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Abstract
Although chemotherapy is an important therapeutic strategy for cancer treatment, it fails to
eliminate all tumor cells due to intrinsic or acquired drug resistance, which is the most common
cause of tumor recurrence. Emerging evidence suggests an intricate role of cancer stem cells
(CSCs) and epithelial-mesenchymal transition (EMT)-type cells in anticancer drug resistance.
Recent studies also demonstrated that microRNAs (miRNAs) play critical roles in the regulation
of drug resistance. Here we will discuss current knowledge regarding CSCs, EMT and the role of
regulation by miRNAs in the context of drug resistance, tumor recurrence and metastasis. A better
understanding of the molecular intricacies of drug resistant cells will help to design novel
therapeutic strategies by selective targeting of CSCs and EMT-phenotypic cells through alterations
in the expression of specific miRNAs toward eradicating tumor recurrence and metastasis. A
particular promising lead is the potential synergistic combination of natural compounds that affect
critical miRNAs, such as curcumin or epigallocatechin-3-gallate (EGCG) with chemotherapeutic
agents.
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1. Introduction
Chemotherapy is an important therapeutic option for most cancer patients; however, drug
resistance causes the failure of chemotherapy even after combination chemotherapy.
Therefore, increasing the drug sensitivity is a key step towards improved treatment of cancer
patients. Resistance to anticancer drug therapy is generally classified in two categories:
intrinsic (de novo) and acquired resistance (Szakacs et al., 2006). Intrinsic resistance would
make the therapy ineffective prior in therapy-naïve patients because the tumor cells have
already a resistant phenotype at achievable doses of anti-cancer drugs. While tumor(cell)s
often show initial sensitivity to anti-cancer drugs, acquired resistance develops during the
treatment, which leads to tumor recurrence and further progression. Although the
mechanisms responsible for multidrug resistance have been investigated intensely over the
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past 50 years the clinical causes of multidrug resistance are still very incompletely
understood (Borst et al., 2007; Broxterman et al., 2009). The most cited mechanisms for the
acquisition of multidrug resistance are the expression of energy-dependent transporters that
eject anti-cancer drugs from cells, insensitivity to drug-induced apoptosis and the induction
of drug-detoxification mechanisms (Gottesman, 2002). For instance, three ATP-binding
cassette (ABC) drug transporters, namely ABCB1 (MDR1, Pgp, P-glycoprotein), ABCG2
(BCRP, breast cancer resistant protein) and ABCC1 (MRP1, multidrug resistance associated
protein) have been associated frequently with drug resistant phenotypes in experimental
systems (Broxterman et al., 1996; Gottesman, 2002; Szakacs et al., 2006); however, there is
currently no treatment strategy to override these transporters for therapeutic benefit (Kolitz
et al., 2010). Furthermore, a number of proteins, including K-ras, COX-2, cyclin D1, Bcl-2,
and Survivin, play critical roles in drug resistance to conventional chemotherapeutics
(Bardelli and Siena, 2010; Gottesman, 2002; Liu et al., 2010a; Lopez-Chavez et al., 2009).
In addition, major cell survival signaling pathway receptors and downstream proteins have
been reported to be involved in drug resistance such as the EGFR (epidermal growth factor
receptor), FGFR (fibroblast growth factor receptor), PDGFR (platelet derived growth factor
receptor) and IGFR (insulin-like growth factor recptor), PTEN (phosphatase and tensin
homolog on chromosome 10), ERK (extracellular signal-regulated kinase), MAPK
(mitogen-activated protein kinase), MEK (MAP/ERK kinase), Akt, mTOR (mammalian
target of rapamycin), NF-κB (nuclear factor-kappa B) and Notch (Haagenson and Wu, 2010;
Hendrickson and Haluska, 2009; Hopper-Borge et al., 2009; Jiang and Liu, 2008; Kono et
al., 2009; Lin et al., 2010; LoPiccolo et al., 2008; Mehta and Osipo, 2009; Wang et al.,
2008; Wang et al., 2009a; Wang et al., 2010d; Wang et al., 2010c). Moreover, recent studies
have shown that cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT)-
type cells could play critical roles in drug resistance (Konopleva et al., 2009; Todaro et al.,
2007; Voulgari and Pintzas, 2009; Wang et al., 2009b). Thus, the molecular knowledge of
drug resistance related to CSCs and EMT is now considered an important focus for cancer
research. Finally, recent studies have demonstrated that microRNAs (miRNAs) are involved
in the regulation of drug resistance (Sarkar et al., 2010) and the role of miRNA in CSCs and
EMT regulation is just beginning to emerge. Gaining further insight in these new concepts
would likely be helpful not only in the discovery of new drugs but also in the design of
novel therapeutic strategies for the treatment of human cancer with better outcome. The
following sections will summarize what we know about these new concepts in drug
resistance of human cancers, and how such knowledge might be useful to design novel
therapeutic strategies by selective targeting of EMT, CSCs, and miRNAs towards achieving
better treatment outcome by preventing tumor recurrence and metastatic progression.

2. EMT and drug resistance
Emerging evidence suggest a molecular and phenotypic association between chemo-
resistance and the acquisition of the EMT-like phenotype of cancer cells. It is now widely
accepted that epithelial cells can acquire mesenchymal phenotype by a fundamental and
complex processes. The processes of EMT is a unique process by which epithelial cells
undergo remarkable morphologic changes characterized by a transition from their epithelial
cobblestone phenotype to an elongated fibroblastic phenotype (mesenchymal phenotype)
accompanied by increased motility and invasion (Thiery et al., 2009). During the acquisition
of EMT characteristics, cells loose epithelial cell-cell junctions, undergo actin cytoskeleton
reorganization and decrease in the expression of proteins that promote cell-cell contact such
as E-cadherin and γ-catenin, and gain in the expression of mesenchymal markers such as
vimentin, fibronectin, α-smooth muscle actin (SMA), N-cadherin as well as increased
activity of matrix metalloproteinases (MMPs) like MMP-2, MMP-3 and MMP-9, associated
with an invasive phenotype (Thiery and Sleeman, 2006).
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Recent studies have shown an intimate relationship between drug resistance and the EMT
phenotype. For instance, an epithelial, but not mesenchymal gene signature has been
associated with sensitivity to the EGFR inhibitor erlotinib-mediated growth inhibition in
lung cancer cells (Yauch et al., 2005). These results were confirmed in other types of tumors
like head and neck squamous cell carcinoma and hepatocellular carcinoma as well as for the
treatment of cancer with other EGFR inhibitors such as gefitinib and cetuximab (Frederick
et al., 2007; Fuchs et al., 2008; Voulgari and Pintzas, 2009). The process of EMT has also
been shown to be important in conferring drug resistance to cancer cells against
conventional therapeutics including taxol, vincristine and oxaliplatin (Sabbah et al., 2008).
Recent studies showed a link between EMT and gemcitabine-resistant pancreatic cancer
cells, oxaliplatin-resistant colorectal cancer cells, lapatinib-resistant breast cancer and
paclitaxel-resistant ovarian carcinoma cells (Arumugam et al., 2009; Kajiyama et al., 2007;
Konecny et al., 2008; Shah et al., 2007; Yang et al., 2006). For example, paclitaxel-resistant
ovarian cancer cells showed phenotypic changes consistent with EMT with decreased
expression of the epithelial adhesion molecule, E-cadherin and an increase in mesenchymal
markers such as vimentin, α-SMA and fibronectin (Kajiyama et al., 2007). In parallel,
tamoxifen-resistant breast cancer cells demonstrated altered morphological characteristic of
cells similar to EMT with altered β-catenin phosphorylation (Hiscox et al., 2006; Kim et al.,
2009). Recently, Rho et al. reported phenotypic changes such as a spindle-cell shape and
increased pseudopodia formation, suggesting the presence of EMT, in gefitinib-resistant
lung cancer cells, which was further documented by a decrease in the expression of E-
cadherin and an increase in the expression of vimentin (Rho et al., 2009). Our studies have
also shown that gemcitabine-resistant (GR) pancreatic cancer cells acquired EMT
characteristics (Shah et al., 2007; Wang et al., 2009c). Moreover, we found that down-
regulation of Notch signaling led to partial reversal of the EMT phenotype, resulting in
mesenchymal-epithelial transition (MET), which was associated with decreased expression
of vimentin, ZEB1, Slug, Snail and NF-κB (Wang et al., 2009c). These results suggest that
the increased Notch signaling is mechanistically associated with chemoresistance and EMT
characteristics of pancreatic cancer cells. Very interestingly, some reports indicated that
mesenchymal-like, basal breast cancers are initially more sensitive to chemotherapy than
epithelial-like luminal breast cancers (Carey et al., 2007; Liedtke et al., 2008; Paik et al.,
2006). However, it was discussed that basal, mesenchymal-like breast cancers possibly
would be more prone to develop drug resistance because patients with basal cancers have
worst prognoses even though they have initial responses. It has been indicated that
mesenchymal-like cancers might be more sensitive to DNA damaging agents such as
doxorubicin, whereas epithelial-like cancers are more sensitive to targeted therapies, such as
EGFR and HER2 antagonists (Singh and Settleman, 2010). Clearly, further investigations
need to identify and characterize the mechanisms of EMT in drug resistance. The discovery
of the precise mechanisms that govern the acquisition of EMT characteristics in cancer cells
would likely be useful for devising better targeted therapeutic approaches in combination
with conventional therapeutics. Collectively, these studies clearly provide strong evidence
linking chemo-resistance to EMT. A comprehensive list of EMT involvement in
chemoresistance is presented in Table 1.

The obvious question that has to be answered in order to be able to rationally design novel
treatment strategies is how EMT is mechanistically involved in drug-resistance. A body of
literature currently suggests that the relative resistance of EMT tumor cells is related to their
cancer stem cell-like features. Then it appears that elimination of these cells is essential for
overcoming drug resistance (Singh and Settleman, 2010; Voulgari and Pintzas, 2009).
Emerging evidence has implicated EMT with the conversion of early stage tumors into
invasive malignancies accompanied by increased cell motility and invasion, and these
processes are consistent with the acquisition of “cancer stem-like cell” phenotype also
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known as “stemness (Thiery et al., 2009; Thiery and Sleeman, 2006). Therefore, we will
discuss the role of CSCs in drug resistance in the following section.

3. Cancer stem cell and drug resistance
Current cancer therapeutic strategies based on tumor regression may target and kill
differentiated tumor cells, which constitute the bulk of the tumor, while sparing the rare
CSC population. CSCs constitute a mostly small (Dirks, 2010) subset of cancer cells that
possess the ability to self-renew and generate the diverse differentiated cell populations that
comprise the cancer mass (Gupta et al., 2009a; Frank et al., 2010). A growing body of
evidence now supports the concept that cancers are diseases driven by subpopulation of self
renewing CSCs, which have been identified and isolated from tumors of the hematopoietic
system, breast, lung, prostate, colon, brain, head and neck, and pancreas (Tang et al., 2007).
The CSCs possess the capacity for self-renewal and have the ability to drive continued
expansion of the population of malignant cells with invasive and metastatic propensity. For
example, the CSCs are able to self-renew, differentiate, and regenerate to phenotypic cells of
the original tumor when implanted into the severe combined immunodeficient mouse.

Recently, CSCs have been blamed for playing a critical role in drug resistance and cancer
metastasis, which may explain why it is difficult to completely eradicate cancer and why
recurrence is a real threat to eradicate tumors completely. It has been reported that CSCs in
mammary tumors may contribute to cisplatin and paclitaxel resistance in vitro and in vivo
(Shafee et al., 2008; To et al., 2010). Similarly, CSCs in colorectal cancers are also believed
to be responsible for resistance to chemotherapeutic drugs (Cammareri et al., 2010; Dylla et
al., 2008; Fang et al., 2010; Ong et al., 2010; Todaro et al., 2007). In acute myelogenous
leukemia (AML), CD34+CD38− human primary AML stem cells residing in the endosteal
region of the bone marrow are chemotherapy resistant (Ishikawa et al., 2007; Saito et al.,
2010). Chronic myelogenous leukemia reveals the presence of a CD34− cell population with
intrinsic resistance to imatinib (Lemoli et al., 2009). In glioblastoma, a population of
CD133+ cancer stem cells showed significant resistance to chemotherapeutic agents
including temozolomide, carboplatin, paclitaxel and etoposide (Liu et al., 2006). In human
hepatocellular carcinoma, CSCs showed significantly higher viability following treatment
with doxorubicin or methotrexate (Zhang et al., 2010). In small-cell lung carcinoma, a small
population of uPAR+ stem-like cells showed high clonogenic activity and co-expression of
CD44 and MDR1 (Gutova et al., 2007), fitting with a drug resistant profile (Toole and
Slomiany, 2008). Another group confirmed that small-cell lung CSCs, which are CD133+/
ABCG2+ cells, are resistant to cisplatin (Wang et al., 2010b). Recently, osteosarcoma CSCs
are reported to be associated with metastasis and drug resistance. Osteosarcoma CSCs
showed highly invasive and drug-resistant properties and were enriched for CXCR4 and
ABCG2 (Adhikari et al., 2010). Hermann et al. have reported that human pancreatic CSCs
are exclusively tumorigenic and highly resistant to chemotherapy (Hermann et al., 2007).
They also found a distinct subpopulation of CSCs in the invasive front of pancreatic tumors
and depletion of this “migratory CSC pool” virtually abrogated the metastatic phenotype of
pancreatic tumors without affecting their tumorigenic potential (Hermann et al., 2007).
Another study has shown that pancreatic CSCs are gemcitabine-resistant (Hong et al., 2009).
Recently, it has been reported that ovarian CSCs are markedly resistant to carboplatin and
paclitaxel (Liu et al., 2010b; Shi et al., 2010b). Another group confirmed that ovarian CSCs
are resistant to cisplatin in vitro and in vivo due to high expression of ABCG2 (Hu et al.,
2010). Prostate stem cells showed innate resistance to arsenic-induced cytolethality, which
was in part due to higher expression of ABCC1 (Tokar et al., 2010). Prostate CSCs are
resistant to chemotherapeutics such as cisplatin, paclitaxel, doxorubicin and methotrexate
(Liu et al., 2010c). However, an intriguing study on colorectal cancer, suggested that an
ABCB1 transporter expressing subpopulation of differentiated cells protected the CSCs
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against irinotecan (Emmink et al., 2010). A comprehensive list of CSCs involvement in
chemoresistance is presented in Table 2.

The mechanisms causing CSCs drug resistance are still poorly understood and
overexpression of drug transporters and DNA repair enzymes, may only partly explain the
entire resistance spectrum (Styczynski and Drewa, 2007; Zhou et al., 2001; Patrawala et al.,
2005) and regulation by miRNAs is one emerging level of complexity. Another mechanism
might be that CSCs accumulate mutations over time as a consequence of a long-term
exposure to drug, which then confer a drug resistance phenotype acquired by the daughter
cancer cells (Reya et al., 2001).

4. miRNAs and drug resistance
Recent evidence suggests that microRNAs (miRNAs), which are single-stranded 19–25
nucleotide short RNAs, play important roles in the regulation of drug resistance (Sarkar et
al., 2010). It is well documented that miRNAs elicit their regulatory effects in post-
transcriptional regulation of genes by binding to the 3′ untranslated region (3′UTR) of target
messenger RNA (mRNA), leading to translational repression or target mRNA cleavage
(Croce and Calin, 2005). Some miRNAs have oncogenic activity while others have tumor
suppressor activity. Oncogenic miRNAs are up-regulated in cancer and contribute to its
pathology through various mechanisms such as targeting tumor suppressor genes. These
oncogenic miRNAs for example include miR-21, miR-17-92, miR-155, miR-221 and
miR-222. In contrast to the oncogenic miRNAs, other miRNAs are considered to have tumor
suppressor activity and are down-regulated in cancer. These miRNAs include let-7, miR-15,
miR-16, miR-17-5p, miR-29, miR-34, miR-124a, miR-127, miR-143, miR-145 and
miR-181 (Croce, 2009). The list of these miRNAs is still increasing.

Specific miRNAs have altered expression in drug-resistant tumor cells (Galluzzi et al., 2010;
Garofalo et al., 2009; Iorio et al., 2009; Iorio and Croce, 2009; Kotani et al., 2009;
Kovalchuk et al., 2008; Miller et al., 2008; Vere White et al., 2009; Wang et al., 2010a; Xia
et al., 2008; Zhao et al., 2008; Zhu et al., 2008). For example, the expression of three
miRNAs (miR-192, miR-424 and miR-98) was significantly increased while the expression
of three other miRNAs (miR-194, miR-200b and miR-212) was decreased in docetaxel-
resistant NSCLC cells (Rui et al., 2010). Recently, the expression of miR-140 was found to
be associated with chemo-sensitivity to 5-fluorouracil (5-FU) and methotrexate in
osteosarcoma. Blocking endogenous miR-140 sensitized resistant cancer cells to 5-FU
treatment, whereas overexpression of miR-140 made tumor cells more resistant to 5-FU,
suggesting that miR-140 could be a novel target to develop a therapeutic strategy to
overcome drug resistance (Song et al., 2009). In breast cancer cells, miR-21 was
overexpressed, causing upregulation of MDR1 (Bourguignon et al., 2009). MiR-34a is
down-regulated in drug resistant prostate cancer cells and ectopic over-expression of
miR-34a resulted in growth inhibition and attenuated chemoresistance to camptothecin
(Fujita et al., 2008). Another group showed that miR-34a was down-regulated in
doxorubicin and verapamil resistant MCF-7 breast cancer cells (Chen et al., 2010).
Interestingly, Ji et al reported that pancreatic cancer stem cells are enriched with tumor-
initiating cells or CSCs with loss of miR-34 (Ji et al., 2009b), suggesting that miR-34 could
be involved in pancreatic CSCs self-renewal and leading to drug resistance. Ectopic miR-1
expression sensitized lung cancer cells to doxorubicin, suggesting that up-regulation of
miR-1 has the potential as a target for therapy against lung cancers (Nasser et al., 2008). The
expression of miR-200b was significantly down-regulated in docetaxel-resistant NSCLC
cells (Rui et al., 2010). Recently, many studies have shown that the miR-200 family
regulates EMT associated with drug resistance. One study showed that miR-200 expression
regulates EMT in bladder cancer cells and reverses resistance to EGFR inhibitor therapy
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(Adam et al., 2009). Another study reported that miR-200c restored microtubule-binding
chemotherapeutic agents in breast and ovarian cancer cells (Cochrane et al., 2009). We have
also shown that re-expression of miR-200 family resulted in increased cell sensitivity to
gemcitabine (Li et al., 2009b). A comprehensive list of miRNAs implicated in
chemoresistance is presented in Table 3.

Collectively, these reports suggest a role of miRNAs in drug resistance. Further in-depth
research is needed in order to fully understand this role and to find novel ways to regulate
miRNAs for highly innovative treatment strategies. Below, we will further discuss the
interrelationships between CSCs, EMT and miRNAs in the context of drug resistance.

5. Connection between EMT, CSCs and miRNA
EMT cells have cancer stem cell-like features and CSCs exhibit mesenchymal phenotype
under most circumstances. Aberrant miRNA expression has been correlated with tumor
development, cancer progression, the presence of CSCs and the acquisition of an EMT
phenotype. Therefore, in the following paragraphs, we will summarize the relationships
between EMT, CSCs and miRNA.

5.1. EMT and CSCs
A relationship between EMT and CSCs has recently emerged with evidence suggesting that
EMT cells have cancer stem cell-like features and CSCs exhibit a mesenchymal-like
phenotype. Mani et al. initially disclosed that immortalized human mammary epithelial cells
(HMLEs) undergoing EMT are CSCs-like as characterized by their CD44high/CD24low

phenotype (Mani et al., 2008). Ectopic expression of Twist or Snail induced EMT in
HMLEs, which acquired a fibroblastoid mesenchymal appearance, down-regulated epithelial
markers such as E-cadherin and up-regulated mesenchymal markers such as N-cadherin,
vimentin, and fibronectin (Mani et al., 2008). Importantly, these EMT-type cells had the
properties of CSCs, such as self-renewal and the capacity to form mammospheres. Serially
transplanted tumors derived from BRCA1 mammary tumors had features of EMT and gave
rise to cell lines that contained a distinct CD44+/CD24− population (Wright et al., 2008).
Other evidence showed that mouse mammary stem cells exhibit a mesenchymal phenotype
(Mani et al., 2008; Radisky and LaBarge, 2008) and TGF-β induced EMT and
mammosphere-forming capabilities in human mammary epithelial cells (Morel et al., 2008).
Consistently, mammosphere-forming activity is abrogated in breast CSCs after the EMT is
shut-down (Shimono et al., 2009). Alignment of EMT with the CSCs signature was also
found in cells derived from a breast cancer lung metastasis (DiMeo et al., 2009). Brabletz et
al. studied the colorectal cancer progression and found that tumor cells at the tumor–host
interface express EMT-associated genes as well as stemness-associated genes (Brabletz et
al., 2005), suggesting a relationship between EMT and CSCs in colorectal cancer. More
importantly, it is well-known that many signaling pathways, such as the Wnt, Notch and
Hedgehog that regulate EMT, also drive CSCs self-renewal and maintenance (Blick et al.,
2010; Hollier et al., 2009; Radisky and LaBarge, 2008).

5.2. Regulation of EMT by microRNA
Recently, studies have shown that miRNAs regulate EMT through the regulation of E-
cadherin and other molecules such as ZEB and vimentin (Bracken et al., 2009; Gibbons et
al., 2009; Gregory et al., 2008b; Wellner et al., 2009). For example, the transcription factors
ZEB1 and ZEB2, which repress E-cadherin, have been confirmed as direct targets for
repression by miR-200. Over-repression of miR-200 had dramatic effects on the expression
of ZEB. Moreover, a striking negative correlation was found between ZEB and miR-200
expression in many human cancer cell lines (Gregory et al., 2008a; Korpal et al., 2008; Park

Wang et al. Page 6

Drug Resist Updat. Author manuscript; available in PMC 2011 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



et al., 2008). MiR-205 was also reported to be down-regulated during EMT (Gregory et al.,
2008a) and also inhibits ZEB1 and ZEB2 expression and was specifically expressed in a
panel of epithelial but not mesenchymal-like breast cancer lines (Gregory et al., 2008a). Ma
et al. found that miR-10b is likely to represent an important component of a larger Twist-
regulated EMT gene expression program (Ma et al., 2007). We found that miR-200a,
miR-200b, and miR-200c were down-regulated in gemcitabine resistant (GR) pancreatic
cancer cells, which show the acquisition of EMT phenotype (Li et al., 2009b). Re-expression
of the miR-200 family up-regulated the epithelial marker E-cadherin and down-regulated
mesenchymal markers, including ZEB1 and vimentin. Members of the let-7 family are also
down-regulated in EMT-type GR cells (Li et al., 2009b). Furthermore, re-expression of
miR-200b in PDGF-D over-expressing EMT-type cells resulted in the reversal of EMT with
the down-regulation of ZEB1, ZEB2 and slug expression (Kong et al., 2009). Recently,
miR-661 was found in Snai1-induced EMT-type cells and required for efficient invasion of
breast cancer cells by destabilizing two of its predicted mRNA targets, the cell-cell adhesion
protein Nectin-1 and the lipid transferase StarD10, resulting in the down-regulation of
epithelial markers (Vetter et al., 2010). Expression of miR-30 in mesenchymal anaplastic
thyroid carcinoma-derived cells reduced their invasive potential and induced mesenchymal-
epithelial transition (MET) by regulating the expression of MET marker proteins (Braun et
al., 2010). Expression of miR-203 was also found to be involved in EMT. Stable knockdown
of ZEB1 in mesenchymal Panc1 cells results in the up-regulation of the miR-200 family
members miR-141 and miR-200c, as well as the stemness-inhibiting miR-203 (Wellner et
al., 2009). Over-expression of ZEB1 as well as of other EMT-inducers, Snail1 and ZEB2,
suppresses the activity of the putative miR-203 promoter in pancreatic cancer cell lines
(Wellner et al., 2009). Altogether, these data suggest that miRNAs play critical roles in the
acquisition of EMT.

5.3. Regulation of CSCs by microRNA
Recent studies have shown involvement of several miRNAs in the regulation of CSCs. For
example, miR-200c strongly suppressed the ability of normal mammary stem cells to form
mammary ducts and tumor formation driven by human breast CSCs in vivo (Shimono et al.,
2009). The miR-200 family miRNAs were found to be strongly suppressed in CD44+/
CD24-lineage human breast cancer cells. The miR-125b recently was found to be necessary
for stem cell fission to bypass the normal G1/S checkpoint and make stem cells insensitive
to chemotherapy. Further research on the mechanism demonstrated that miR-125b regulates
the proliferation of glioma stem cells through the cell cycle regulated proteins CDK6 and
CDC25A (Shi et al., 2010a). Recently, miRNAs was also reported in pancreatic CSCs.
Pancreatic CSCs have been described as CD24+/CD44+ subpopulation. Stable knockdown
of ZEB1 in Panc1 cells led to a reduction of this subpopulation, correlating with reduced
CD24 mRNA levels in stable ZEB1-knockdown clones. Knockdown of ZEB1 also resulted
in decreased expression of stem cell factors such as Sox2, Bmi1 and p63. ZEB1 has been
shown to directly control the transcription of the miR-200, miR-203 and miR-183 genes
(Wellner et al., 2009). In parallel, miR-34 was reported to be involved in pancreatic CSCs
self-renewal, potentially via the direct modulation of downstream targets Bcl-2 and Notch,
suggesting that miR-34 may play an important role in pancreatic CSCs self-renewal and/or
cell fate determination (Ji et al., 2009b). Recently, Yu et al. found that re-expression of
miR-30 in breast cancer stem-like cells inhibits their self-renewal capacity by reducing Ubc9
(ubiquitin-conjugating enzyme 9), and inducing apoptosis through silencing ITGB3 (integrin
β3). Furthermore, over-expression of miR-30 in breast CSCs xenografts reduced
tumorigenesis and lung metastasis in mice, whereas blocking miR-30 expression enhanced
tumorigenesis and metastasis. These results suggest that miR-30 could be one of the
important miRNAs in regulating the stem-like features of breast cancer (Yu et al., 2010).
More recently, Wong et al. reported increased levels of the miR-17-19b at a higher
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frequency in leukemia stem cells, consistent with reduced differentiation and increased
proliferation, which was also associated with reduced expression of p21 (Wong et al., 2010).
These results suggest that miR-17-19b quantitatively regulates leukemia stem cell self-
renewal in part by modulating the expression of p21. The miR-181 is important for the
maintenance of hepatic cancer stem cells by posttranslational down-regulation of two
hepatic transcriptional regulators of differentiation and an inhibitor of Wnt/β-catenin
signaling (nemo-like kinase [NLK]) (Ji et al., 2009a). It is likely that in the near future the
link between miRNAs and CSCs will find further experimental support.

6. Targeting the EMT, CSCs, miRNA connection to increase drug sensitivity
Recently, experimental evidence revealed that EMT, CSCs and miRNAs are involved in
anti-cancer drug resistance, indicating that specific targeting those miRNAs involved in the
regulation of EMT may lead to the elimination of CSCs or EMT-type cells that are typically
drug-resistant and are believed to be the “root cause” of tumor recurrence (Figure 1).

6.1. Targeting EMT to increase drug sensitivity
Targeting EMT opens a new window for therapeutic applications. For instance, it was
reported that E-cadherin-negative NSCLC patients had a worse overall survival after
erlotinib treatment compared to E-cadherin-positive patients. Therefore, erlotinib is
currently used in the epithelial early stage and in advanced stage metastatic pancreatic
tumors (Thomson et al., 2005). Lupeol, a triterpene found in vegetables and fruits, has been
reported to impair head and neck squamous cell carcinoma (HNSCC) cell invasion by
reversal of the NF-κB-dependent EMT. Moreover, lupeol exerted a synergistic effect with
cisplatin, resulting in chemosensitization of HNSCC cell lines with high NF-κB activity as
documented by in vitro and in vivo studies (Lee et al., 2007). The cysteine protease inhibitor
cystatin C has been proven to inhibit the acquisition of EMT and invasion stimulated by
TGF-beta in breast cancer cell by preventing actin cytoskeletal rearrangements and E-
cadherin down-regulation (Sokol et al., 2005). Very interestingly, dasatinib, a Src kinase
inhibitor, has been found to be more effective in inhibiting growth of breast cancer cells
with EMT features (Finn et al., 2007). All these data suggests that drug combinations using
conventional or targeted therapies together with targeting the EMT-related mechanisms need
to be considered for winning the battle against drug resistant cancer cells.

6.2. Targeting CSCs to increase drug sensitivity
Recent studies have suggested that eradication of CSCs is an important goal towards the
cure of cancer by overcoming drug resistance. Salinomycin was found to kill selectively
CSCs by an as yet unknown mechanism and when compared to paclitaxel, salinomycin
reduced the proportion of CSCs by more than 100-fold and inhibited mammary tumor
growth in mice, which was associated with increased epithelial differentiation of tumor cells
(Gupta et al., 2009b). Interestingly, salinomycin was found to overcome ABC transporter-
mediated drug resistance in human leukemia stem cell-like cells (Fuchs et al., 2010; Riccioni
et al., 2010). In addition, two other compounds, nigericin and abamectin which are identified
as inhibitors of CSCs growth are also PGP inhibitors (Riccioni et al., 2010). In another
study, it was found that metformin, a standard drug for diabetes, inhibits cellular
transformation and selectively kills CSCs in breast cancer. Moreover, the combination of
metformin and doxorubicin killed both CSCs and non-stem cancer cells (Hirsch et al.,
2009). Recently, metformin was also found to act synergistically with the anti-HER2
monoclonal antibody trastuzumab to suppress self-renewal and proliferation of CSCs in
HER2-positive carcinomas (Vazquez-Martin et al., 2010). Jin et al. have reported a
therapeutic strategy using an activating monoclonal antibody directed to the adhesion
molecule CD44, a key regulator of leukemic stem cells, in mice transplanted with human
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acute myelogenous leukaemia (Jin et al., 2006). A recent study has shown that gene
insertion into stem cells followed by direct specific delivery into the tumor in animal models
is feasible (Aboody et al., 2008). In summary, targeting CSCs appears to be a promising
therapeutic strategy. However, more innovative research in this area is warranted for the
discovery of agents that selectively kill CSCs.

6.3. Targeting miRNA to increase drug sensitivity
As discussed above miRNAs are critically involved in CSCs and EMT regulation and the
associated drug resistance phenotype. Therefore, targeting miRNAs for cancer therapy is an
emerging field for treatment optimization aiming at restoring the sensitivity of drug-resistant
cells to chemotherapy. For instance, miR-214 induced cisplatin resistance through targeting
the PTEN in human ovarian cancer (Yang et al., 2008) and re-expression of miR-200
increased the sensitivity to microtubule-targeting chemotherapeutic agents (Cochrane et al.,
2009). Over-expression of miR-221 and miR-222 by transfection made breast cancer cells
more resistant to tamoxifen, while knock-down of miR-221 and miR-222 sensitizes breast
cancer cells to tamoxifen-induced apoptosis (Zhao et al., 2008). In addition to breast cancer,
miR-221 and miR-222 also caused TRAIL-sensitive NSCLC cells to become resistant to
TRAIL (Garofalo et al., 2009; Garofalo et al., 2008). Song et al. recently reported that
endogenous miR-215 was elevated in colon CSCs that exhibit slow proliferating rate and
chemoresistance (Song et al., 2010). Suppression of miR-21 led to an increased cytotoxicity
of a semisynthetic podophyllotoxin derivative (VM-26) against glioblastoma cells,
suggesting that over-expression of miR-21 could contribute to drug resistance in
glioblastoma (Li et al., 2009a). These examples suggest that targeting specific miRNAs
could be useful for restoring drug sensitivity and preventing tumor recurrence.

6.4. Using natural agents to increase drug sensitivity
Because CSCs and EMT-type cells play important roles in drug resistance, novel inhibitors
of EMT or agents that could either reverse the EMT phenotype or kill CSCs or EMT-type
cells would be a novel strategy for the treatment of cancers. For example as mentioned
earlier, salinomycin and metformin reduced the proportion of CSCs in breast cancer (Gupta
et al., 2009; Hirsch et al., 2009). Several studies have also shown that anti-sense
oligonucleotides can block the function of miRNAs (Hutvagner et al., 2004; Hutvagner and
Simard, 2008; Meister et al., 2004; Orom et al., 2006; Orom and Lund, 2007); however,
such strategies have limitation for the treatment of human cancer because of the lack of
appropriate in vivo delivery systems. To overcome such limitations, recently researchers
considered “natural agents” to target EMT or CSCs through miRNAs. Indeed, it has been
shown that natural agents including curcumin, isoflavone, 3,3′-diinodolylmethane (DIM),
indole-3-carbinol (I3C), epigallocatechin-3-gallate (EGCG) and others could regulate the
EMT and miRNAs (Li et al., 2010b; Li et al., 2010a; Melkamu et al., 2010; Sun et al., 2008;
Tsang and Kwok, 2010). DIM and isoflavone treatments could increase the level of miR-200
family in MiaPaCa-2 cells (EMT-type cells) (Li et al., 2009b) and the morphology of
MiaPaCa-2 cells changed from elongated fibroblastoid-type to epithelial cobblestone-like
appearance and it seems that the cell-cell contact was increased after the treatments (Li et
al., 2009b). Moreover, we found that pretreatment of MiaPaCa-2 cells with DIM or
isoflavone also increased the sensitivity of MiaPaCa-2 cells to gemcitabine, suggesting that
miR-200 re-expression by DIM or isoflavone treatment could partially increase their
sensitivity to gemcitabine through miR-200 mediated reversal of EMT status (Li et al.,
2009b). Consistent with our findings, Sun et al reported that curcumin, another “natural
agent” could up-regulate the miR-22 expression and suppress the expression of its target
genes SP1 transcription factor and estrogen receptor 1 (Sun et al., 2008). Curcumin and
piperine separately and in combination could inhibit breast cancer stem cell self-renewal but
did not cause toxicity to differentiated cells (Kakarala et al., 2009). I3C down-regulated

Wang et al. Page 9

Drug Resist Updat. Author manuscript; available in PMC 2011 August 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



miR-21 and up-regulated miR-21 target genes PTEN (Melkamu et al., 2010) and also
curcumin down-regulated the miR-21 and up-regulated the miR-200 in pancreatic cancer,
leading to increased sensitivity to gemcitabine (Ali et al., 2010). Another natural agent,
EGCG, was found to upregulate the expression of miR-16 in human tumor cells (Tsang and
Kwok, 2010), suggesting that EGCG could increase drug sensitivity through up-regulation
of miR-16. The isothiocyanate from broccoli, sulforaphane, was shown to synergize with the
kinase inhibitor sorafenib in eradicating pancreatic CSCs-like cells (Rausch et al., 2010).
Considering the relatively non-toxic nature of “natural agents”, targeting miRNAs, EMT-
type cells and CSCs by these agents combined with conventional chemotherapeutics could
be a novel and safer approach for achieving better treatment outcome. However, further in-
depth preclinical and clinical studies are warranted in order to appreciate the value of
“natural agents” in overcoming drug resistance.

7. Conclusion
In this review, we attempted to summarize the role of EMT, CSCs and their regulation by
miRNAs in drug resistance. We discuss recent studies which demonstrate that EMT, CSCs
and miRNAs could play a critical role in the regulation of anti-cancer drug sensitivity and
resistance and that targeting EMT, CSCs and miRNAs is an emerging novel treatment
strategy. Evidence is beginning to suggest that “natural agents” could be useful for the
regulation of miRNA-mediated inhibition of cancer growth, reversal of EMT phenotype and
elimination of drug-resistant CSCs, all of which might result in increasing drug sensitivity of
human cancers and perhaps in combination with conventional therapy achieve better
treatment outcome for cancer patients.
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Figure 1.
The connection between EMT, cancer stem cells, and miRNA. EMT cells have cancer stem
cell-like features, and CSCs exhibit mesenchymal phenotype. Aberrant miRNA expression
has been correlated with the formation of CSCs and the acquisition of EMT phenotype.
miRNAs affect and connect CSCs through regulation of EMT.
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Table 1

A comprehensive list of EMT involved in chemoresistance

Chemotherapeutic Drug Characteristics Cell or tissue References

Cetuximab Epithelial cell lines were significantly more
susceptible to this agent.

Human hepatoma cells (Fuchs et al., 2008)

Erlotinib Epithelial gene signature is associated with
sensitivity to erlotinib.

Human hepatoma cells; Lung
cancer

(Yauch et al., 2005)

Gefitinib Epithelial cell lines were found to be
significantly more susceptible to this agent;
gefitinib-resistant cancer cells became
EMT-type cells.

Head and neck squamous cell
carcinoma; non-small cell lung
carcinoma

(Frederick et al., 2007; Rho et
al., 2009)

Gemcitabine Gemcitabine-resistant cells have EMT
features; EMT cells have high expression
of Notch; EMT contributes to drug
resistance

Pancreatic cancer cells (Arumugam et al., 2009; Shah
et al., 2007; Wang et al., 2009c)

Lapatinib Lapatinib-resistant cell lines exhibited
EMT features.

Breast cancer (Konecny et al., 2008)

Oxaliplatin Chronic oxaliplatin resistance induced
EMT

Colorectal cancer cells (Yang et al., 2006)

Paclitaxel Paclitaxel-resistant cells showed EMT
characteristics.

Ovarian carcinoma cells (Kajiyama et al., 2007)

Tamoxifen Tamoxifen resistance promotes EMT-like
behavior and involved regulation of beta-
catenin phosphorylation and Pin1
expression

Breast cancer cells (Hiscox et al., 2006; Kim et al.,
2009)

Doxorubicin Doxorubicin activates TGFβ signaling and
EMT

Human and murine breast
cancer cells

(Bandyopadhyay et al., 2010)
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Table 2

A list of CSCs involved in chemoresistance

Cancer stem cells CSCs surface markers Chemotherapeutic Drug Characteristics References

acute myeloid leukemia CD34+/CD38- Ara-C CSCs are
chemotherapy
resistant

(Ishikawa
et al.,
2007; Saito
et al.,
2010)

Breast cancer CD29hi/CD24med CD44hi/CD24low Cisplatin; paclitaxel CSCs contribute
to cisplatin and
paclitaxel
resistance

(Shafee et
al., 2008;
To et al.,
2010)

Chronic myelogenous leukemia CD34- Imatinib CSCs are resistant
to imatinib

(Lemoli et
al., 2009)

Colon cancer CD133+ Oxaliplatin; 5-
fluorouracil;
cyclophosphami de;
irinotecan

CSCs are resistant
to oxaliplatin and
5-FU due to
induction of
interleukin-4;
resistant to
cyclophosphamide
due to production
of Aldehyde
dehydrogenase 1
activity.

(Dylla et
al., 2008;
Fang et al.,
2010; Ong
et al.,
2010;
Todaro et
al., 2007)

Glioblastoma CD133+ temozolomide,
carboplatin, paclitaxel,
and etoposide

CSCs showed
significant
resistance to these
chemotherapeutic
agents

(Liu et al.,
2006)

Hepatocellular carcinoma Hoechst+ Doxorubicin; methotrexate CSCs showed
significantly
higher viability
following
treatment with
doxorubicin or
methotrexate

(Zhang et
al., 2010)

Osteosarcoma CD117+ Stro-1+ Doxorubicin CSCs showed
drug-resistant
properties and
were enriched for
CXCR4 and
ABCG2

(Adhikari
et al.,
2010)

Ovarian cancer CD44+/CD24-CD133+/CD117+ Hoechst+ Carboplatin and
paclitaxol; cisplatin

CSCs markedly
resistant to
carboplatin and
paclitaxol. CSCs
resisted cisplatin
due to high
expression of
ABCG2

(Hu et al.,
2010; Shi
et al.,
2010b)

Pancreatic cancer CD44+ CD44+/CD24- Gemcitabine CSCs showed
dramatic drug
resistance to
gemcitabine

(Hermann
et al.,
2007;
Hong et
al., 2009)

Prostate cancer CD117+ABCG 2+ Arsenite; casplatin,
paclitaxel, adriamycin,
methotrexate

CSCs showed
resistance to
arsenic-induced
cytolethality due
to higher
expression of
ABCC1

(Liu et al.,
2010c;
Tokar et
al., 2010)
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Cancer stem cells CSCs surface markers Chemotherapeutic Drug Characteristics References

Small cell lung cancer CD133+/ABCG 2+ uPAR+ 5-FU; cisplatin and
etoposide

CSCs
demonstrated
multi-drug
resistance.

(Gutova et
al., 2007;
Wang et
al., 2010b)
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Table 3

A list of miRNAs involved in chemoresistance

miRNA Characteristics Target genes Cell or tissue References

miR-1 Expression sensitize lung cancer cells to
doxorubicin

Pim1, FoxP1, HDAC4,
MET

Lung cancer cells (Nasser et al.,
2008)

miR-15/16 Sensitized cancer cells to anti-cancer drugs Bcl-2 Gastric cancer cells (Xia et al., 2008)

miR-21 mediated chemoresistance, inhibited PDCD4, PDCD4, LRRFIP1, PTEN,
TPM1, TIMP3

Breast cells,
glioblastoma cells,
pancreatic cancer cells

(Ali et al., 2010;
Bourguignon et al.,
2009; Li et al.,
2009a)

miR-27 Upregulated in multidrug-resistant cancer
cells

MDR Ovarian cancer cells,
cervix cancer cells

(Zhu et al., 2008)

miR-34 Mediated suppression of self-renewal, down-
regulated in drug resistant cells; over-
expression resulted in attenuated
chemoresistant to camptothecin

Notch, Bcl2, HMGA2,
SIRT1

Prostate, gastric,
breast, pancreatic
cancer.

(Chen et al., 2010;
Fujita et al., 2008;
Ji et al., 2009b)

miR-98 Up-regulated in docetaxel-resistant cells Not detected NSCLC cells (Rui et al., 2010)

miR-125b Rendered cells resistant to androgen
withdrawal

CDK6, CDC25A Prostate cancer (Vere White et al.,
2009)

miR-128b Down-regulated in resistant cells. Over-
expression increased cell sensitivity.

MLL, AF4, MLL-AF4,
AF4-MLL

Acute lymphocytic
leukemia cells

(Kotani et al.,
2009)

miR-140 Upregulated and associated with
chemosensitivity to 5-FU and methotrexate

P53, p21 Osteosarcoma, colon
cancer cells

(Song et al., 2009)

miR-181 Enhanced cisplatin-induced apoptosis;
Enhanced resistance of HCC cells to the
anticancer drug doxorubicin

TIMP-3, MMP-2, MMP-9 NSCLC cells
Hepatocellular
carcinomas

(Galluzzi et al.,
2010; Wang et al.,
2010a)

miR-192 Up-regulated in docetaxel-resistant cells Not detected NSCLC cells (Rui et al., 2010)

miR-200 Down-regulation in drug-resistant cells,
regulated EMT, increased cell sensitivity to
anti-cancer drug

ZEB1, ZEB2, TUBB3,
ERRFI,

Breast, prostate, lung,
bladder, ovarian,
pancreatic cancer cells

(Adam et al., 2009;
Cochrane et al.,
2009; Li et al.,
2009b; Rui et al.,
2010)

miR-205 Increased sensitivity to gefitinib and lapatinib HER3 Breast cancer cells (Iorio et al., 2009;
Iorio and Croce,
2009)

miR-214 Induced cisplatin resistance by targeting
PTEN

PTEN Ovarian cancer cells (Yang et al., 2008)

miR-215 Elevated in cells that exhibit slow
proliferating rate and chemoresistance. Over-
expression decreased sensitivity to
methotrexate and tomudex.

P21, p53 colon and
osteosarcoma cells

(Song et al., 2010)

miR-221/222 Re-expression sensitized cancer cells to
glucocorticoids and TRAIL; Up-regulated in
4-hydroxytamoxifen resistant cells. Knock-
down sensitized to tamoxifen,

CDKN1B, ERα, P27, Acute lymphocytic
leukemia cells, breast
cancer cells, NSCLC
cells

(Garofalo et al.,
2009; Kotani et al.,
2009; Miller et al.,
2008; Zhao et al.,
2008)

miR-342 Down-regulated in the 4-hydroxytamoxifen
resistant cells

Not detected Breast cancer cells (Miller et al.,
2008)

miR-424 Up-regulated in docetaxel-resistant cells Not detected NSCLC cells (Rui et al., 2010)

miR-451 Increased sensitivity to Doxorubicin MDR1 Breast cancer cells,
ovarian, cervix cancer
cells

(Kovalchuk et al.,
2008; Zhu et al.,
2008)

miR-489 Down-regulated in the 4-hydroxytamoxifen
resistant cells

Not detected Breast cancer cells (Miller et al.,
2008)

miR-630 Decreased cisplatin-induced apoptosis P27, p53 NSCLC cells (Galluzzi et al.,
2010)
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