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Crohn’s disease (CD) and ulcerative colitis (UC) have 
features that suggest bacterial involvement, and all 
genetic models of inflammatory bowel disease (IBD) 
require the presence of commensal bacteria. CD is 
associated with innate immune response genes such 
as NOD2/CARD15 and the autophagy genes 
ATG16L1 and IRGM. However, IBD responds to im-
munosuppression, suggesting that any bacteria in-
volved are not acting as conventional pathogens. 
Molecular techniques are rapidly advancing our knowl-
edge of the gut microbiota. In CD there is reduced di-
versity, and notably a reduction in the probiotic 
Faecalibacterium prausnitzii, the presence of which in 
the terminal ileum is associated with a reduced risk of 
recurrence following surgery. There is also a con-
sistent increase in mucosa-associated Escherichia coli 
with an “adherent and invasive” phenotype, which al-
lows them to replicate inside macrophages and induce 
granulomas. Speculation that CD could be caused by 
the Mycobacterium avium subspecies paratuberculosis 
(MAP) continues. The response to antitumor necrosis 
factor treatments suggests that, if relevant at all, MAP 
is not acting as a conventional pathogen. However, 
there is increased colonization by MAP in CD, and 
there is evidence that it could have an indirect effect 
mediated by the suppression of macrophage function. 
UC relapse is frequently associated with infection by 
pathogens, but there is less evidence for involvement 
of a specific bacterial species. Poor barrier integrity 
followed by an inflammatory reaction to bacterial com-
ponents, with chronicity maintained by an autoimmune 
process, seems a plausible pathogenic model. 
Bacterial theories of pathogenesis are now becoming 
testable by targeted therapeutic interventions. (Gut 

Liver 2010;4:295-306)
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FAECAL BACTERIA IN INFLAMMATORY BOWEL 
DISEASE: CROHN’S DISEASE IS ASSOCIATED 
WITH REDUCED DIVERSITY AND REDUCED 
FAECALIBACTERIUM PRAUSNITZII

  Studies on faecal samples using modern molecular tech-
niques have allowed a much more complete picture to be 
obtained than can be achieved by reliance on culture. 
Such studies have shown that Crohn’s disease (CD) faecal 
samples have a marked reduction in diversity. In healthy 
individuals, 95% of the bacteria in stool samples belong 
to the bacteroides, Clostridium coccoides and Clostridium lep-
tum subgroups1 however, inflammatory bowel disease 
(IBD) patients showed a marked reduction in numbers of 
these organisms, including bifidobacteria but, in partic-
ular, a reduced content of bacteria in the C. leptum sub-
group of the firmicutes phylum.2 Particular interest is cur-
rently focussed on one member of this group: Faecalibacte-
rium prausnitzii. A very strong association has been shown 
between ileal CD and lack of F. prausnitzii. This holds up 
whether samples are taken from the terminal ileum or 
other sites in the colon.3 Some studies have shown an ap-
parently reciprocal relationship with E. coli.3 Interestingly, 
dysbiosis in infectious colitis is also characterised by a 
decrease in organisms that include F. prausnitzii.4 The 
mechanism of the apparent probiotic effect of F. prausnit-
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Fig. 1. Bacteria-epithelia interaction (reproduced with permission from Knight P, et al. Br Med 
Bull 2008;88:95-113.

126
). It is likely that the portal of entry of E. coli commonly isolated from 

inflammatory bowel disease patients is through specialized microfold “M” cells that exist within
the follicle-associated epithelium (FAE). Both the absence of overlying mucus (there are no 
goblet cells in the FAE) and the diminished glycocalyx present on M cells facilitates interaction
with the luminal contents, and thus antigen sampling. E. coli are also shown replicating within
macrophages. Dendritic cells participate, possibly by direct sampling of bacteria from the lumen,
but also by receipt of bacteria from M cells. Not to scale: the mucus layer, at ＞100μm, is 
considerably thicker than the glycocalyx, at ＜1μm.

zii is not yet known. Generation of butyrate from un-
absorbed fibre is one possible explanation but F. prausnit-
zii also has directly anti-inflammatory properties. The F. 
prausnitzii supernatant has no direct bactericidal effect on 
other bacteria.2 Secreted metabolites from F. prausnitzii 
block NFκB activation and reduce IL8 secretion from 
Caco2 cells. In addition, peripheral blood monocytes ex-
press increased anti-inflammatory IL10 and reduced 
pro-inflammatory IL12 in the presence of F. prausnitzii and 
IFNγ. Mice with 2,4,6-trinitrobenzenesulfonic acid (TNBS)- 
induced colitis treated by gavage with F. prausnitzii or its 
culture supernatant show a reduced activity of colitis that 
is paralleled by a decrease in the pro-inflammatory cyto-
kine IL12 and an increase in anti-inflammatory IL10.
  An increase in fungal communities in biopsy and faecal 
samples from Crohn’s disease patients has also been 
reported.5 This shift in diversity may be secondary to 
changes observed in bacterial communities5 but high diet-
ary concentrations of fungal organisms have been shown 
to augment intestinal inflammation in IBD.5 The presence 
of circulating antibodies to Saccharomyces cerevisae (Baker’s 
yeast) in about two thirds of Crohn’s patients is partic-
ularly intriguing. It needs to be noted though that the 
epitope for anti-Saccharomyces cerevisiae antibody (ASCA) is 
a mannan (with a mannose α 1, 3 mannose linkage) that 
is expressed by various organisms, including Candida albi-
cans and Mycobacterium paratuberculosis.6

MUCOSA-ASSOCIATED BACTERIA

  The mucosa and overlying mucus represents a unique 
environmental niche and it has become recognised that 
the bacteria within this niche may be very different from 
those in the faecal stream. Studies that have cultured the 
colonic mucosa after removal of overlying mucus have 
shown that the mucosa in healthy individuals is relatively 
sterile but that there is a marked increase in bacteria in 
Crohn’s disease, and to a lesser extent in ulcerative colitis 
(UC).7,8 E. coli seem to account for a relatively high pro-
portion of these mucosa-associated isolates, perhaps re-
flecting that their microaerophilic properties are suited to 
living in a mucosal niche that probably has a considerably 
higher oxygen tension than the faecal stream.

E. COLI

  E. coli is the most numerically dominant Gram negative 
species of the healthy gastrointestinal microbiota.9 The 
link between E. coli and IBD was first suggested in 1978 
by Tabaqchali et al.10 who noted that high titres of anti-
bodies against E. coli O-antigens were commonly observed 
in IBD patients. However, E. coli bearing conventional 
markers of pathogenicity were detected very infrequently 
and thought unlikely to play a significant role in the 



Friswell M, et al: The Role of Bacteria in the Pathogenesis of Inflammatory Bowel Disease   297

pathogenesis of IBD.11

  A key study in 1998 demonstrated that E. coli were iso-
lated in increased numbers from the mucosa of CD pa-
tients, showed an increased ability to adhere to gastro-
intestinal epithelial cells, and had the ability to poten-
tially disrupt the intestinal barrier by producing an alpha 
haemolysin.12 Furthermore, these E. coli invaded and sur-
vived inside epithelial cells in a way similar to that of sal-
monella (Fig. 1).13 A new pathotype was proposed to de-
scribe these E. coli: “adhesive and invasive E. coli” (AIEC). 
It was shown by PCR that one of the more invasive AIEC 
isolates, LF82, did not possess any virulence character-
istics normally associated with enteroinvasive (EIEC), en-
teropathogenic (EPEC) or enterotoxigenic (ETEC) E. coli. 
Further investigations on AIEC have revealed that they 
stimulate the release of the pro-inflammatory cytokine 
IL-8,7,14 and preferentially belong to phylogenetic groups 
B2 and D.15 LF82 has been shown to replicate extensively 
in macrophages16 and deletion of yfgl and Nlpl lipoprotein 
encoding genes, reduce its invasive ability.17,18 AIEC have 
been shown to be associated with granulomatous colitis 
in boxer dogs.19 Importantly, macrophages infected with 
AIEC express TNF-α and transform in vitro into 
granulomas.20,21 No specific genotype has yet been identi-
fied which correlates closely with the AIEC phenotype.
  Serological studies have also demonstrated the presence 
of antibodies to a range of bacteria, including, but not ex-
clusively, E. coli, in human IBD. Studies in mice suggest 
that the overwhelming majority of anti-bacterial anti-
bodies are directed against bacterial flagellin. Moreover 
when flagellin-specific CD4(＋) cells were introduced into 
naive SCID mice, severe colitis was induced. Increased 
concentrations of circulating IgG antibodies to flagellins 
are found in patients with CD but not UC or controls.22

THE M CELL AS A PORTAL OF ENTRY

  There is good evidence that even bona fide pathogens 
such as shigella, cholera, mycobacteria and listeria are on-
ly able to penetrate the mammalian intestine by first en-
tering through the microfold (M) cells that make up 
about 5% of the epithelial cells in the dome epithelium 
that overlies Peyer’s patches in the intestine and lym-
phoid follicles in the colon.23,24 It seems highly likely then 
that the AIEC found in Crohn’s disease lesions have also 
entered by this route. This is supported by evidence that 
the initial lesions of Crohn’s disease, the aphthoid ulcers, 
also occur at the site of Peyer’s patches and colonic lym-
phoid follicles.25-27

  M cells derive from epithelial cells by interaction with 
underlying B lymphocytes in a process that is not yet well 

understood. They have the unique ability to sample anti-
gens from the gastrointestinal lumen before presenting 
them to both dendritic cells and lymphocytes28 and thus 
play an important role in mucosal immunity. M cells are 
distinct from other intestinal enterocytes in that they 
have a poorly organised apical brush border with short, 
irregular microvilli.29 M cells have very little glycocalyx 
and the dome epithelium in which they exist is devoid of 
goblet cells and thus has no overlying mucus layer thus 
ensuring that M cells have optimal access to luminal 
antigens.30 M cells increase in number in response to bac-
terial challenge, indicating that the antigen sampling 
mechanism within the gut is able to be rapidly up-regu-
lated.31,32

  M cells are able to transport a wide range of micro-
organisms, including bacteria,30,33,34 viruses35,36 and para-
sites.37 Macrophage migration inhibitory factor (MIF) 
plays an important role in the regulation of the M-cell 
mediated bacterial uptake in the gut.38 Salmonella spp., 
Shigella spp. and Yersinia spp. have been shown to invade 
and destroy M cells and spread to neighbouring enter-
ocytes23 although not all invading organisms are cytotoxic 
to M cells. Thus M cells are important not only in the 
development of the mucosal immune response, but also 
as a portal of entry for infectious diseases. Certain bacte-
rial genetic factors such as the long polar fimbriae of sal-
monellae play an important role in determining the or-
ganisms’ ability to adhere to M cells. Variation in this 
and similar genetic determinants may explain differences 
in the ability of enteropathogens to adhere to M cells. 
Thus, the rabbit diarrheagenic E. coli (RDEC)-1 strain ad-
heres to M cells24,32 whereas although enterohemorrhagic 
E. coli (EHEC) were seen to attach to the FAE, specificity 
for M cells could not be proven.39 Furthermore EPEC are 
not trancytosed by the M cells. The entry of M cells by 
intestinal pathogens is also mediated by surface adhesion 
molecules, in particular those within the integrin 
family.40-44

  It has recently been shown that organisms such as E. 
coli and salmonellae that express the FimH protein of 
type 1 pili bind to M cells by interaction between FimH 
and glycoprotein 2 (GP2) expressed on the apical plasma 
membrane of M cells and that possession of FimH is es-
sential to allow invasion of M cells by these organisms.45 
By an intriguing coincidence it has also recently been 
found that the same GP2 protein is the epitope for the 
“anti-pancreatic” antibody found in Crohn’s disease sera.46 
This raises the possibility that a combination of bacterial 
components, including FimH, linked to GP2, may be pre-
sented as a foreign antigen and thus lead to development 
of anti-GP2 antibodies in a way analogous to the develop-
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ment of anti-tissue transglutaminase antibodies in celiac 
disease.
  Blockade of bacterial entry via M cells represents an 
important potential target for therapies and more research 
is urgently needed to elucidate the molecular mechanisms 
of interaction between bacteria and M cells. Promising 
new techniques that involve the co-culture of bacteria and 
epithelial cell monolayers47 and the use of Ussing cham-
bers to allow short term culture of human epithelium 
containing Peyer’s patches48,49 may shed light on these 
interactions.

REPLICATION OF AIEC WITHIN MACRO-
PHAGES

  Within the gastrointestinal tract, neutrophils normally 
serve as the first line of defence against pathogenic 
bacteria.50 In CD however, there is evidence of neutrophil 
dysfunction; particularly reduced neutrophil accumulation, 
seen experimentally as a consequence of diminished IL8 
production after biopsy trauma to the rectum and ileum51 
and after subcutaneous injection of killed E. coli.52 If neu-
trophils, the “professional” killers of bacteria, fail to clear 
invading bacteria, it is left to macrophages, which are in-
trinsically weaker killers of bacteria, to “clear up.” The 
presence of bacteria within macrophages initiates an in-
flammatory cascade which can either eliminate the organ-
ism, or if the organism survives, lead to higher levels of 
invasion53 or result in the formation of granulomas. The 
advantage of invasion and replication to the bacteria may 
be two fold. Firstly, if the invading organisms are not kil-
led by the macrophages they may be able to reside and 
replicate in the macrophages undetected by the immune 
system. Secondly, when internalised by macrophages, the 
bacteria become inaccessible to neutrophils.
  In keeping with this, E. coli have been observed within 
macrophages and giant cells in the tissue of CD patients 
using immunohistochemistry and PCR techniques. In an 
immunohistochemical study, 57% of tissue samples from 
CD patients were shown to contain E. coli. The organism 
was found near to ulcers, along fissures, around ab-
scesses, within the lamina propria, and in the germinal 
centres of mesenteric lymph nodes.54 In a study using 
PCR after laser capture microscopy E. coli DNA was 
found in 80% of granulomas from CD tissue.55

  In vitro studies have shown that the AIEC isolated from 
Crohn’s disease patients are particularly able to survive 
and replicate in macrophages.16,56 They can be seen within 
double membrane vesicles, implying that they are able to 
survive within autophagosomes. Further research is need-
ed to understand how they evade killing by the 

macrophages.

EFFICACY OF ANTIBIOTICS

  Given the strong evidence for bacterial involvement in 
the pathology of Crohn’s disease, it is logical that anti-
biotics might be therapeutic. When interpreting the re-
sults of clinical trials it needs to be remembered that 
some antibiotics may have effects on the innate immune 
system, thus metronidazole has been shown to reduce 
neutrophil recruitment.57 Antibiotic therapy for CD has 
been used to target mycobacterial infection and more 
broadly to target aerobes, anaerobes, Gram positive and 
negative bacteria.57-59 Combination antibiotic therapy tar-
geting Mycobacterium avium subspecies paratuberculosis 
showed a modest initial effect that was not sustained.60 
Rahimi et al.61 conducted a meta-analysis of randomised 
placebo-controlled trials covering a total of 804 patients 
with active CD, and concluded that those receiving anti-
biotics, particularly metronidazole, ciprofloxacin and co-
trimoxazole, were 2.3 times more likely to show clinical 
improvement compared with placebo.
  It is important to identify the target for the antibiotics. 
If AIEC replicating within macrophages are the most ap-
propriate target then antibiotics that do not penetrate 
macrophages will clearly be ineffective. Studies in our lab-
oratory concluded that azithromycin, ciprofloxacin, ri-
fampicin, sulfamethoxazole, tetracycline and trimethoprim 
were all effective against E. coli within macrophages.56

  Use of single antibiotics is likely to be unsuccessful in 
Crohn’s disease because of the development of bacterial 
resistance. Thus a controlled trial showed that clari-
thromycin as a single agent was apparently effective for 
one month but then lost efficacy by the principal end-
point at 3 months.62 Clinical trials of antibiotic combina-
tions in CD patients are currently ongoing. There is of 
course a possibility that antibiotics may increase the over-
growth of pathogenic organisms such as C. difficile.63

EFFECTS OF DIETARY COMPONENTS ON 
THE MICROBIOTA

  There has been considerable interest in the potential 
use of dietary modification in treating and preventing 
IBD, particularly CD. Diet can have a substantial impact 
on microbial communities within the gastrointestinal 
tract. Prebiotics, which typically include fibre components, 
selectively promote growth of “beneficial” commensal 
organisms. The concept that dietary constituents may be 
used to prevent bacterial disease is not new. Over 30 
years ago Aronson et al.64 demonstrated that the applica-
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Table 1. Dietary Carbohydrates That Have Been Shown to Inhibit Bacterial Binding to GIT Epithelial Cells

Organisms targeted Animal, site of infection Inhibitor Reference

C. jejuni Mouse GTI Milk oligosaccharide
127

E. coli Mouse GIT Mannose
128

Calf GIT Glycopeptides
129, 132

Human GIT (epithelial cells) Bovine MUC1
131

Salmonella enterica serovar Typhimurium Human GIT (epithelial cells) Bovine MUC1
131

Helicobacter pylori Piglet GIT Sialyl-3’LacNac
132

Monkey GIT Sialyl-3’Lac

GIT, gastrointestinal tract.

tion of methyl alpha-D-mannopyranoside to mouse blad-
der prevented the colonisation of mouse bladder by E. 
coli. Since then, dietary components have been shown to 
be useful in treating not only bacteruria, but also gastric 
bacterial infections-including salmonellae65,66 and Helico-
bacter pylori.67

  Soluble carbohydrates in dietary components may be 
recognised by bacterial lectins because of their structural 
similarity to glycolipid or glycoprotein receptors. Extracts 
from boiled green bananas have been shown to improve 
clinical severity of childhood Shigellosis,66 and other 
childhood bacterial infections. A number of carbohydrates 
have been shown to specifically inhibit bacterial binding 
to epithelia in vivo and in vitro (Table 1).
  Work by our own group has shown that the soluble fi-
bre from edible plantains (Musa sp) prevent adherence to 
the epithelium by E. coli isolated from IBD patients.7,68 
Interestingly, in cultures where plantain consumption is 
high (Africa, India, and the West Indies), the prevalence 
of IBD is rare. We are currently conducting clinical trials 
investigating the use of soluble plantain fibre in the 
maintenance of remission in Crohn’s disease.

MYCOBACTERIUM AVIUM SUBSPECIES PARA-
TUBERCULOSIS AND CROHN’S DISEASE

  Mycobacterium avium subspecies paratuberculosis is an ob-
ligate pathogenic organism, that is the causative agent of 
Johne’s disease in cattle.69 The link between Crohn’s dis-
ease and Mycobacterium avium subspecies paratuberculosis 
(MAP) was first postulated by Dalziel in 1913, even be-
fore Crohn’s classic description of the disease, when he 
noted the similarities with Johne’s disease, an intestinal 
disorder of ruminants which bears many of the hallmarks 
of CD.70 Studies since then have shown very contradictory 
findings but the consensus is that MAP is present in a 
significant minority of Crohn’s disease tissue samples, 
perhaps particularly within granulomas.71 
  MAP is notoriously difficult to culture although modern 

techniques have improved its culture from intestinal tis-
sue, milk and blood.72 MAP has been cultured from blood 
in up to 50% of CD patients and 22% of UC patients73 
but no control patients, similarly, punch biopsies har-
boured MAP in 42% of CD patients and 9% of controls74 
however other centres have failed to culture the orga-
nism. Detection of MAP using PCR is generally preferred 
because of the shorter time scale and the increased sensi-
tivity of the technique. Early PCR methods have been 
questioned because of the similarity of the primers for 
MAP to other non-MAP-mycobacterium-which leads to 
false positives.75 Recent advances have led to the design 
of a nested IS900 PCR method, which provides more reli-
able results and has eliminated early concerns over using 
PCR for detection of MAP in CD patients.74,76 The IS900 
region is only present in MAP, and has 15-18 copies per 
genome. The first primer set targets a 413 bp region 
within the IS900 area in the MAP genome, the second set 
of primers then targets a 333 bp section within the pre-
viously amplified DNA.76 This technique ensures that 
there is almost no chance of obtaining false positive 
results. The nested PCR technique has proved to be pop-
ular and accurate, with recent studies using this method 
to identify MAP in IBD patients more frequently than in 
control patients.77,78 Another recent study using the nest-
ed IS900 PCR method demonstrated the presence of MAP 
DNA in children with CD at early onset,79 which is the 
earliest identification of MAP DNA in a patient to date. 
There have now been several studies that have shown the 
presence of MAP DNA in adult blood samples73,80,81 and 
in diseased tissue.80

  An alternative way to study the link between MAP CD 
patients is to assess whether the patient has MAP anti-
bodies that react to MAP antigens. Meta-analyses have 
shown that p35 and p36 antigens are reactive to CD pa-
tient sera82 however it is worth noting that MAP p35 and 
p36 are similar to that of M. avium subspecies. avium 
(MAA), so a specific reaction to MAP rather than MAA 
cannot be certain.83
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Fig. 2. Pathogenesis of inflammatory bowel disease: the 
evolving model.

  Further evidence to suggest a link between MAP and 
CD includes the increased presence of MAP-reactive T 
cells in CD and their absence in control patients.84 The 
same study demonstrated that T cells isolated from CD 
patients were extremely reactive to MAP, more so that B. 
thetaiotaomicron, L. gasseri, B. bifidum and E. coli; addition-
ally, these T cells produced the pro inflammatory cyto-
kines INFγ and IL17.84 Basler et al.85 have demonstrated 
that in contrast to MAA and M. avium subspecies homi-
nissuis (MAH), which cause mycobacteriosis in animals 
and immunocompromised humans, MAP infection causes 
the reduced expression of 17 genes in a macrophage 
model when compared to MAA infected cells. Of the dif-
ferentially expressed genes, six were pro-inflammatory 
factors (IL-1beta, IL-1alpha, CXCL2, PTGS2 [COX2], lip-
ocalin [LCN2] and TNF) demonstrating that infection of 
murine macrophages with MAP causes the suppression of 
pro-inflammatory mechanisms-increasing the chances of 
the organisms survival in vivo. Other studies have shown 
that MAP isolated from humans (MAPh) had markedly 
different protein expression than MAP isolated from cat-
tle (MAPc). MAPh showed higher expression of six pro-
teins when compared to MAPc, the two proteins that 
showed highest expression were; PepA and ModD. PepA 
is a serine protease whereas ModD is a fibronectin attach-
ment protein that is necessary for the internalisation and 
invasion of epithelial cells by MAP, which is likely to 
confer an advantage to MAP when causing infection.86

  CD patients show increased levels of ASCA,87,88 the 
epitope for which is a mannose with a specific mannose 
α1-3 mannose terminal disaccharide89,90 which is present 
in yeast walls, Candida albicans,91 Mycobacterium bovis and 
Mycobacterium chelonae.92,93 Yeasts are large and are likely 
to be visible in the tissue of CD patients, therefore an al-
ternative source of cell wall mannans.is likely. Studies by 
our group demonstrated not only that MAP is a possible 
source for the ASCA mannan epitope, but also that MAP 
releases a mannose-containing glycoconjugate that impairs 
the in vitro ability of monocyte-derived macrophages to 
kill phagocytosed E. coli. Thus MAP might be acting via 
an indirect pathogenic effect and its lack of direct patho-
genicity might explain how it might have a role in patho-
genesis and yet not be greatly exacerbated by anti-TNF 
treatments.6

  In addition to possible microbial and immune factors, 
Crohn’s disease is associated with genetic mutations (Fig. 
2) encoding various homeostatic mechanisms, including, 
innate pattern recognition receptors (NOD2/CARD15, 
TLR4, CARD9); autophagy (ATG16L1, IRGM, LRRK2); 
differentiation of lymphocytes (IL-23R, JAK2, STAT3, 
CCR6, ICOSLG) and the organisation of immune func-

tions (HLA-region, TNFSF15/TL1A, IRF5, PTPN2, PTPN22, 
NKX2-3, IL-12B, IL-18RAP, MST1).94 NOD2/CARD15 mu-
tations can also cause abnormal development of Peyer’s 
patches as well as deficient defensin production by Paneth 
cells,95 both of which can lead to defective clearance of 
organisms. Interestingly, a recent study has demonstrated 
that CD patients that are mutant for NOD2 show in-
effective recognition of MAP.96 Additionally, it has been 
shown that down-regulation of the autophagy gene, 
IRGM, alterations in which are also linked to the patho-
genesis of CD, leads to prolonged survival of MAP in 
macrophages.97 Moreover the CD-associated NOD2 muta-
tions are also associated with increased susceptibility to 
infection with M. leprae.98 MAP is present in the human 
food chain, in meat and milk99 but the presence of MAP 
DNA in CD patient samples is not sufficient to establish 
MAP as a causative agent. Moreover, therapies targeted at 
MAP do not produce a cure.100,101 Nevertheless, in vitro 
studies have shown that MAP potentially benefits from 
genetic mutations that are known to predispose CD.96,97 
A novel model of CD has been proposed78 in which MAP, 
a low virulence organism, infects a large proportion of the 
population through its presence in the food chain, but 
only causes/exacerbates disease in those individuals that 
are genetically susceptible, for example, those that have 
dysfunctional IFNγ activity that would fail to properly 
modulate transition between the specific and innate im-
mune system. 

ULCERATIVE COLITIS AND BACTERIA

  UC is characterised by ulcers present in the colon and 
bloody diarrhoea. Indirect evidence for the involvement of 
microorganisms, includes the presence of mucosal neu-
trophil infiltration, which could be caused by the uptake 
of luminal antigens102 and the activation of NFκB (NFκB) 
as an early event103 which is consistent with surface bac-
terial interaction. Studies by Kotlowski et al.15 and 
Swidsinski et al.104 both showed an increase in the num-
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Fig. 3. A model for the patho-
genesis of Crohn’s disease in 
which mucosal invasion by bac-
teria, perhaps particularly E. coli,
occurs as a result of impairments 
in the mucosal barrier and/or the 
innate immune system. 󰀹 denote 
possible therapeutic targets.

ber of E. coli isolated from UC patients mucosa however, 
levels were lower than that for CD. Unlike CD there is 
no evidence that bacteria, and specifically E. coli, isolated 
from UC patients invade the mucosa. It seems more like-
ly that bacteria or bacterial components interact with sur-
face epithelial cells to induce an inflammatory response, 
e.g., as a consequence of IL8 release and consequent neu-
trophil recruitment.
  Several studies have linked acute bacterial enteritis with 
the onset or exacerbation of UC with causative agents in-
cluding but not exclusively, Clostridium difficile,11,105,106 
Yersinia enterocolitica,107,108 Campylobacter jejuni109 and Sal-
monella spp.109-112 It has been suggested that infection 
with Campylobacter jejuni may facilitate invasion of the co-
lonic epithelia by non-invasive commensal organisms113 by 
either a paracellular or transcellular mechanism which is 
strain dependent.114,115 C. jejuni RM1221 is able to disrupt 
epithelial tight junctions, increasing paracellular perme-
ability ultimately allowing non-invasive organisms to 
translocate through the epithelial layer. Furthermore, re-
positioning of TLRs increases the frequency of interaction 
with the microbiota, leading to release of NFκB and thus 
inflammation. Conversely, another strain of C. jejuni in-
duces transcellular translocation by the use of lipid rafts, 
another process that leads to interaction with NOD2 re-
ceptors and release of NFκB. In keeping with this it has 
been shown that commensal organisms formed “microcol-
onies” in colitis patients.116 Further evidence for the in-
volvement of the microbiota comes from anecdotal evi-
dence that colitis can be improved by the use of fecal 
bacteriotherapy, sometimes known as “faecal trans-
plant.”117 Probiotic therapy in active colitis has however 
been disappointing.118

  Impairment of the mucosal barrier, either due to genet-
ic alterations or as the result of concurrent pathogen in-
fection, may affect interactions between the epithelium 

and bacterial components. Thus the flagellin receptor 
toll-like receptor 5 (TLR5), is located primarily on the ba-
solateral aspect of surface epithelial cells and only be-
comes accessible to bacterial flagellin once the mucosal 
barrier has been weakened. This was strikingly demon-
strated in an animal model where prior treatment of mice 
with oral dextran sulphate coupled with rectal instillation 
of bacterial flagellin led to a fatal colitis.119

  The relationship between IBD and C. difficile is com-
plex. There is little evidence to support a direct role for 
C. difficile in induction of relapse but C. difficile carriage is 
substantially increased in IBD patients, even without prior 
antibiotic treatment.120-124 Ulcerative colitis patients in-
fected with C. difficile123 tend to have a more protracted 
illness featuring a marked acute phase response asso-
ciated with a relatively high serum C reactive protein. 
The cause for the high C. difficile carriage rate is unknown 
however the dysbiosis associated with IBD may contribute 
to patient susceptibility. Furthermore, reduced expression 
of human alpha-defensins in IBD patients may also play a 
role.125 Since asymptomatic carriage of C. difficile exists in 
IBD patients105 the main practical implication is that all 
patients with relapse of IBD should have a fecal sample 
checked for C. difficile, especially those receiving im-
munosuppressant therapy since this is known to be a risk 
factor for infection.121

SUMMARY

  Modern molecular techniques are giving us a much 
more robust knowledge of the mucosal and faecal micro-
biota in inflammatory bowel disease. There is now strong 
evidence to support the hypothesis that Crohn’s disease 
develops as a result of invasion of the mucosa by live 
bacteria with defective clearance by the innate immune 
system and consequent replication of bacteria within mac-
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Fig. 4. A model for bacterial involvement in pathogenesis of 
ulcerative colitis (Adapted with permission from Rhodes JM. 
Gut 2007;56:610-612.

133
).

rophages (Fig. 3). In ulcerative colitis there is little evi-
dence of invasion by whole bacteria and more to support 
the hypothesis that a defective mucosal barrier may lead 
to increased interaction between bacterial components, 
such as flagellin or DNA, and basolateral receptors with 
inflammation as a consequence (Fig. 4).
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