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Purpose: The retina has the demanding task of encoding all aspects of the visual scene within the space of one fixation
period lasting only a few hundred milliseconds. To accomplish this feat, information is encoded in specialized parallel
channels and passed on to numerous central nuclei via the optic nerve. These parallel channels achieve specialization in
at least three ways: the synaptic networks in which they participate, the neurotransmitter receptors expressed and the types
and locations of ion channels or transporters used. Subcellular localization of receptors, channels and transporters is made
yet more complex in the retina by the double duty many retinal processes serve. In the present work, we show that the
protein Caspr (Contactin Associated Protein), best known for its critical role in the localization of voltage-gated ion
channels at the nodes of Ranvier, is present in several types of retinal neurons including amacrine, bipolar, horizontal,
and ganglion cells.

Methods: Using standard double label immunofluorescence protocols, we characterized the pattern of Caspr expression
in the rodent retina.

Results: Caspr labeling was observed through much of the retina, including horizontal, bipolar, amacrine, and ganglion
cells. Among amacrine cells, Caspr was observed in All amacrine cells through co-localization with Parvalbumin and
Disabled-1 in rat and mouse retinas, respectively. An additional amacrine cell type containing Calretinin also co-localized
with Caspr, but did not co-localize with choline-acetyltransferase. Nearly all cells in the ganglion cell layer contain Caspr,
including both displaced amacrine and ganglion cells. In the outer retina, Caspr was co-localized with PKC labeling in
rod bipolar cell dendrites. In addition, Caspr labeling was found inside syntaxin-4 'sandwiches' in the outer plexiform
layer, most likely indicating its presence in cone bipolar cell dendrites. Finally, Caspr was co-localized in segments of
horizontal cell dendrites labeled with Calbindin-D28k.

Conclusions: Caspr is best known for its role in organizing the localization of different voltage-gated ion channels in and
around nodes of Ranvier. As neuronal processes in the retina often play a dual role involving both input and output, it is
possible that the localization of Caspr in the retina will help us decipher the way retinal cells localize ion channels in their

processes to increase computational capacity.

Until recently, neurons were considered to be polarized
structures with passive electrical properties attributed to
dendrites, while active properties were the exclusive province
of the soma and axon. It is now clear, however, that dendrites
in some neurons do indeed have active properties, even
generating action potentials (reviewed in [1]). In the retina,
the definitions of axon and dendrite are still more blurred, as
many neuronal processes serve both functions. How is it then
possible for voltage-gated ion channel proteins required for
the generation of action potentials to be targeted to the
appropriate cellular compartments?

An extensive body of literature regarding this issue has
examined the properties of axon initial segments and nodes of
Ranvier in retinal ganglion cells. In both cases, it appears that
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the cytoskeletal binding protein ankyrin-G plays a major role
in anchoring voltage-gated sodium channels (VGSCs) at these
locations through binding directly [2] or via VGSC 3 subunits
[3]. In contrast, voltage-gated potassium channels (VGKCs)
are localized outside nodes, in the juxtaparanode. Between the
VGSCs and VGKCs is an area known as the paranode, where
septate-like junctions between the axon and myelin sheath are
formed. These paranodal axoglial junctions function as an
extracellular diffusion barrier and limit lateral diffusion of
membrane-associated proteins. One of the key components of
the paranodal membrane is Caspr, a single transmembrane
protein that helps define the functional subcompartments at
nodes [4-10]. The critical role of Caspr in the organization of
nodes was demonstrated most directly through generation of
a Caspr knockout mouse model [5,7]. In caspr”~ mutants,
VGSCs remained clustered at nodes, whereas VGKCs were
more widely distributed in the axon than normal and partially
overlapped with VGSCs at the nodes. This resulted in
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lengthened action potential generation, reduced conduction
velocity and other serious neuromuscular disturbances,
eventuating in death [5]. Thus, the role of Caspr in the
organization of molecular domains in myelinated axons is
critical for information processing in the nervous system.

Given the dual functional roles of axo-dendritic retinal
processes, we wondered whether Caspr might play a role in
the localization of voltage-gated sodium and potassium
channels in the retina. Previous studies of retinal Caspr
expression suggest that it was limited to retinal ganglion cell
(RGC) somas and axons, with some diffuse labeling in the
inner plexiform layer (ipl; [4,11]). Our data demonstrate that
Caspr is expressed not only by RGCs, but also several types
of amacrine cell, horizontal cells and bipolar cells in the rodent
retina. Every neural cell class in the retina has been previously
demonstrated as having the capacity to generate action
potentials (e.g., photoreceptors [12], bipolar cells [13],
horizontal cells [14], and amacrine cells [15]). Thus, Caspr
may indeed play similar roles in both the retina and optic
nerves.

METHODS

Animals: All animal experiments were performed according
to guidelines for ethical treatment of laboratory animals, as
outlined by the Society for Neuroscience, and were approved
by the University of Auckland Animal Ethics Committee, the
Australian National University Animal Experimentation
Ethics Committee, and Institutional Animal Care and Use
Committees for both the University of California, Los
Angeles and the University of North Carolina.

Tissue preparation and immunohistochemistry: Detailed
descriptions of techniques can be found in Hirano et al. (2007)
and O'Brien et al. (2008). In brief, animals were anaesthetized
and the eyes of mice and rats were enucleated, hemisected and
the remaining eyecups fixed in 4% paraformaldehyde for
variable times (15, 30, and 60 min). The data presented in this
paper come from mice (n=16) and rats (n=9). After washing
thoroughly in phosphate buffered saline (PBS, pH=7.3),
eyecups were placed in 30% sucrose in PBS for
cryoprotection, sectioned on a cryostat at 14-18 pm and
mounted onto Superfrost plus slides. Primary antibodies (see
Table 1) were applied to the tissue sections in a solution
containing 5% Chemiblocker (Chemicon) and 0.5% Triton
X-100 (Sigma) overnight at room temperature. After washing
thoroughly with PBS, species-appropriate secondary
antibodies conjugated to Alexa 488 or Alexa 594 (Invitrogen)
were applied in the same solution for 1-2 h at room
temperature, while protected from light exposure.
Alternatively, retinal wholemounts were immunostained in
the same fashion using longer incubation times (primary
antibody applied for 3 days and secondary antibodies applied
overnight). After a final series of washes, immunostained
sections or wholemounts were coverslipped with Aqua
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polymount (Polysciences) and imaged using a fluorescence
photomicroscope (Leica) or using a Zeiss PASCAL or
LSM510 confocal laser scanning microscope with a 40x C-
Apochromat 1.2 NA water objective. Acquired images were
imported into Adobe Photoshop CS for global application of
filters to enhance brightness and/or contrast.

To demonstrate specificity of retinal Caspr labeling, we
performed immunostaining of retinal tissue obtained from
Caspr knockout mice [5] by applying both monoclonal and
polyclonal antibodies to Caspr. No labeling was observed for
either antibody upon retinal tissue from Caspr knockout
animals (see Results for further description).

RESULTS

Localization of Caspr in rat and mouse retina: As was
expected for Caspr, we observed very intense labeling of
retinal ganglion cell somas and their axons in radial sections
of rat retina (e.g., arrows Figure 1A,B [4,11]). Surprisingly,
we also observed additional, previously unreported labeling
of somata in the inner nuclear layer (inl). Most of these labeled
somas (arrowheads, Figure 1A,B) were observed at the
boundary between the inl and inner plexiform layers (ipl) of
the retina, indicating their likely classification as amacrine
cells. Intense and somewhat patchy Caspr labeling was also
found in the outer plexiform layer (opl), while the inner
plexiform layer exhibited mostly diffuse labeling. These
results were consistent when using either monoclonal (Figure
1A) or polyclonal (Figure 1B) antibodies with Caspr.

In rat retinal wholemount material labeled for Caspr, we
observed brilliant labeling of fiber bundles (arrowheads,
Figure 1C) and individual axonal segments as well as RGC
somas (e.g., asterisk, Figure 1C). Most cells in the ganglion
cell layer (gcl) were labeled with Caspr antibodies, including
likely displaced amacrine cells with very small soma
diameters (8—10 pm; e.g., arrow, Figure 1C).

To demonstrate that this pattern of Caspr labeling in the
retina was not spurious, we also labeled sections of rat optic
nerve where Caspr has been previously observed by numerous
investigators [4,5,8-11,16—19]. As expected, Caspr labeling
in the rat optic nerve included the paranodal regions of nodes
of Ranvier (arrow and inset, Figure 1D). As an additional
control and comparative study, we labeled wild-type (Figure
1E) and Caspr knockout mouse retina with antibodies to
Caspr. The overall pattern of Caspr labeling in the mouse
retina was similar to that found in the rat (c.f. Figure 1A,E).
This included brilliant labeling of axonal bundles as well as
RGC somas (arrows, Figure 1E), less intense labeling of likely
amacrine cells in the inl and strong labeling in the opl. Some
artifactual labeling of blood vessels was also observed in both
wild type and knockout retinal sections. Specificity of the
Caspr labeling was evident by comparing this pattern of
staining with that found in sections of Caspr knockout mouse
retina (Figure 1F). All cellular and fiber labeling for Caspr
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Figure 1. Caspr labeling in rat and
mouse retina. A: Photomicrograph of
monoclonal Caspr labeling in rat retina.
Arrow indicates one of several retinal
ganglion cells (RGCs) intensely labeled
by Caspr. In addition to RGCs, somas of
many amacrine cells in the inner nuclear
layer (inl) were also labeled (e.g.,
arrowheads). The inner plexiform layer
(ipl) was diffusely labeled while the
outer plexiform layer (opl) contained
several hot spots. B: Lower power
photomicrograph of Caspr labeling in
rat retina using a rabbit polyclonal
antibody. A nearly identical pattern of
labeling was observed as in A. C: Single
confocal section of rat retinal
wholemount labeled with a monoclonal
Caspr antibody. Intense labeling of axon
fiber bundles was observed
(arrowheads) as well as somas of nearly
all cells in the ganglion cell layer. Both
large RGCs (asterisk) and likely
displaced amacrine cells (arrow, somas
<10 um) were labeled. D:
Photomicrograph of Caspr labeling in
the rat optic nerve. Inset shows
magnified view of node indicated.
Arrow indicates another labeled node.
E: Photomicrograph of Caspr labeling
(mAb) in mouse retina. Similar to the rat
retina (A, B) intense labeling of RGCs
and fiber bundles were observed as well
as many amacrine cells in the inl. F:
Photomicrograph of Caspr labeling
(mAb) in knockout retina. All labeling
of retinal cell types was eliminated,
leaving only nonspecific labeling of
retinal blood vessels. Scale bars equal to
25 pm.
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was absent in retinas of knockout mice, with the exception of
blood vessels (Figure 1F).

Co-localization of Caspr with amacrine cell markers: To
determine which amacrine cell types were labeled with Caspr,
we  performed  double-label  immunohistochemistry
experiments with Caspr and well known amacrine cell
markers (see Table 1). As the Caspr-labeled cells in the inl
were quite numerous and most them were located very close
to the inl/ipl border (Figure 2A,D), we suspected they might
be AIl amacrine cells. AIl amacrine cells in the mouse retina
are well known to be labeled by antibodies to Disabled-1
(Dab-1 [20]). Clear double labeling of Caspr with Dab-1
(Figure 2A-C) was observed. Similarly, we observed that
Caspr labeling in the rat inl was co-localized with
Parvalbumin (Figure 2D-F), a well known marker of All
amacrine cells in this species [21]. In rat retina, however, some
Caspr-positive cells in the inl did not co-localize with
Parvalbumin (e.g., arrow, Figure 2D,E), suggesting that there
are at least two cell types labeled with Caspr in the inl.

Since Caspr antibodies labeled at least one other cell type
in the inl aside from AIIl amacrine cells, we examined whether
this might be a cholinergic amacrine cell (Figure 2G-I).
Double labeling experiments with Caspr (Figure 2G) and
choline acetyltransferase (ChAT, Figure 2H) demonstrated no
co-localization in either the inl (arrowheads, Figure 2G,]) or
the gcl (Figure 2H,I; arrows).

Another calcium binding protein, Calretinin, has been
previously shown to label both amacrine and ganglion cells in
rat retina [22,23]. Previous double labeling studies have
demonstrated that cholinergic amacrine cells and at least one
other amacrine cell type contain Calretinin [24,25]. Double
labeling experiments of Calretinin with Caspr demonstrated
that a small minority of Calretinin positive amacrine cells,
localized closer to the middle of the ipl, also labeled with
Caspr (arrowheads, Figure 2J-L). Since AIl amacrine cells do
not contain Calretinin, most Caspr positive cell somas near
the inl/ipl border were not double labeled (e.g., arrow, Figure
2J,K). Thus, Caspr is present in at least three different types
of amacrine cells (displaced, AIl and a rare Calretinin positive
type), but is not present in cholinergic amacrine cells.

Caspr labeling in the outer plexiform layer: In addition to
labeling the inner retina, Caspr antibodies also labeled the
outer plexiform layer (opl, Figure 3A). In radial sections
through the retina, the opl appeared intensely labeled with
several identifiable protrusions from the opl into the outer
nuclear layer (Figure 3B,C; onl, arrows). The cellular identity
of these protrusions, however, was unclear. Co-
immunostaining of Caspr with protein kinase C antibodies
(PKC; Figure 3A-D) revealed extensive co-localization in the
dendrites of rod bipolar cells. Interestingly, Caspr seemed to
be co-localized with PKC in proximal parts of bipolar cell
dendrites, but was not observed in the extreme dendritic tips.

© 2010 Molecular Vision

From the Caspr labeling we observed in the opl, it
appeared as if horizontally oriented elements were also
present close to the opl/inl boundary. We therefore
investigated whether horizontal cell dendrites might also be
labeled. To examine this issue, we co-immunostained mouse
retina with antibodies to Caspr (Figure 3E) and syntaxin-4
(Syx4, Figure 3F, overlay Figure 3G), which is a marker for
horizontal cell dendritic tips in mammalian retina [26].
Similar to Figure 3B, the Caspr labeling consisted of intense
labeling in the opl with short protrusions into the onl.
Interestingly, the intense, more horizontally oriented Caspr
labeling (Figure 3E,G) appeared at a semi-regular interval,
and when compared with the Syx4 labeling (Figure 3F,G), it
was localized near the opl/inl boundary. Essentially no co-
localization of Caspr and Syx4 was observed at the tips of
horizontal cell dendrites. Instead, it appeared as if Caspr
labeling was in many cases interdigitated with labeling for
Syx4 (arrows Figure 3G) near the opl/inl boundary.
Syntaxin-4 “sandwiches” have been previously characterized
in mammalian retina as processes of horizontal cells
postsynaptic to cone axon terminals [26]. Our data suggest
that the intense, horizontally oriented Caspr labeling in the opl
is found inside the Syx4 sandwiches in many cases (arrows,
Figure 3QG), and is therefore likely to be labeling proximal
dendrites of cone bipolar cells [27], similar to the labeling we
have observed for rod bipolar cells.

To look more closely at whether Caspr might be present
at other locations in horizontal cell dendrites, we also double
labeled sections with Caspr (Figure 3H,J) and Calbindin-
D28k (Figures 31,J) a well known marker for horizontal cells
in mouse and rat retina [26,28]. Our data demonstrated that
most of horizontal cell processes were not double labeled. On
occasion, however, horizontal cell dendrites were observed to
be double labeled (arrowheads, Figures 3H,I). Double
labeling of Caspr and an antibody to Neurofilament 200 was
used to label horizontal cell axons [29], but no co-localization
was demonstrated (data not shown).

DISCUSSION

Our data demonstrate that the well known paranodal protein
Caspr is present in four of the five neuronal cell types in the
retina, including retinal ganglion cells, amacrine cells, bipolar
cells and horizontal cells. While the role of Caspr in RGC
axons in the optic nerve has been extensively studied [4,5,8—
11,16—-19], the functional role of Caspr inside the retina is
unclear. In the optic nerve, it is believed that Caspr plays a
significantrole in the segregation of voltage-gated sodium and
potassium channels in nodes of Ranvier and juxtaparanodes,
respectively [30]. In caspr”~ mutant mice, action potentials
are lengthened and conduction velocity significantly slowed
in nerve fibers [5]. These data suggest that Caspr’s role in
determining the precise localization of voltage-gated ion
channels in cellular membranes plays a significant role in the
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Figure 2. Co-localization of Caspr and inl cell markers in rodent retina. A-C: Single confocal section demonstrating co-localization of Caspr
labeled amacrine cells near the inner nuclear layer/inner plexiform layer (inl/ipl) boundary (A, arrowheads) with Disabled-1 (B) a marker of
AIl amacrine cells in mouse retina (C, overlay) D-F: Photomicrographs of rat retina demonstrating that nearly all Caspr labeled amacrine
cells (e.g., arrowheads, D) also contained Parvalbumin (PV, E), a well known marker for AIl amacrine cells (F, overlay). Arrow in (D) indicates
a cell labeled with Caspr, but not co-localized with Parvalbumin. Asterisk in (E) indicates a cell labeled with Parvalbumin, but not co-localized
with Caspr. G-I: Photomicrographs of rat retina demonstrating that Caspr (G) was not co-localized with ChAT (H) in amacrine cells (I,
overlay). Arrowheads indicate Caspr labeled cells in the inl; arrows indicate ChAT labeled cells in the GCL. J-L: Photomicrographs of rat
retina showing that some Caspr-labeled amacrine cells (arrowheads, J) contained Calretinin (K arrowheads, L overlay). Arrows in J-L indicate
a Caspr labeled amacrine cell that did not co-localize with Calretinin, while asterisks (J-L) indicate a Calretinin positive cell that did not
contain Caspr. Scale bar equal to 25 um. 1859
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Figure 3. Localization of Caspr in the outer plexiform layer. A: Immunostaining for Caspr (green) labeled an intense band in the outer plexiform
layer (opl) as well as AIl amacrine cells in the inner nuclear layer (inl) of mouse retina (Scale bar equal to10 um). Double labeling with PKC
(red) demonstrated co-localization with Caspr in the opl. Projection of 5 images totaling a stack thickness of 1.2 pm. B-D: Higher magnification
images of Caspr (B), PKC (C) and overlay (D) of outlined region in A. Arrows in B, C indicate double labeled rod bipolar cell dendrites in
the opl. Scale bar in D equal to 10 pm. E-G: High power images of double labeling for Caspr (E), Syx4 (F) and overlay in opl of mouse retina.
Syx4 labels horizontal cell tips and densely labeled ‘sandwiches’ postsynaptic to cone pedicles (arrows, G). Note that Caspr labeling is largely
not co-localized, and in several cases falls within a Syx4 sandwich. Large spots of labeling below opl in E are nonspecifically labeled blood
vessels. Scale bar in G equal to 10 pm. Projection of 5 images totaling a stack thickness of 1.2 um. H-J: Double labeling of Caspr (H) with
Calbindin (I) and overlay (J) in tangential section through the opl in mouse retina. Arrowheads indicate horizontal cell processes double
labeled with Caspr (H) and Calbindin (I). Scale bar in J equal to 25 pum.
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propagation of action potentials. Is it possible that Caspr plays
similar roles both inside the retina and in the optic nerve?

Inside the retina, the role of action potentials is
controversial. While it has been demonstrated that all retinal
cell classes possess the capacity to generate at least one action
potential, only a subset of these are capable of repetitive
spiking. While most, if not all, RGC types have the capacity
for repetitive spiking [31-35], only some amacrine cell types
and rabbit horizontal cells have been demonstrated to generate
repetitive spiking [14,15,36-43]. It is interesting to note that
Caspr is expressed in a similar pattern, being found in nearly
all cells in the ganglion cell layer (including both RGCs and
many displaced amacrine cells), AIl amacrine cells and
horizontal cells. Oddly, however, we only found strong
evidence for the expression of Caspr in amacrine cell somata,
bipolar cell dendrites, and the somas and unmyelinated axons
of RGCs inside the retina. There did not appear to be obvious
labeling of processes in the ipl, and while Caspr was found in
horizontal cell dendrites, it did not appear to co-localize with
Neurofilament 200 or Syntaxin-4 in their axons (data not
shown). This apparent paradox may be due simply to the
fixation parameters used, or perhaps to different post-
translational modifications (e.g., phosphorylation or binding
partners) present in different parts of the cell.

While it has been demonstrated that the remaining classes
of retinal neurons (photoreceptors, bipolar and horizontal
cells) have the capacity to generate sodium action potentials
[12—14,44,45], whether they do so in situ in the retina is yet
unclear. What is clear from these and a host of other studies,
however, is that all five classes of retinal neuron do express
voltage-gated sodium and potassium channels. These
channels can provide additional computational capacity to a
neuron beyond just the generation of spikes. For example,
voltage-gated sodium channels can enter an alternate
conductance state and generate persistent inward sodium
currents. These currents have been implicated in generating
rhythmicity, boosting synaptic inputs in dendrites and can be
activated by neurotransmitters via G proteins [46,47].
Persistent sodium currents and their associated channels have
been described previously in various retinal cell types [36,
48-53]. The broad expression of Caspr in the retina described
here may therefore help us to decipher how retinal cells
localize ion channels to increase their computational capacity.
Further anatomic and physiologic study of caspr”™ mutants
will be required to determine the functional role(s) played by
Caspr in the retina.
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