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Abstract

Transglutaminase (TG) plays important and diverse roles in mammals, such as blood coagulation and formation of the skin
barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading
pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis.
Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar
larval stage. RNA interference (RNAi) of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology.
Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies
died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality,
but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage.
Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable
protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies.
We identified four proteins—two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin—as
TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that
TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization.
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Introduction

In mammals, TG fulfills a variety of essential functions by

catalyzing isopeptide bond formation between Lys and Gln residues

to form e-(c-glutamyl) lysine bonds between appropriate substrates

in a Ca2+-dependent manner [1–3]. For example, plasma TG

(factor XIII) stabilizes noncovalently associated fibrin polymers

through covalent crosslinking of substituent fibrin monomers [4],

and TG-1 (keratinocyte TG) crosslinks several proteins to form a

thick layer of insoluble proteins, resulting in the formation of a

cornified cell envelope [2]. In invertebrates, such as the crayfish

Pacifastacus leniusculus and Drosophila, hemolymph coagulation

depends on TG-mediated crosslinking of specific clotting proteins

[5–9]. In the horseshoe crab Tachypleus tridentatus, a proteolytic

coagulation cascade leads to the conversion of coagulogen into

insoluble coagulin polymers, which are in turn stabilized by TG-

mediated crosslinking with TG substrates including proxin and

stablin, resulting in immobilization of invading pathogens at sites of

injury [10–13]. On the other hand, in the nematode parasite

Onchocerca volvulus, TG-catalyzed crosslinking is important for the

molting of third-stage larvae [14]. TGase activity is also important

in hemocyte homeostasis in the hematopoietic tissue of P. leniusculus

[15]. Recently, Wang et al. provided proof for an immune function

for Drosophila TG: Drosophila larvae with reduced TG levels exhibit

increased mortality after septic injury and are more susceptible to a

natural infection involving entomopathogenic nematodes and their

symbiotic bacteria [16].

Arthropod cuticles function principally as an exoskeletal covering

of the total body surface and are highly organized structures

produced by extracellular secretion from the epidermis. Cuticles

consist of chitin filaments, proteins, lipids, and inorganic substances,

which are modified by sclerotic processes such as the oxidative

incorporation of o-diphenols into the cuticle matrix [17–20]. We

have observed TG-dependent crosslinking of cuticle proteins in the

horseshoe crab and characterized one of the cuticle proteins

specifically expressed in epidermis, which we designated caraxin

[21,22]. Crosslinked caraxin forms an elaborate mesh of honey-

comb structures, suggesting that the mesh plays a role in promoting

wound healing and sclerotization at sites of injury. Thus, as in the

case of mammalian skin, TG-dependent protein crosslinking may

be involved in the initial stage of host defense in the sub-cuticular

epidermis of arthropods. The TG family comprises eight members

in mammals, with each member performing diverse physiological

functions [3]. In contrast, genome annotations in Drosophila have

identified only a single TG gene that is predicted to encode a protein

of 87 kDa (CG7356).
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Here we characterized Drosophila TG biochemically and

genetically, and demonstrated that the invertebrate TG is involved

in cuticle morphogenesis and sclerotization in vivo. The epidermis-

barrier function against invading pathogens and the wound-repair

pathway appear to be evolutionarily well conserved between

mammals and Drosophila, indicating that Drosophila would likely

serve as a sophisticated model system for elucidation of the

molecular mechanisms underlying mammalian skin disorders.

Results

Stage-specific expression pattern of TG and effects of
wounding on TG expression

The amount of TG antigen and the TG enzyme activity in the

extract of whole body were evaluated at different developmental

stages. TG activity was significantly different between develop-

mental stages (F5, 12 = 15.178, P,0.0001 by the ANOVA analysis)

(Figure 1B). Although neither TG antigen nor TG activity were

detectable at the first instar larva (1L) or second instar larva (2L)

stage, both were clearly detected after the third instar larva (3L)

stage (Figures 1A and 1B). The differences in TG activity between

1L and 3L or 2L and 3L were significant at 5% level (the

Bonferroni correction for multiple comparisons). TG activity in

adult flies was equivalent to that of 3L (Figure 1B). To evaluate

whether TG expression is induced in response to stimulation by

wounding, adult flies were injured by a steel pin at the abdominal

sternite. TG antigen increased at 1 h after injury (Figure 2A).

Consistent with this observation, an approximately threefold

increase in TG antigen was observed by ELISA at 2 h after injury,

with the antigen level persisting for at least 4 days (Figure 2B:

F3, 8 = 24.182, P = 0.0002). The differences in TG antigen between

0 h and 1 h, 0 h and 2 h, or 0 h and 7 h were significant at 5%

level. Moreover, an increase in TG activity in response to

wounding was observed by TG enzymatic activity assay, further

supporting the hypothesis that TG is involved in wound repair in

Drosophila (Figure 2C: F2, 6 = 8.8906, P = 0.01606). The differences

in TG activity between 0 h and 2 h or 0 h and 4 h were significant

at 5% level.

Phenotypes of TG-RNAi flies
We next characterized the phenotypes of TG-RNAi flies using

ubiquitously expressed driver (Da-GAL4.UAS-TG IR). No TG

antigen was detected in the extract from whole body of TG-RNAi

flies by western blotting (Figure 3A, Da.TG IR). TG-RNAi

revealed a pupal semi-lethal phenotype, with an eclosion rate for

TG-RNAi flies that was about 20% that of controls expressing a

LacZ-RNAi construct (Da.lacZ IR). After eclosion, about 90% of

TG-RNAi flies exhibited abnormal cuticle morphologies of the

wings and the abdominal tergite (Figure 3B). Wing formation is

executed by well-defined stages; upon pupation the imaginal wing

discs evaginate, and subsequent epithelial cell expansion without

further cell proliferation causes the wings to become compactly

folded within the confines of the pupal case and to spread within

1 h after eclosion [23,24]. TG-RNAi flies, however, failed to

expand their wings, causing the wings to blister (Figures 3B and

3C, arrowheads). In addition, several melanized segments on the

abdominal tergite of adult flies failed to develop in TG-RNAi flies

(Figure 3B, arrows). TG-RNAi flies showed a significantly shorter

life span than did their wild-type counterparts, with approximately

90% of the flies dying within 30 days of eclosion (Figure 4A;

x2 = 11084.091, d.f. = 1. P,0.0001). In contrast, control flies, Da-

GAL4.+, Da-GAL4.UAS-LacZ IR, and +.UAS-TG IR, developed

normally into adults and did not display any cuticle abnormalities.

In order to investigate the role of TG at different developmental

stages, we used a temperature-sensitive mutant (Tub-GAL80ts; Da-

GAL4) in which the driver function of GAL4 is repressed by

ubiquitously expressed GAL80 at 18uC and de-repressed at 29uC,

thereby enabling selective temporal expression of the UAS-TG IR.

To obtain the temperature-sensitive flies, Tub-GAL80ts; Da-GAL4

flies were crossed with UAS-TG IR flies in 20 vials for 2 days at

18uC, and then, each vial containing eggs was transferred to 29uC
at one-day interval. After 21 days of the crossing, the numbers of

matured flies in the vials were counted. The stage-specific RNAi

before 3L significantly increased the frequency of lethality, and

about 75% of the adult flies had abnormalities in the formation of

their wings and abdominal stripes (Figure 4B). In contrast, the

RNAi after LP had no effect on cuticle abnormality (Figure 4B),

indicating that the importance of TG in cuticle morphogenesis is

particularly pronounced prior to the EP stage.

Identification of TG substrates
To identify TG substrates, cuticle proteins were extracted with

10% acetic acid from the wings of wild-type (w1118) and Da-

GAL4.UAS-TG IR flies after eclosion. In wild-type flies, proteins

that were acid-extractable immediately after eclosion (0.5 h)

disappeared by 24 h post-eclosion, raising the possibility that

during wing maturation these proteins are crosslinked to generate

non-acid-extractable forms (Figure 5, Wild type). In contrast,

several proteins were still extractable from the wings of TG-RNAi

flies at 24 h post-eclosion, implying that they are candidates for

TG substrates (Figure 5, Da.TG IR). These proteins were

subjected to mass spectrometry, resulting in the identification of

12 proteins (Table 1).

RNAi of putative TG substrates
We characterized the phenotypes of flies in which RNAi

targeted each of these 12 genes in Table 1. Knocking down

experiments of seven genes including CG11064, CG6186,

CG13214, CG3244, CG15884, CG1469, and CG2216 resulted in

Figure 1. Stage-specific expression of TG. (A) The wild-type flies
were collected at indicated developmental stages and homogenized.
TG antigens were detected by Western blotting (upper panel). b-tubulin
was detected by Western blotting as a control (lower panel) with a
mouse anti-tubulin antibody. (B) TG activity was assayed by the
incorporation of Bi-PA into N, N’-dimethylcasein. The means 6 S. D. of
three independent experiments were plotted.
doi:10.1371/journal.pone.0013477.g001

Crosslinking in Morphogenesis
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a lethal phenotype, and those of CG9299 (Cpr76Bd) and CG6806

(larval serum protein 2, LSP2) resulted in abnormal cuticle

morphology. In contrast, those of the other three genes resulted

in neither lethality nor phenotypic abnormality. Since the Da-

GAL4 driver promoted a lethal phenotype for the seven genes, we

used an MS1096-GAL4 driver, for which expression is restricted to

the wing disc. The wing disc-restricted knocking down resulted in

phenotypic abnormality for CG15884 and CG3244, which

respectively coded Cpr97Eb protein and a putative C-type lectin

with a molecular mass of 27 kDa (tentatively designated Clect27).

MS1096-GAL4.UAS-Cpr97Eb IR flies exhibited curled wings

(Figure 6A), whereas, MS1096-GAL4.UAS-Clect27 IR flies had a

wrinkled morphology (Figure 6B, arrowheads) and lacked the

anterior crossvein (Figure 6B, a circle). Several melanized

Figure 2. The effect of wounding on TG expression. Wild-type
flies were injured using a steel pin. Flies were collected at the indicated
times and homogenized. (A) TG antigens at the indicated times were
detected by Western blotting (upper panel). b-tubulin was detected by
Western blotting as control (lower panel). (B) The amount of TG after
the wounding was determined by enzyme-linked immunosorbent
assay. The means 6 S. D. of three independent experiments were
plotted. A significant difference (versus 0 h) is indicated by asterisk
(P,0.05 after Bonferroni correction). (C) TG activities were measured by
the monodansylcadaverine incorporation at 1 and 4 h after wounding.
The means 6 S. D. of three independent experiments were plotted. A
significant difference (versus 0 h) is indicated by asterisk (P,0.05).
doi:10.1371/journal.pone.0013477.g002

Figure 3. Phenotypes of TG-RNAi flies. (A) TG antigen from whole
body extract of adult TG-RNAi flies was detected by Western blotting.
w1118, Da-GAL4.+ and Da-GAL4.UAS-LacZ IR were used as controls. Da,
Da-GAL4. (B) Phenotypes of TG-RNAi flies for the wing (left panels) and
abdominal cuticle (right panels) were classified into three grades
depending on the extent of observed abnormality. The ratios of
abnormal flies to total adult flies are indicated. Each fly was laid at 25uC.
(C) Scanning electron microscopy of TG-RNAi fly. Scale bar = 200 mm.
doi:10.1371/journal.pone.0013477.g003

Crosslinking in Morphogenesis
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segments on the abdominal tergite in the adult flies were faded and

variegated in Da-GAL4.UAS-LSP2 IR and Da-GAL4.UAS-

Cpr76Bd IR flies, respectively (Figures 6D and 6E).

Characterization of recombinant proteins of the putative
TG substrates

In order to determine whether the putative TG substrates

including Cpr76Bd, LSP2, Cpr97Eb, and Clect27 could serve as

TG substrates, recombinant forms of these proteins were generated

in E. coli with C-terminal His-tags. However, expression levels for

Cpr76Bd and LSP2 in E. coli were too low to obtain their

recombinant forms. After purification by nickel affinity and ion-

exchange chromatography, Cpr97Eb and Clect27 were incubated

with 5-biotinamidopentylamine (Bi-PA) in the presence of TG,

subjected to SDS-PAGE, and analyzed by western blotting with

biotinylated streptavidin-horseradish peroxidase (HRP). Incorpo-

ration of Bi-PA into Crp97Eb and Clect27 proteins was observed

(lane 1 in Figures 7A and 7B), which was inhibited by EDTA,

indicating that TG activity is dependent on the presence of divalent

cations (lane 2 in Figures 7A and 7B). Bi-PA was also incorporated

into several unknown proteins derived from TG fraction used (lane

3 in Figures 7A and 7B). Intermolecular reaction to form a

homopolymer of Cpr97Eb or Clect27 protein by TG was not

observed in the absence of Bi-PA, suggesting that Cpr97Eb and

Clect27 proteins may undergo heterotypic TG-dependent cross-

linking (lane 4 in Figures 7A and 7B). In addition, Clect27 and

Cpr97Eb proteins exhibited binding activity to chitin (Figure 8).

Measurements of transcuticular water loss of TG-RNAi
flies

We hypothesized that cuticular abnormalities of TG-RNAi flies

cause transcuticular water loss. To estimate water content, wet and

dry weights of whole body of adult TG-RNAi flies at 3 and 15 days

after eclosion were measured. The wet/dry ratios of TG-RNAi flies

were respectively 3.3060.72 and 3.1760.26, which were

consistent with those of the wild type flies (3.2060.06 and

3.4660.05, respectively), indicating that the shorter life span of

Figure 4. The life span of the Da-GAL4.UAS-TG IR flies. (A) The life
span of the RNAi flies was compared with those of the control flies, Da-
GAL4.+, Da-GAL4.UAS-lacZ IR and +.UAS-TG IR. Sixty adult flies were
collected and maintained at 25uC. The number of surviving flies was
recorded daily. The means 6 S. D. of four independent experiments
were plotted. Da, Da-GAL4. (B) Phenotypes of Tub-GAL80ts; Da-
GAL4.UAS-TG IR. Tub-GAL80ts; Da-GAL4 flies were crossed with the
UAS-TG IR flies in 20 vials and maintained at 18uC. The suppression of TG
by RNAi was triggered by increasing the temperature to 29uC. The ratios
flies with abnormal wings (square) and abnormal abdominal cuticles
(circle) to total adult flies are indicated (upper panel). The number of
adult flies born from each vial is indicated (lower panel).
doi:10.1371/journal.pone.0013477.g004

Figure 5. Identification of TG substrates associated with cuticle
formation. The wings of wild-type and Da-GAL4.UAS-TG IR flies were
collected at indicated times after eclosion. Wing proteins were
extracted and subjected to SDS-PAGE. TG antigen was detected by
Western blotting (upper panels). Loaded proteins were stained with
Coomassie Brilliant Blue R-250 (lower panels). Da, Da-GAL4.
doi:10.1371/journal.pone.0013477.g005

Crosslinking in Morphogenesis
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TG-RNAi flies is not caused by transcuticular water loss: no

significant difference between TG-RNAi files and the wild type

flies was found by the G-test analysis (G = 8.1361025, d.f. = 1,

P = 0.993 at 3 days after eclosion; G = 0.00278, d.f. = 1, P = 0.958

at 15 days after eclosion).

Discussion

In this study, RNAi of the TG gene product using the

ubiquitously expressed Da-GAL4 driver caused a pupal semi-lethal

phenotype and abnormal morphology at 25uC, (Figures 3 and 4),

indicating that TG is important for Drosophila development and

morphogenesis. Recently, Wang et al. reported that a TG-RNAi

strain with reduced expression of TG using an ACt5C-GAL4 driver

showed no morphological defects at 22uC [16]. This discrepancy

in the phenotypes for TG-RNAi flies of the two strains may be due

to a more severe reduction level of TG in our RNAi flies by the

different driver at higher temperature. The temperature depen-

dence of GAL4-UAS expression system is widely accepted, and by

altering the temperature, a wide range of expression levels of any

responder can be achieved [25]. For example, to obtain

information about the function of Drosophila POMT1 (protein O-

mannosyltransferase-1), the Act5C-GAL4/UAS-POMT-1-IR fly was

raised at 25uC and 28uC, and the fly showed a viability of 19% at

25uC, but 0% at 28uC, indicating that the knockdown is more

effective at 28uC [26]. Interestingly, Wang et al. reported that the

TG-knockdown flies increase mortality after entomopathogenic

nematode infections, suggesting TG-dependent clot formation

works as an important effector by helping to prevent septic

infections [16]. Here we have demonstrated an increase of TG

antigen and a concomitant increase in TG activity as a result of

wounding, a finding that also suggests that TG is involved in the

early phase of the innate immune reaction (Figure 2). TG-RNAi

flies showed a significantly shorter life span than their counterparts

(Figure 4A). TG-1 knockout mice die of severe dehydration due to

high transepidermal water loss within 4–5 h after birth, caused by

defective skin barrier development [27]. However, TG-RNAi flies

did not appear to die of transcuticular water loss, suggesting that

TG may have another pivotal function for survival.

We identified four putative TG substrates, namely Cpr97Eb,

Cpr76Bd, LSP2, and CG3244 (here designated Clect27) by mass

spectrometry and evaluated their functions by RNAi (Table 1).

The Da-GAL4 driver promoted lethal phenotypes for Crp97Eb and

Clect27 knockdowns, whereas the wing disc-restricted driver

promoted abnormal wing morphologies (Figures 6A and 6B).

Table 1. Acid-extractable wing proteins from TG-RNAi flies identified by mass spectrometry.

Nominal
molecular weight

CG
number Protein name

MASCOT
score

Sequence
coverage (%)

Phenotype
with Da-GAL4

Phenotype
with MS-GAL4

374386 CG11064 RFABP 5117 54 Lethal NP

124155 CG9299 Cpr76Bd 974 32 Faded melanization
(See Fig. 6)

NP

83409 CG6806 LSP2 2248 60 Faded melanization
(See Fig. 6)

NP

72964 CG6186 Transferrin 1 1826 82 Lethal NP

50573 CG13214 Cpr47Ef 985 36 Lethal NP

48802 CG1780 Imaginal disc growth factor 4 1036 70 NP NP

29372 CG10287 Gasp 931 85 NP NP

26900 CG3244 Clect27 461 48 Lethal Anterior crossvein
loss (See Fig. 6)

26735 CG15884 Cpr97Eb 586 74 Lethal Curled wing (See Fig. 6)

25455 CG1469 Ferritin 2 light chain 1307 76 Lethal NP

23302 CG2216 Ferritin 1 heavy chain 1325 79 Lethal NP

19100 CG15008 Cpr64Ac 573 80 NP NP

RFABP, retinoid and fatty acid binding protein; NP, no phenotypic difference observed.
doi:10.1371/journal.pone.0013477.t001

Figure 6. Phenotypes of TG substrate RNAi flies. Phenotypes of
the MS1096-GAL4.UAS-Cpr97Eb IR (A), MS1096-GAL4.UAS-Clect27 IR
(B), Da-GAL4.UAS-LSP2 IR (D) and Da-GAL4.UAS-Cpr76Bd IR (E) flies.
The control flies, MS-GAL4.+ (C) and Da-GAL4.+ (F), are also indicated.
Each fly was laid at 25uC. MS, MS1096-GAL4; Da, Da-GAL4.
doi:10.1371/journal.pone.0013477.g006
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The TG-dependent incorporation of Bi-PA into Crp97Eb and

Clect27 proteins further implicated these proteins as potential TG

substrates in vivo (Figure 7). Crp97Eb protein contains a Rebers

and Riddiford consensus sequence, which is found in arthropod

cuticular chitin-binding proteins [17,18,21,28]. As expected,

recombinant Cpr97Eb protein exhibited chitin-binding activity

(Figure 8). Cpr97Eb gene is strongly expressed during pupal wing

morphogenesis [29], and the morphological defect of the wing

disc-restricted RNAi flies in this study suggests that Cpr97Eb

protein is involved in the TG-dependent crosslinking required for

cuticle morphogenesis and sclerotization. Clect27 protein is a

putative galactose-binding C-type lectin based on the amino acid

sequence with unknown physiological function. Clect27 gene

expression shows a highly localized pattern in the wing disc

[30]. The wing disc-restricted Clect27-RNAi flies lacked anterior

crossveins (Figure 6B, a circle) and recombinant Clect27 protein

exhibited chitin-binding activity (Figure 8). Taken together, these

findings suggest that Clect27 protein expressed in the wing may

bind to the cuticle and be crosslinked by TG, and raise the

possibility that a defect in this process may underlie the observed

lack of the anterior crossvein in the wings of wing disc-restricted

Clect27-RNAi flies.

RNAi of Cpr76Bd and LSP2 resulted in faded or variegated

black lines on the abdominal tergite, suggesting that these TG

substrates are associated with melanin formation in the cuticle

(Figures 6D and 6E). Although the physiological function of

Cpr76Bd protein remains unknown, it contains Rebers and

Riddiford consensus sequence, suggesting a cuticular chitin-

binding activity. LSP2 is one of the major protein in hemolymph

Figure 7. TG-dependent incorporation of Bi-PA to Cpr97Eb and Clect27 proteins. Cpr97Eb (A) and Clect27 (B) proteins were incubated
with or without Bi-PA in the presence of TG. The incorporation of Bi-PA was detected with biotinylated streptavidin-HRP (upper panel). Z2A (C) is a
recombinant version of horseshoe crab b-1,3-D-glucan-binding protein [43], which was used as negative control for the TG-dependent incorporation.
Loaded recombinant proteins were detected by Western blotting with an anti-66His tag antibody or anti-Z2A antibody (lower panels).
doi:10.1371/journal.pone.0013477.g007

Figure 8. Binding of Cpr97Eb and Clect27 proteins to chitin.
Cpr97Eb and Clect27 proteins were mixed with chitin, and unbound
(UB) and bound (B) fractions were subjected to SDS-PAGE. The bound
fraction was eluted by 2% SDS. Z2A was used as negative control for
chitin binding. Proteins were detected by Coomassie Brilliant Blue R-250
staining (Clect27 and Z2A) or by anti-66His tag antibody (Cpr97Eb).
doi:10.1371/journal.pone.0013477.g008

Crosslinking in Morphogenesis
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at 3L, and transcription of LSP2 gene is controlled by 20-

hydroxyecdysone [31,32]. The LSP2 homo-hexamer is synthe-

sized in the fat body and secreted into hemolymph [33,34]. LSPs

act mainly as storage proteins that provide energy and amino acids

during metamorphosis [35,36]. Injection of a larval serum protein,

calliphorin from the blowfly Calliphora vicina labeled with

[14C]phenylalanine, into larvae showed that the relatively high

portion of calliphorin and/or calliphorin-derived phenylalanines

are incorporated into SDS-insoluble portion of adult cuticle,

suggesting the possible conversion of calliphorin into tanned

insoluble proteins, and/or hydroxylation of phenylalanine to

tyrosine involved in cuticular sclerotization [37]. Moreover,

fractionation of sclerotized pupal cuticle showed that calliphorin

forms covalent and non-covalent links with other cuticle

components. Thus, LSP2 may be incorporated into cuticle by

TG activity and involved in melanization, although the order of

events in cuticle hardening due to TG and melanization remains

to be clarified.

TG requires Ca2+ for activation [3]. Horseshoe crab TG is

stored in hemocytes as a latent form under the low concentration

of Ca2+ (,1 mM) in cytosol and secreted in response to stimulation

by lipopolysaccharides [10]. The secreted TG is activated

immediately by Ca2+ in hemolymph plasma (,10 mM), which is

very important for the crosslinking of coagulin with TG substrates

at injured sites to stop bleeding and to immobilize invading

microbes [12], and the activated TG also catalyzes crosslinking of

cuticular chitin-binding proteins secreted from the sub-cuticular

epithelial cells [22]. Although in Drosophila, tissue localization of

TG remains unknown, TG must be regulated timely and spatially

by the Ca2+ concentration. Upon eclosion, the wings are expanded

by blood pressure, a process that is completed within one hour

[24]. TG secreted from cells in response to appropriate stimulation

must be activated by Ca2+ in hemolymph plasma and transferred

into the whole parts of the wings, and TG must crosslink several

proteins to support wing maturation. Indeed, TG antigen existed

in the wings of wild type flies immediately after eclosion (Figure 5,

Wild type). In TG-RNAi flies, several proteins remained intact

without crosslinking in the wings, resulting in wing blisters. This

indicates that TG plays a critical role in the hardening steps during

wing formation. During wing formation in Drosophila, an

appropriate programmed cell death in epidermal cells is required

prior to tanning and hardening [38]. In mammals, TG plays an

important role in apoptosis to prevent the leakage of cytosolic

components by protein crosslinking [39,40]. Drosophila TG may be

also involved in an apoptotic step in wing formation.

Mice lacking TG-1 display a defective skin-barrier function and

deficient wound repair [27]. A Drosophila transcription factor

grainy head regulates enzymes, such as dopa decarboxylase and

tyrosine hydroxylase, both of which catalyze the production of

quinones, leading to covalent crosslinking between cuticle proteins

and cuticular structural components [41]. Mice lacking grainy head-

like 3, a homologue of Drosophila grainy head, display the same defects

as in the case of the TG-1 knockout mice, accompanied by reduced

expression of TG-1 [42]. The epidermis-barrier function and the

wound-repair pathway seem to be evolutionarily well conserved

between mammals and Drosophila, suggesting that Drosophila could

serve as a sophisticated model system to elucidate the molecular

mechanisms underlying mammalian skin disorders.

Materials and Methods

Fly stocks
Flies were maintained on the standard Drosophila medium at 18,

25 or 29uC. Flies, white (w1118), Da-GAL4 and Tub-GAL80ts; Da-

GAL4 were obtained from the Bloomington Stock Center.

MS1096-GAL4 strain was a gift from Dr. Ulrich Theopold at

Stockholm University. UAS-TG IR, UAS-Cpr76Bd IR, UAS-Clect27

IR, and UAS-LSP2 IR flies were obtained from Dr. Ryu Ueda at

the National Institute of Genetics, Mishima, Japan. UAS-Cpr97Eb

IR flies were obtained from the Vienna Drosophila RNAi Center.

UAS-TG strain was gift from Drs. Koji Ikura and Akira Ichikawa.

Strain w1118 was used as the wild type.

Preparation of polyclonal antibodies against TG
To prepare polyclonal antibodies, the full-length, the N-

terminal region (residues 1–284), and the C-terminal region

(515–776) of TG were expressed in E. coli strain BL21 (DE3) pLysS

(Novagen). An expression level of the full-length of TG was too low

to obtain the recombinant form as an antigen. Inclusion bodies

containing the recombinant proteins of the N-terminal region and

the C-terminal region of TG were isolated, subjected to SDS-

PAGE under reducing conditions, and stained using negative

staining. The protein bands corresponding to the recombinant

proteins were excised from the gel and recovered by electroelution

for the immunization of rabbits (Asahi Techno Glass, Chiba,

Japan). An antibody titer of the anti-serum against the C-terminal

region of TG did not rise after several boosts of the antigen.

Therefore, an polyclonal antibody against the N-terminal region of

TG was purified sequentially from the anti-serum by using protein

A-Sepharose and antigen-conjugated Affi-Gel-10 (Bio-Rad Labo-

ratories, Hercules, CA). The resulting antibody cross-reacted with

horseshoe crab TG in hemocyte lysates by Western blotting.

Extraction of proteins from the whole body and wings
Flies were homogenized in 1% Nonidet P-40 in 50 mM Tris-

acetate, pH 7.5, containing 150 mM NaCl, 1 mM EDTA and

1 mM phenylmethylsulfonyl fluoride, and centrifuged at 20,0006g

at 4uC for 15 min to collect the supernatant. For wing protein extrac-

tion, wings were collected, washed with 70% ethanol, and homo-

genized in 10% acetic acid using a pellet mixer. After incubation at

4uC for 16 h, the homogenate was centrifuged at 20,0006g at 4uC
for 15 min, after which the supernatant was lyophilized.

Western blotting
Samples were subjected to SDS-PAGE and transferred to

PVDF membrane. After blocking with 5% dry milk, the

membrane was incubated with the anti-TG antibody or anti-

66His tag antibody (Nacalai Tesque, Kyoto, Japan) and then with

the secondary antibody (horseradish peroxidase-conjugated (HRP)

goat anti-rabbit or -mouse IgG, Bio-Rad Laboratories), followed

by development with Chemi-Lumi One (Nacalai Tesque). b-

Tubulin was detected with a mouse anti-tubulin antibody

(Chemicon International, Temecula, CA).

Enzyme-linked immunosorbent assay
Microtiter plates were coated with homogenates of 10

individuals (whole body) at 37uC for 1 h. After washing with

50 mM Tris-HCl, pH 7.5, containing 150 mM NaCl, wells were

blocked with 5% dry milk in the same buffer. Plates were

incubated with the anti-TG antibody at 37uC for 1 h and then

with 5,000-fold diluted goat anti-rabbit IgG-HRP conjugate (Bio-

Rad Laboratories), and developed using o-phenylenediamine

substrate with detection at 490 nm.

TG activity assays
Microtiter plates were coated with 50 ml of N, N’-dimethylcasein

(15 mg/ml; Sigma, St. Louis, MO) at 4uC overnight, and the wells
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were subsequently blocked with 0.5% dry milk in 0.1 M Tris-HCl,

pH 8.5 at 37uC for 1 h and washed with 0.1 M Tris-HCl, pH 8.5.

Reagents were added to each well as follows: 10 mM CaCl2,

10 mM dithiothreitol, 0.5 mM 5-biotinamidopentylamine (Bi-PA;

Pierce Chemical, Rockford, IL), whole body lysate (2.5 mg

protein), and 0.1 M Tris-HCl, pH 8.5 (total volume of 50 ml per

well). The microtiter plates were incubated at 37uC for 1 h, and

the reaction was stopped by washing with 200 mM EDTA

followed by washing with 0.1 M Tris-HCl, pH 8.5. The

biotinylated streptavidin-HRP conjugate (GE Healthcare, Buck-

inghamshire, UK) diluted 1:200 with 0.5% dry milk in 0.1 M Tris-

HCl, pH 8.5 was added to each well and incubated at 37uC for

1 h. The plate was washed once with 0.001% Triton X-100

followed by four washes with 0.1 M Tris-HCl, pH 8.5. The

activity of horseradish peroxidase was detected with o-phenylene-

diamine at 490 nm.

TG activity was additionally assayed by fluorometric measure-

ment of monodansylcadaverine incorporation into N, N’-dimethyl-

casein. Homogenates of eight individual flies were incubated with

50 mM Tris-acetate, pH 7.5, containing 10 mM CaCl2, 10 mM

dithiothreitol, 0.5 mM monodansylcadaverine, and 0.04% of N,

N’-dimethylcasein at 37uC for 30 min, after which the reaction

was stopped by adding 10% trichloroacetic acid. The resulting

precipitate was solublized with 50 mM Tris-acetate, pH 7.5,

containing 8 M Urea and 0.5% SDS. The amount of the

incorporated monodansylcadaverine was quantitated with a

fluorescence spectrophotometer.

Statistical analyses
TG activity or the amount of TG antigen was analyzed by the

ANOVA. The model of the ANOVA was as follows: Yij = u + Ai +
eij, where Y is the TG activity, u is the overall mean, Ai is the ith

developmental stage effect or injury time effect and eij is the error

term. The developmental stage effect or injury time effect was

considered as the fixed effect. Bonferroni correction for multiple

comparisons was applied to evaluate the pairwise difference in

average activity or average amount of TG antigen between

developmental stages or injury times. The log-rank test was

performed to compare survival in two groups (TG-RNAi and Da-

GAL4.+ flies). Differences of transcuticular water loss between

wild type and TG-RNAi flies were tested using the G test for

goodness of fit.

Mass spectrometry
Proteins were subjected to SDS-PAGE and stained with

Coomassie Brilliant Blue R-250. Protein bands were excised,

digested with trypsin, and subjected to LC/MS/MS analysis. Peak

lists obtained from the mass spectra were used to identify proteins

using the Mascot search engine (Matrixscience).

Expression of recombinant Cpr97Eb and Clect27 in E. coli
To construct expression vectors, cDNA fragments were

amplified by PCR. An amplimer encoding the entire Clect27

coding sequence were inserted into expression vector pET-22b

(Novagen) between the NdeI and XhoI sites. An amplimer the

entire Cpr97Eb coding sequence was inserted into pET-22b

between the NcoI and XhoI sites. All constructs were verified by

DNA sequencing. These constructs, which contain C-terminal

His-tags, were expressed in the E. coli strain Origami B (DE3)

(Novagen). Bacteria were cultured in Luria-Bertani medium, and

expression was induced by the addition of isopropyl-b-D-

thiogalactoside at a final concentration of 30 mM at 18uC for

20 h. Bacterial pellets were harvested by centrifugation and

sonicated in 20 ml of 50 mM Tris-HCl, pH 8.2, containing

150 mM NaCl, 1% Nonidet P-40 and 1 mM phenylmethylsulfo-

nyl fluoride. After sonication, supernatants were recovered by

centrifugation and purified according to the manufacturer’s

protocol using Ni-NTA agarose. Eluates of Clect27 protein from

Ni-NTA agarose were diluted with 50 mM Tris-HCl, pH 7.0,

containing 100 mM NaCl and further purified on a DEAE

Sepharose CL-6B column (162 cm). Proteins were eluted with a

linear NaCl gradient (100–500 mM) in the same buffer.

Incorporation of Bi-PA into Clect27 and Cpr97Eb proteins
Recombinant proteins were incubated with TG in 50 mM Tris-

HCl, pH 8.5, containing 10 mM CaCl2, 10 mM dithiothreitol

and 1 mM Bi-PA at 37uC for 1 h. Whole body extract of Da-

GAL4.UAS-TG was used as the TG source. Following the

reaction, aliquots were subjected to SDS-PAGE and electroblotted

on PVDF membrane. After blocking with 5% dry milk, the

membrane was incubated at room temperature for 1 h with the

biotinylated streptavidin-HRP conjugate diluted 1:1000 with

20 mM Tris-HCl, pH 7.5 containing 5% nonfat dry milk and

150 mM NaCl, followed by development with Chemi-Lumi One

reagent.

Binding assay for chitin
Chitin-binding assays were performed as previously reported

[43]. Briefly, proteins were mixed with chitin in 50 mM Tris-HCl,

pH 7.5, 150 mM NaCl, and incubated at 4uC for 10 min.

Supernatants were separated by centrifugation and precipitates

were washed with the same buffer. Protein bound to chitin was

eluted with 2% SDS. Bound and unbound fractions were

subjected to SDS-PAGE. Clect27 and Cpr97Eb were detected

by staining with Coomassie Brilliant Blue R-250 and by Western

blotting with an anti-66His tag antibody, respectively.

Measurements of wet and dry weights of TG-RNAi flies
Twenty adult TG-RNAi or wild-type flies were anesthetized and

weighed (wet weights). Flies were then dried with a centrifugal

vacuum concentrator (model 78120KT, Labconco, Kansas city,

MO) for 6 h and weighed (dry weights).

Optical and Scanning Electron Microscopies
Optical microscopic observation was performed with a Nikon

SMZ 1000 microscope. For scanning electron microscopy, non-

fixed samples without coating were directly observed by a Keyence

VE-9800 scanning electron microscope.
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