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Abstract
Objective—To investigate whether genome-wide association study (GWAS)–validated and
GWAS-promising candidate loci influence magnetic resonance imaging measures and clinical
Alzheimer’s disease (AD) status.

Design—Multicenter case-control study of genetic and neuroimaging data from the Alzheimer’s
Disease Neuroimaging Initiative.

Setting—Multicenter GWAS.

Patients—A total of 168 individuals with probable AD, 357 with mild cognitive impairment, and
215 cognitively normal control individuals recruited from more than 50 Alzheimer’s Disease
Neuroimaging Initiative centers in the United States and Canada. All study participants had APOE
and genome-wide genetic data available.

Main Outcome Measures—We investigated the influence of GWAS-validated and GWAS-
promising novel AD loci on hippocampal volume, amygdala volume, white matter lesion volume,
entorhinal cortex thickness, parahippocampal gyrus thickness, and temporal pole cortex thickness.
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Results—Markers at the APOE locus were associated with all phenotypes except white matter
lesion volume (all false discovery rate–corrected P values < .001). Novel and established AD loci
identified by prior GWASs showed a significant cumulative score–based effect (false discovery rate
P=.04) on all analyzed neuroimaging measures. The GWAS-validated variants at the CR1 and
PICALM loci and markers at 2 novel loci (BIN1 and CNTN5) showed association with multiple
magnetic resonance imaging characteristics (false discovery rate P <.05).

Conclusions—Loci associated with AD also influence neuroimaging correlates of this disease.
Furthermore, neuroimaging analysis identified 2 additional loci of high interest for further study.

Late-onset alzheimer disease (AD) is the most common cause of dementia and the fifth leading
cause of death in Americans older than 65 years.1 The mechanisms underlying AD onset and
progression remain largely unexplained. A study of twins2 has demonstrated a significant role
for genetics in late-onset AD, with heritability estimates of 60% to 80%. Until recently, the
only genetic variant consistently shown to influence AD risk and age at onset was APOE
(OMIM 107741).3 New findings from genome-wide association studies (GWASs) identified
3 additional loci conferring risk for AD: CLU (OMIM 185430), PICALM (OMIM 603025),
and CR1 (OMIM 120620).4,5 Other promising loci were also reported in these GWASs but did
not achieve P values sufficient for genome-wide significance.

Multiple neuroimaging measures correlate with AD risk and progression. These measures also
appear to have genetic under-pinnings, with heritability estimates ranging from 40% to 80%,
6 and have been proposed as surrogate end points in biological research and clinical trials in
AD.7,8 The demonstration that recently discovered genetic risk factors for AD also influence
these neuroimaging traits would provide important confirmation of a role for these genetic
variants and suggest mechanisms through which they might be acting.

We therefore investigated the genetics of AD-related neuroimaging measures using data
collected as part of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We investigated
whether GWAS-validated and GWAS-promising candidate loci influence magnetic resonance
imaging (MRI) measures and clinical status (cognitively normal, mild cognitive impairment
[MCI] without progression to probable AD, MCI with progression to probable AD, and
probable AD). Because of limitations in sample size and hence study power, we performed
individual single-nucleotide polymorphism (SNP)–based analyses and cumulative score–
based analysis, which incorporated information from a collection of candidate SNPs.

METHODS
ALZHEIMER’S DISEASE NEUROIMAGING INITIATIVE

Participants were selected from the ADNI database (http://www.loni.ucla.edu/ADNI). The
ADNI is a large, multisite, collaborative effort launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering, the US Food and
Drug Administration, private pharmaceutical companies, and nonprofit organizations as a
public-private partnership aimed at testing whether serial MRI, positron emission tomography,
other biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. The principal investigator of ADNI is Michael
Weiner, MD. ADNI is the product of many coinvestigators from a broad range of academic
institutions and private corporations, with patients recruited from more than 50 sites across the
United States and Canada. For more information, see http://www.adni-info.org. Data from the
ADNI cohort were not used in either of the prior AD GWASs.4,5
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STUDY PARTICIPANTS
Participants were screened, enrolled, and followed up prospectively according to the ADNI
study protocol described in detail elsewhere.9 The degree of clinical severity for each
participant was evaluated by an annual semistructured interview. This interview generated an
overall Clinical Dementia Rating (CDR) score and the CDR Sum of Boxes.10 The Mini-Mental
State Examination11 and a neuropsychological battery were also conducted.

Participants were selected from the ADNI database if they were classified at baseline as (1)
cognitively normal control individuals with a CDRscore of 0; (2) patients with MCI with Mini-
Mental State Examination scores between 24 and 30, a subjective memory complaint verified
by an informant, objective memory loss as measured by education-adjusted performance on
the Logical Memory II subscale (delayed paragraph recall) of the Wechsler Memory Scale–
Revised,12 a CDR score of 0.5, absence of significant levels of impairment in other cognitive
domains, essentially preserved activities of daily living, an absence of dementia at the time of
the baseline MRI scan, and classified as having the amnestic subtype of MCI based on the
revised MCI criteria13; and (3) patients with AD who met criteria for probable AD14 (CDR
score of 1).

Among 746 study participants who fulfilled quality control criteria for genotype data, 171
qualified for an AD diagnosis at baseline, 364 had MCI, and 205 were cognitively normal
controls. Among 364 with baseline MCI, longitudinal follow-up identified 140 who converted
to an AD diagnosis and 217 who did not. Three AD cases reverted to MCI status and 18 MCI
cases reverted to control status. Removal of these individuals whose disease status reverted
did not alter the presented results.

GENOTYPE DATA
Individual-level genotype data in the ADNI database15 were downloaded and merged to form
a single data set containing genome-wide information for 818 individuals. Genetic analyses
were performed using PLINK version 1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/).
Filtering criteria applied to individuals and SNPs are shown in the Figure.

Population structure was assessed by performing principal component analysis on a subset of
all SNPs selected using multiple criteria (Figure). We assigned genotype-determined ancestry
by comparing ADNI patients and reference populations from HapMap Phase 3 data. To control
for population stratification, only individuals clustering with European HapMap samples were
retained for analysis.

Quality control of genotype data for analyzed individuals included filters for missingness,
heterozygosity, and concordance between genotype-determined and reported sex. The SNP
quality control included filters for minor allele frequency (MAF), missingness, Hardy-
Weinberg equilibrium, and differential missingness by case-control status. A total of 746
individuals passing quality control criteria were reclustered by performing principal
component analysis.

MRI DATA
The ADNI MRIs were acquired at multiple sites using a GE Health-care (Buckinghamshire,
England), Siemens Medical Solutions USA (Atlanta, Georgia), or Philips Electronics 1.5 T
system (Philips Electronics North America; Sunnyvale, California). Two high-resolution T1-
weighted volumetric magnetization-prepared 180° radiofrequency pulses and rapid gradient-
echo scans were collected for each study participant, and the raw Digital Imaging and
Communications in Medicine images were downloaded from the public ADNI site
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(http://www.loni.ucla.edu/ADNI/Data/index.shtml). Parameter values can be found at
http://www.loni.ucla.edu/ADNI/Research/Cores/.

All MRIs were processed according to previously published methods.8 Briefly, all MRIs were
processed using the Free Surfer version 4.1.0 software package
(http://surfer.nmr.mgh.harvard.edu). A single magnetization-prepared 180° radiofrequency
and rapid gradient-echo acquisition for each participant was normalized for intensity in
homogeneities, nonbrain tissue removed, and subcortical white matter and deep gray matter
volumetric structures segmented.16,17 Intensity gradients were followed outward from the
white matter surface to find the gray matter surface (gray–cerebrospinal fluid boundary).18,
19 Cortical thickness measurements were then obtained by calculating the distance between
the gray and white matter surfaces at each point (per hemisphere) across the entire cortical
surface.19 In our analyses, the cortical thickness and right-brain/left-brain volumes were
averaged. To account for differences in head size, the total volume for each subcortical region
of interest was corrected using a previously validated estimate of the total intracranial volume.
19,20

SNP SELECTION
Four GWAS-validated AD loci were selected for analysis: APOE, CLU, PICALM, and CR1.
Genotypes of APOE were separately obtained via targeted genotyping, whereas SNPs showing
the strongest degree of association in published GWASs4,5 were selected for analysis:
rs11136000 at CLU, rs3851179 at PICALM, and rs1408077 at CR1. We selected for additional
analysis all GWAS-promising SNPs with P < 1 × 10−5 in the prior GWASs.4,5 When multiple
variants in moderate to high linkage disequilibrium at 1 locus (r2 > 0.6) were reported to be
associated with AD, only the SNP with the lowest P value was selected for analysis in the
present study. Sixteen SNPs were chosen based on these criteria (Table 1).

NEUROIMAGING MEASURE SELECTION
Six neuroimaging measures were chosen for analysis on the basis of their established role in
predicting AD risk and progression: hippocampal volume, amygdala volume, white matter
lesion (WML) volume, entorhinal cortex thickness (ECT), parahippocampal gyrus thickness,
and temporal pole cortex thickness (TPT).21–25 All analyzed neuroimaging measures were
highly associated with AD in case-control analysis (P < 1 × 10−4 for all). However, correlation
matrix analysis (Table 2) revealed limited association between measures (correlation
coefficient range, −0.38 to 0.75), suggesting that independent analysis was needed for
association with genetic variants.

GENETIC ASSOCIATION ANALYSIS
Genotype data were analyzed using an additive model, with odds ratios (ORs) or regression
coefficients expressing the effect of each copy of the reference allele. Analyses of diagnostic
categories (AD, MCI converters, MCI nonconverters, and controls) used an ordinal logistic
regression model. Analyses of neuroimaging measures used linear regression. Continuous
measures with skewed distributions were log transformed. All analyses included age, sex,
history of hypertension, APOE genotype (number of ε2 and ε4 copies), alcohol abuse
(Diagnostic and Statistical Manual of Mental Disorders [Fourth Edition]26 criteria), and
smoking status (ever smoker) as covariates. Education level was adjusted for according to
number of school years attended (<13, 13–16, or >16 years). Population stratification was
adjusted for by incorporating the first 2 principal components as covariates. Neuroimaging
analysis was performed independent of diagnostic category. Because Bonferroni correction
was inappropriate owing to the nonindependence of tests, we used the false discovery rate
(FDR) according to the method developed by Hochberg and Benjamini27 to control for multiple
hypothesis testing. Statistical significance was defined for FDR-corrected P < .05.
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POWER CALCULATIONS FOR NEUROIMAGING ANALYSIS
We determined statistical power for identification of the association between analyzed variants
and neuroimaging measures at a conservative α = .001. To do so, we used the Genetic Power
Calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/).28

SCORE-BASED ANALYSIS
Combined effects of non-APOE candidate SNPs were evaluated using a cumulative score–
based method that was previously used to assess the cumulative effect of loci affecting lipid
levels,29 risk of myocardial infarction,30 and blood pressure.31 Under this model each
individual is assigned a score determined by multiplying the number of allele copies for SNPs
of interest by a prespecified score weight. Score weights were based on β-coefficients extracted
from case-control results from published GWAS reports4,5 (Table 1). Contributors to the
genetic risk score included previously validated loci from GWASs (CLU, PICALM, and
CR1) and those SNPs achieving adjusted significance (FDR-corrected P < .05) in our ordinal
logistic regression analysis (BIN1 and CNTN5). Score analysis performed without BIN1 and
CNTN5 (data not shown) did not alter the results. Contributions from individual SNPs were
summed to obtain a single genetic risk score, which was divided into quartiles for
normalization. Single-SNP and score-based ordinal logistic regression results were analyzed
using a maximum-likelihood method to compare predictive power for disease status.

RESULTS
GENETIC DATA QUALITY CONTROL

A total of 818 individuals enrolled had genotype data available for analysis. Of these, 72 were
excluded by quality control filters (Figure), whereas our image-processing tools failed to
produce good-quality results on the MRIs of 6 individuals. Therefore, we analyzed 740
individuals with genotype and MRI data that met filtering criteria (Table 3). Filtering of
genome-wide data generated a final analyzed data set that included 545 451 SNPs (Figure).
Population stratification was assessed by computing genomic inflation factors for all
phenotypes (diagnosis and neuroimaging measurements): all values were lower than 1.005
after correction for principal components.

STATISTICAL POWER
We had more than 0.95 power for discovery of associations between APOE and neuroimaging
traits (effect size, 5% of variance; MAF, 0.37). Power for discovery of associations with
individual non-APOE loci was below 0.30 (effect size, 1% of variance; MAF range, 0.10–
0.40). We therefore chose to pool genetic effects using a validated score-based model.28–30

Statistical power for the score-based analyses was approximately 0.80 (effect size, 3% of
variance).

GENETIC RISK FACTORS FOR AD
We sought to extend known associations of APOE, CLU, PICALM, and CR1 with AD using
a logistic regression model across 4 diagnostic categories: disease-free controls, MCI
nonconverters, MCI converters, and AD patients (Table 4). The strongest association with
clinical diagnosis was shown by APOE (OR, 2.07; 95% confidence interval [CI], 1.67–2.56;
FDR-corrected P< 1 × 10−6). Of the 3 previously confirmed non-APOE AD loci, only CR1
was replicated in the ADNI data set, with SNP rs1408077 showing a significant association
(OR, 1.27; 95% CI, 1.03–1.63; FDR-corrected P=.02). Among GWAS-promising SNPs with
adjusted P < 1 × 10−5 in GWASs, 2 variants showed significant association in our analysis:
rs10501927 at CNTN5 (OR, 1.25; 95% CI, 1.02–1.53; FDR-corrected P=.03) and rs7561528
at BIN1 (1.29; 1.03–1.62; FDR-corrected P=.03).
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The genetic risk score included the following SNPs: rs11136000 (CLU), rs3851179
(PICALM), rs1408077 (CR1), rs10501927 (CNTN5), and rs7561528 (BIN1). Ordinal logistic
regression revealed an association between risk score quartiles and diagnostic status (OR, 1.14;
95% CI, 1.04–1.25; FDR-corrected P=.001). Comparison of predictive performance between
score-based analysis and individual SNP analyses favored the cumulative effects model (P=.
03). To account for the possible heterogeneity in genetic and imaging risk profiles within the
group whose cases did not convert to MCI, we repeated all analyses after removal of these
individuals and observed similar results (data not shown).

GENETIC RISK FACTORS FOR MRI MEASURES
We investigated the influence of APOE genotype and genetic risk score profile on each MRI
measure (Table 5). The APOE ε4 allele was strongly associated with all measures except WML
volume (P=.44). Genetic risk score quartiles predicted increasing severity of all MRI measures
(FDR-corrected P = .04). On analyzing score-contributing SNPs individually, we identified
associations for the GWAS-validated SNPs rs1408077 at CR1 with ECT (FDR-corrected P=.
03) and rs3851179 at PICALM with hippocampal volume and ECT (FDR-corrected P=.05 and
FDR-corrected P=.01, respectively). Furthermore, we identified associations for GWAS-
promising SNPs rs10501927 at CNTN5 with WML volume, parahippocampal gyrus thickness,
TPT, and ECT (FDR-corrected P =.002, P =.05, P =.02, and P =.02, respectively) and for
rs7561528 at BIN1 with TPT and ECT (FDR-corrected P=.03 and P =.01, respectively).

COMMENT
Our results indicate that APOE and other previously validated loci for AD affect clinical
diagnosis of AD and neuroimaging measures associated with disease. These findings suggest
that sequence variants that modulate AD risk in recent GWASs may act through their influence
on neuroimaging measures. Furthermore, our genetic analysis of neuroimaging traits identified
BIN1 and CNTN5 as genes of heightened interest for their relationship with AD, prioritizing
these targets for further study.

Among non-APOE AD loci that have emerged from GWASs, only the CR1 locus was
significantly associated with disease status. Failure to extend previous findings for CLU and
PICALM is likely because of the limited sample size of the ADNI cohort. Nonetheless, our
genetic risk score was associated in a dose-dependent manner with clinical diagnosis and
clearly outperformed individual SNP models. This finding is consistent with a biological role
for at least some, if not all, of the incorporated loci. Interestingly, the inclusion of previously
un-validated loci at BIN1 and CNTN5 (albeit supported by P < 1 × 10−5 in the previous GWASs)
did not degrade the performance of the genetic score, further supporting a role for these loci
in AD.

The genetic risk score quartiles correlated with every examined neuroimaging trait, consistent
with the underlying hypothesis that these traits are, at least in part, determined by genome
sequence at these loci. This finding offers parallel evidence that the included genes influence
biological processes underlying development of AD.

Among GWAS-validated loci, APOE, PICALM, and CR1 genotypes influenced neuroimaging
measures, whereas CLU did not. The robust effect of APOE was seen across all measures except
WML volume, whereas the effect of PICALM was restricted to hippocampal volume and ECT,
and the effect of CR1 was restricted to ECT. These findings raise the possibility that the
biological effects of these genes may be relatively confined to 1 neuroimaging trait and hence
may offer clues to the mechanisms through which particular genetic variants might influence
AD risk.
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Two loci, identified as GWAS-promising in previous AD studies, showed association with
neuroimaging measures. CNTN5 variation was associated with WML, ECT, parahippocampal
gyrus thickness, and TPT, whereas BIN1 was associated with ECT and TPT. These genes
encode proteins involved in neurite growth,32 presynaptic cyto-skeleton structure integrity,31

and fission of synaptic vesicles.33 Brain-specific isoforms and expression patterns have been
reported for BIN34 and CNTN5.35 Although our results for these loci can only be considered
preliminary, they may help prioritize targets for future genetic studies and GWASs in AD,
particularly given their association with neuroimaging correlates of AD and disease status.

The crucial limitations of our study arise from its small sample size. Because of restricted
power, we were forced to constrain our analysis to SNPs and loci with high prior probabilities
of association with AD and imaging traits, based on their status as either validated (APOE,
CLU, PICALM, and CR1) or promising (CNTN5 and BIN1) genetic risk factors. Our power
also limits the conclusions we can draw about observed differential genetic effects on
neuroimaging traits. For example, although the absence of an effect of CR1 on hippocampal
volume may reflect important biology, it is also possible that an effect could be detected with
increased power.

In summary, we have shown that established and candidate AD genes have a role in 6
neuroimaging traits linked to AD. Furthermore, 2 promising genes from prior AD GWASs,
CNTN5 and BIN1, are also associated with these neuroimaging measures, which heightens
their interest as novel AD loci. These genes may act selectively, influencing only 1 or a few
established AD-related MRI measures. Future studies are required to replicate and expand these
findings.
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Figure.
Genotype data quality control for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
genome-wide association study (GWAS) data set.
Single-nucleotide polymorphism (SNPs) may have met multiple filtering criteria. AD indicates
Alzheimer disease; BP, blood pressure; CNV, copy number variation; HWE, Hardy-Weinberg
equilibrium; IBS, identity by state; LD, linkage disequilibrium; MAF, minor allele frequency;
MCI, mild cognitive impairment; PCA, principal component analysis; prop. diff., proportional
between-individuals difference as determined by identity by state; and QC, quality control.
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Table 4

Influence of Single SNP and a Cumulative Genetic Risk Score on Clinical Diagnosisa,b

SNP Gene OR (95% CI) P Value FDR-Corrected P Value

APOE locus ε4 APOE (ε4) 2.07 (1.67–2.56) <1 × 10−6 <1 × 10−6

Validated loci

 rs11136000 CLU 0.97 (0.80–1.17) .75 .76

 rs3851179 PICALM 0.99 (0.81–1.20) .87 .88

 rs1408077 CR1 1.27 (1.03–1.63) .02 .02

Novel candidate loci

 rs10501927 CNTN5 1.25 (1.02–1.53) .03 .03

 rs7561528 BIN1 1.29 (1.03–1.62) .03 .03

Genetic risk score (cumulative effect)

 Genetic risk score quartiles 1.14 (1.04–1.25) .001 .001

Abbreviations: CI, confidence interval; FDR, false discovery rate; OR, odds ratio; SNP, single-nucleotide polymorphism.

a
SNPs were selected based on results of prior genome-wide association studies4,5 with P < 1 × 10−5. Results are not shown for 11 SNPs at novel

candidate loci with P > .05. The genetic risk score includes all (5 of 16) SNPs outside the APOE locus achieving P < .05 in ordinal logistic regression.
All analyses are adjusted for age, sex, history of hypertension, education level (<13, 13–16, or >16 years), alcohol abuse, smoking (ever smoker status),
and principal components 1 and 2. Analyses for SNPs outside the APOE locus were also adjusted for APOE genotypes (number of ε2 and ε4 copies).

b
Clinical diagnosis defined as cognitively normal controls, mild cognitive impairment not converted to Alzheimer disease, mild cognitive impairment

conversion to Alzheimer disease, and Alzheimer disease.
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Table 5

Influence of Single SNPs and Cumulative Genetic Risk Score on Neuroimaging Measuresa

SNP Gene Coefficient (SE) P Value FDR-Corrected P Value

White matter lesion volume

 ε4 APOE 0.025 (0.033) .44 .44

 rs11136000 CLU −0.030 (0.031) .31 .32

 rs3851179 PICALM −0.005 (0.032) .97 .98

 rs1408077 CR1 0.028 (0.039) .45 .46

 rs10501927 CNTN5 0.119 (0.037) .002 .002

 rs7561528 BIN1 0.017 (0.032) .50 .51

 Genetic risk score quartiles 0.043 (0.015) .04 .04

Hippocampal volume

 ε4 APOE −0.240 (0.030) 0.9 × 10−14 1.3 × 10−14

 rs11136000 CLU −0.019 (0.030) .78 .79

 rs3851179 PICALM 0.061 (0.029) .04 .05

 rs1408077 CR1 −0.037 (0.038) .32 .32

 rs10501927 CNTN5 −0.046 (0.036) .17 .19

 rs7561528 BIN1 −0.055 (0.031) .06 .08

 Genetic risk score quartiles −0.099 (0.014) .001 .002

Amygdala volume

 ε4 APOE −0.079 (0.012) 3.6 × 10−11 3.9 × 10−11

 rs11136000 CLU −0.018 (0.012) .11 .12

 rs3851179 PICALM 0.009 (0.012) .47 .47

 rs1408077 CR1 −0.017 (0.014) .21 .22

 rs10501927 CNTN5 −0.018 (0.013) .19 .19

 rs7561528 BIN1 −0.020 (0.012) .09 .10

 Genetic risk score quartiles 0.043 (0.015) .02 .02

Entorhinal cortex thickness

 ε4 APOE −0.127 (0.026) 8.7 × 10−7 9.1 × 10−7

 rs11136000 CLU −0.011 (0.025) .65 .67

 rs3851179 PICALM 0.066 (0.021) .01 .01

 rs1408077 CR1 −0.067 (0.031) .03 .03

 rs10501927 CNTN5 −0.067 (0.025) .02 .02

 rs7561528 BIN1 −0.121 (0.025) .004 .01

 Genetic risk score quartiles −0.048 (0.011) 7.9 × 10−4 8.4 × 10−4

Parahippocampal gyrus cortex thickness

 ε4 APOE −0.063 (0.017) 3.3 × 10−4 3.8 × 10−4

 rs11136000 CLU 0.007 (0.017) .66 .67

 rs3851179 PICALM 0.014 (0.017) .29 .30

 rs1408077 CR1 0.0004 (0.021) .98 .98

 rs10501927 CNTN5 −0.040 (0.019) .05 .05

 rs7561528 BIN1 −0.019 (0.017) .24 .24
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SNP Gene Coefficient (SE) P Value FDR-Corrected P Value

 Genetic risk score quartiles −0.022 (0.010) .04 .04

Temporal pole cortex thickness

 ε4 APOE −0.061 (0.019) .002 .004

 rs11136000 CLU −0.011 (0.018) .50 .51

 rs3851179 PICALM 0.033 (0.017) .06 .06

 rs1408077 CR1 −0.031 (0.024) .12 .14

 rs10501927 CNTN5 −0.051 (0.022) .02 .02

 rs7561528 BIN1 −0.041 (0.019) .02 .03

 Genetic risk score quartiles −0.025 (0.009) 8.2 × 10−4 .001

Abbreviations: FDR, false discovery rate; SNP, single-nucleotide polymorphism.

a
SNPs were selected based on results of prior genome-wide association studies4,5 with P < .001. Results are not shown for 11 SNPs at novel candidate

loci with P > .05. The genetic risk score includes all (5 of 16) SNPs outside the APOE locus achieving P < .05 in ordinal logistic regression. All
analyses are adjusted for age, sex, history of hypertension, education level (<13, 13–16, or >16 years), alcohol abuse, smoking (ever smoker status),
and principal components 1 and 2. Analyses for SNPs outside the APOE locus were also adjusted for APOE genotypes (number of ε2 and ε4 copies).
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