs3024492 299 � (299,314) 0.6139 122 0.3276 0.8030 160 � (136,234) 0.1631 67 0.3352
rs1800896 341 � (341,282) 0.2327 16 – 0.6274 176 � (127,214) 0.6099 9 –
rs1800872 334 � (334,282) 0.0490 158 0.1003 0.0910 177 � (126,213) 0.5330 92 0.3820
rs1800871 331 � (331,286) 0.0951 154 0.0701 0.1146 175 � (124,216) 0.4023 86 0.1676

Up rs3024509 rs3024496,
rs1800872

108 � (108,282),
(401,329)

0.6867

rs3024492 266 � (266,281),
(400,328)

0.4493

rs1800896 339 � (339,281),
(400,328)

0.8362

rs1800871 304 � (304,259),
(369,300)

0.2178

Down rs3024496 rs1800872 346 � (346,329) 0.0038
rs1800872 rs3024496 334 � (334,282) 0.0490

Results are also presented using a normal model as proposed by Dudbridge [2008]. The number of informative families, i.e. the 
number of families with non-zero contributions, is given in the ‘# Inf ’ column. In the ‘# Inf ’ column, the first number corresponds to 
the analysis allele (under an additive coding), and the subsequent pairs of numbers correspond to the number of informative families 
for estimating each nuisance parameter (under a codominant coding). The results of each test are shown only as far as the approach 
would have gone, and if there were ≥20 informative families.
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typed offspring, with almost all having parental geno-
type information. The multimarker test [Rakovski et al., 
2007] of these six markers has a p value of 0.0131, and the 
correlation matrix of the markers is shown in  table 1 .

  We apply our FBAT-C Linear test, our FBAT-C Robust 
tests, and the normal model proposed by Dudbridge 
[2008] to the dataset. For illustrative purposes, we also 
dichotomize the trait by its median, and apply our FBAT-
C Log-Linear and FBAT-C Robust tests. To demonstrate 
the test, we apply it in a stepwise fashion, as in stepwise 
regression as described above. We begin by choosing the 
most significant marker from the univariate FBAT main 
genetic effects test, which is the same as the univariate 
marker rs3024496 chosen by the normal model approach 
( table 3 ). The results of the stepwise approach are shown 
in  table 4 . The strategy using the FBAT-C Linear ap-
proach, the most powerful of our proposed approaches, 
begins with rs3024496, and then also chooses rs1800872. 
These two markers are not very strongly correlated ( R  2  = 
0.30,  table 1 ). Results of the haplotype test Horvath et al. 
[2004] are given in  table 5 , showing that there may be an 
interaction between these two markers.

  Discussion 

 We began by presenting the FBAT-C Robust test, the 
test that is totally robust to model misspecification. The 
FBAT-C Robust test uses the haplotype density of all of 
the markers being tested and each marker being condi-
tioned on, and has very few informative families, espe-
cially if there are lots of markers. We then introduced a 
disease model for a more powerful approach that gener-
ally behaves well under model misspecification. For as-
certained dichotomous traits, we introduced the FBAT-C 
Log-Linear test. The FBAT-C Log-Linear test uses the 
same haplotype density at the FBAT-C Robust test, but 

gains an extra power boost from the disease model. In-
stead of conditioning on the other markers, they are 
jointly modeled. Finally we introduced the FBAT-C Lin-
ear test for quantitative traits. The FBAT-C Linear test 
does not require normal errors, and does not even need 
the haploytpe distribution, getting a further power boost. 
In our tests, we generally avoided reconstructing the hap-
lotype density of all of the markers, and thus also did not 
include it in our disease model. The disadvantage of this 
approach is that one can no longer determine whether 
there is a haplotype effect of the markers, or if the mark-
ers are individually contributing to the risk of the disease. 
However, one can follow-up with a haplotype test, as we 
did in the application, to determine this. Additionally, 
the FBAT-C Log-Linear approach could be modified to 
test for haplotype effects by conditioning on the suffi-
cient statistic for parental mating type of all of the mark-
ers rather than the set of pairwise sufficient statistics.

  In our application of the FBAT-C approach to the 
CAMP dataset, we used a stepwise approach to choose 
the best set of markers to explain the variation in the trait. 
We assessed how well this approach worked via simula-
tion using our dataset, comparing it to the standard uni-
variate Bonferroni correction approach. The stepwise ap-
proach generally performs better at finding the true set 
of DSLs, at the cost of finding a set of markers that do not 
contain the DSL more often.

  The software is available in the R [R Development 
Core Team, 2008] package fbati, available from http://
cran.r-project.org/. It uses the package fgui for the graph-
ical interface [Hoffmann and Laird, 2009], and the data 
loading routines of pbatR [Hoffmann and Lange, 2006]. 
It requires the free FBAT program [Laird et al., 2000] to 
run. The data format is as described in pbatR.
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Table 5. Haplotype results of the CAMP data at the SNPs 
rs3024496 and rs1800872, respectively

Haplotype Frequency # Inf p value Transmission

C C 0.454 405 0.0151 +
T C 0.271 379 0.0061 –
T A 0.271 363 0.9490 –
C A 0.004 52 0.0623 +

For transmission, ‘+’ indicates rarer allele overtransmitted, 
and ‘–’ indicates undertransmitted.
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  A. Expectation of Model-Free Test Statistic 

 Here we prove that under  H  0  equation 9 has expectation 0. For 
simplicity, we drop the  i ,  j  indices. We have that

   E [ U   �   g  c ,  S  H  ({  m  ,  c  }) ,  Y ]
= ( Y  –  � ) E ( X  m  – E[ X  m   �   gc   ,  S  H  ({  m  , c }) ]  �   g c  ,  S  H  ({  m  , c }) ,  Y )
  = ( Y  –  � ) E ( E [ X  m   �   g c  ,  S  H  ({  m  , c }) ,  Y ] –  E [ X  m   �   g c  ,  S  H  ({  m  , c }) ])

  and hence it suffices to show that 

    E [ X  m   �   Y ,  S  H  ({  m  , c }) ,  g c  ] =  E [ X  m   �   S  H  ({  m  , c }) ,  g c  ].

  And hence it suffices to show that 

    P ( g  m   �   Y ,  S  H  ({  m  , c }) ,  g c  ) =  P ( g  m   �   S  H  ({  m  , c }) ,  g c  ). (10)

  We have that  
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 This verifies equation 10, and so under  H  0  equation 2 has ex-
pectation 0. 

 B. FBAT-C Log-Linear Supplemental Material 

 B.1 FBAT-C Derivation 
 The joint retrospective likelihood is given by 
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 and so the log-likelihood contribution of each individual is 
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  We then have that, for each individual marker, the derivative of 
the log-likelihood evaluated at  �  m  = 0, and with the condition-

ing set simplified (which we will show we can do in B.2), is given 
by 
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  B.2 Unbiasedness of Estimating Equations 
 Next, we show that we can simplify the conditioning set for the 

markers, that the estimating equation  �  i   U  i  has expectation zero 
under the null hypothesis. We have that

   E ( U  i   �   Y  i  =  1 ) =  E [ E ( U  i   �   Y  i  =  1 ,  �  i ;  �   c  ,  �   m  )].

  For simplicity, we drop the  i  indices. First we show that 

    E ( X c    �   Y    =  1 ,  S      H  ( c ) ;  �   c  ,  �   m  ) =  E ( X c    �   Y    =  1 ,  �   ;  �   c  ,  �   m  ).

  It is sufficient to show that 

    P ( X c    �   S    H  ( c ) ;  �   c  ,  �   m  ) =  P ( X c    �  ,  �   ;  �   c  ,  �   m  ).

  Suppose parental genotypes are known, and phase is known 
of all of the markers. Then this is true by Mendel’s laws. If phase 
is not known, but parents are still present, then we integrate over 
the phases of the parents and the offspring. We have 
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  where the equality from the first to the second line again follows 
by Mendel’s laws. Thus the result follows when parents are pres-
ent. Finally suppose that one or both parents are missing. Then 
we again have equation 12. Now, each combination of the marker 
being analyzed and conditioned on can be thought of as a sin-
gle multiallelic marker. Then the equality of  P (X c   �  phase,  �   ) = 
 P (Xc,  �   ) follows from Mendelian transmissions by the arguments 
in Rabinowitz and Laird [2000] using the sufficient statistic for a 
multiallelic marker. Similarly, we have that 

    E ( X  m k    �   Y    =  1 ,  S      H  (  m k   , c ) ;  �   c  ,  �   m  ) =  E ( X  m k    �   Y    =  1 ,  �   ;  �   c  ,  �   m  ),

  and so the estimating equations are unbiased. 
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 B.3 Calculations for W i  
 Now, when adjusting for the nuisance parameter, we need the 

following additional derivatives, evaluated under  �   m   = 0. Let 
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 where we define  M  �0  = 1,  M  �1  =  M , and  M  �2  =  MM  T . Then we 
have that 
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C. Distribution of Wi

 From a Taylor series expansion, we have that
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  It now follows from the central limit theorem that  W  i  (equa-
tion 7) follows an asymptotically multivariate normal distribu-
tion, with variance that can be consistently estimated by the right 
hand side of expression 13, replacing  �  c  with  �  ̂   c . 

 D. Unbiasedness of Quantitative Trait Estimating 

Equations for FBAT-C Linear 

 Here we show that equation 8 has expectation zero for any  �  ij , 
similar to section B.2. As an intermediate step, first we show that 
 f ( g  m   �   S  m ,  S  c ) =  f ( g  m   �   S  m ). Suppose we have both parents, and phase 
is resolvable, then the transmissions follow Mendel’s laws, and the 
equation holds. If the parents are present, and phase is not resolv-
able, then we integrate over phases of the parents and offspring. 
We have 

phase

phase

, , ,phase phase ,

phase , ,  

m m c m m c m c

m m m c

f g |S S f g |S S f |S S

f g |S f |S S
    

(15)

 where  f ( g  m   �   S  m ,  S  c , phase) =  f ( g  m   �   S  m ) follows from Mendel’s laws. 
The result then follows when parents are present. Finally, suppose 
that one or both parents are missing. Then we again have equa-
tion 15. Now, each combination of the marker being analyzed and 
conditioned on can then be thought of as a single multiallelic 
marker. The equality  f ( g  m   �   S  m ,  S  c , phase) =  f ( g  m   �   S  m ) then follows 
from Mendelian transmissions by the arguments in Rabinowitz 
and Laird [2000] using the sufficient statistic for a multiallelic 
marker. 

 With this result, showing that equation 8 has expectation zero 
proceeds similarly to that in Vansteelandt et al. [2008]. 
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 where we use that  E (   X  ij  ,  m   �   S  m ,  S  c ) =  E (   X  ij  ,  m   �   S  m ) from our results 
above. 
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