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Abstract

Background:
Movement of the optical interface used to collect noninvasive near-infrared spectra is known to dramatically 
increase prediction errors for glucose concentration measurements within the interstitial fluid of living rat 
skin. Prediction errors increase by more than 2.5-fold when the interface is moved before each non-
invasive measurement compared to measurements where the interface position is constant throughout.  
Chemical heterogeneity of the skin matrix is examined as a possible mechanism for the strong sensitivity  
to the interface placement during noninvasive measurements conducted from transmission near-infrared 
absorption spectroscopy.

Method:
Microspectroscopy was performed over a region of the near-infrared spectrum (4000–5000 cm-1) to map the 
concentrations of water, collagen protein, fat, and keratin protein within the skin tissue matrix through which 
noninvasive spectra are collected. Maps were created for multiple samples of skin excised from male and 
female animals. Sets of near-infrared spectra were constructed to simulate noninvasive spectra in accord with 
the basic tissue composition found from the microspectroscopic maps with added information corresponding to  
a span of glucose concentrations ranging from 5 to 35 mM and Gaussian-distributed noise.

Results:
Microspectroscopic maps of rat skin reveal similar patterns of heterogeneity for major chemical components 
of skin samples excised from both male and female animals. These maps demonstrate concentration domains with 
dimensions similar to the size of the fiber interface used to collect noninvasive spectra. Partial least squares 
calibration models generated from sets of simulated spectra demonstrate increases in prediction errors for 
glucose when the spectral matrix is changed in accord with the degree of chemical heterogeneity displayed in  
the skin maps. Prediction errors typically increase between 100 and 1000% when comparing errors generated 
from spectra that represent a single tissue composition versus spectra that represent a varied skin composition  
in accord with the distribution displayed in the skin maps.

continued 
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Introduction

Our approach to noninvasive glucose sensing involves 
transmitting a selected band of near infrared light 
through a fold of skin and extracting the corresponding 
in vivo concentration of glucose from a multivariate 
analysis of the resulting spectrum.1–4 In this configuration, 
the analytical information is derived primarily from the 
interstitial fluid (ISF) as the incident light propagates 
through the skin matrix. In practice, the resulting ISF 
glucose concentration is related to the corresponding 
blood glucose concentration through a calibration process 
that assumes a direct and constant relationship between 
glucose concentrations in blood and ISF.5–8

The utility of measuring glucose by noninvasive near- 
infrared transmission spectroscopy has been demonstrated 
in an animal model, where glucose concentrations are 
obtained by multivariate methods based on either a 
direct net analyte signal approach or by the partial 
least squares (PLS) algorithm.3,4 A careful analysis of 
these methods verifies that in vivo glucose is the origin 
of the chemical information used in these multivariate 
calibration models. In these measurements, an optical 
fiber launches the incident light into one side of the skin- 
tissue fold and a second fiber directs the transmitted light 
to a detector element for quantification. Minimal variations 
were observed in the measured glucose concentrations when 
the position of this fiber optic was constant throughout the 
measurement. Large variations in the glucose concentration 
predictions were observed, however, when the fiber optic 
interface was repositioned between each measurement. 
Standard errors for glucose concentration predictions 
increased 2.5‑fold when the interface was repositioned.3 
Clearly, such a sensitivity of the position of the interface 

is a critical issue for noninvasive measurements and is 
a known obstacle to achieving universal calibrations for 
many noninvasive techniques.9

Microspectroscopy can be used to gain a better 
understanding of the origin of this interface sensitivity. 
We have reported the use of microspectroscopy over 
the combination region of the near infrared spectrum 
(4900–4200 cm-1) to construct concentration maps for 
the principal chemical components of the skin matrix.10  
These maps clearly reveal chemical domains within the 
tissue matrix where regions on the order of 500–800 µm 
are composed of different amounts of water, fat, collagen 
protein, and keratin protein. The size of these domains 
is significant in comparison to the size of the optical 
fibers used to collect the noninvasive spectra. In our 
noninvasive measurements, fibers with outer diameters of 
1.8 mm were used to both launch and collect the probe 
radiation. The chemical information obtained from this 
optical geometry corresponds to the integrated composition 
of the skin matrix over the volume of skin probed by 
the propagating light. This volume can be estimated as  
a cylinder with a diameter of 1.8 mm and a length of 
1 mm. The microspectroscopic measurement, on the other 
hand, provides a resolution of 200 µm and involves 
transmitting the incident light through a single layer of 
skin with a thickness ranging between 0.5 and 1.0 mm.  
This resolution is governed by the step size of the stage  
used to position the tissue slice under the microscope 
objective. The superior resolution of the microspectroscopic 
image permits identification of concentration domains 
within the tissue matrix. On the basis of the size of 
these domains relative to the optical geometry, we have 

Abstract cont.

Conclusions:
The distribution of the major components of skin is not uniform, but establishes domains within the skin 
matrix that strongly impact prediction errors for the noninvasive spectroscopic measurement of glucose within  
the interstitial fluid of rat dermis tissue. The observed increase in prediction error (>2.5-fold) determined from  
actual noninvasive measurements is within the lower range of prediction error increases demonstrated by this 
simulation study. These findings implicate that chemical heterogeneity within the tissue matrix is a major factor  
in the sensitivity of the location of the fiber interface used to collect noninvasive spectral data.
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speculated that chemical heterogeneity within the skin 
matrix is an important factor in the position sensitivity of 
the interface used to collect noninvasive spectra for the 
measurement of glucose concentrations in ISF.10

In this article, the impact of skin heterogeneity is further 
explored in two ways. First, the chemical heterogeneity 
described in our previous paper was restricted to male 
rat skin and here we expand our investigation to include  
rat skin excised from female rats. Second, a simulation 
study is used to quantify the impact of skin heterogeneity 
on variations in noninvasive glucose measurements. 
Spectral simulation is necessary in this case because the 
signal-to-noise ratio (SNR) of the microspectroscopic 
measurements is insufficient for measuring glucose 
directly in the tissue matrix. In this simulation study,  
sets of noninvasive near-infrared spectra are constructed 
mathematically as linear combinations of pure component 
absorption spectra for each of the major chemical 
components of the skin matrix (water, fat, collagen 
protein, and keratin protein). The relative amount of 
each component spectrum is taken from the chemical 
distribution maps determined from our microspectro-
scopic analysis of actual skin samples from both male 
and female rats. In addition, these simulated noninvasive 
spectra include a concentration weighted spectrum of 
glucose as well as randomly distributed Gaussian noise. 
PLS calibration models for glucose are generated and 
analyzed from sets of these simulated spectra.

The impact of tissue heterogeneity is assessed by 
generating PLS calibration models from simulated spectra 
corresponding to one region of a given slice of tissue 
and then using this model to predict the concentration  
of glucose represented in simulated spectra that 
correspond to a different region within the same tissue 
slice. More specifically, each tissue matrix is divided  
into four quadrants, each of which is approximately 
the size of the fiber-optic interface used to collect 
noninvasive spectra. The calibration model is generated 
from the set of simulated spectra for one quadrant and  
then this model is used to predict glucose concentrations in 
the other three quadrants. The ratio is computed between 
prediction errors for glucose concentration predictions  
in the three noncalibration quadrants relative to 
prediction errors in the calibration quadrant. The scheme 
outlined in Figure 1 illustrates the basic steps involved 
in this analysis. Finally, the ratios determined from  
these simulated spectra are compared to the ratio of 
prediction errors measured with and without repositioning 
the fiber-optic interface during actual noninvasive 
glucose measurements.

Methods

Rat Skin Mapping
Procedures for spectral mapping are described in detail 
elsewhere.10 Briefly, samples of whole skin (epidermis 
and dermis) were excised from the back of the neck region  
from 4 male and 4 female healthy Harlan Sprague-Dawley 
rats immediately following sacrifice. The skin biopsies  
were taken from male rats that were retired male 
breeders and weighed between 400 and 500 g, and from 
female rats that were two months old and weighed 
between 300 and 350 g. Skin was submerged in 
phosphate buffered saline, snap‑frozen in liquid nitrogen, 
and stored in a freezer. This procedure was approved by 
the University of Iowa Animal Care and Use Committee. 
Prior to collection of the spectra, a 6 × 6 mm2 skin slice 

Figure 1. Summary of approach to quantify the influence of tissue 
heterogeneity on noninvasive glucose predictions. White block 
addresses processing of in vitro spectral data from rat skin slices, 
green block explains simulation of spectra at various locations across 
the skin matrix, and blue block describes PLS procedures.
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each tissue slice. Each measured skin spectrum was fitted 
by least squares to a set of pure component spectra for 
each of these skin components. As described in detail 
elsewhere,10 these pure component spectra were collected 
with Type I reagent grade water (18 Mohm) in a 1-mm thick 
sample cell equipped with sapphire windows, collagen 
type 1 protein in a 1 mm thick pellet of potassium 
bromide, keratin protein taken as a fingernail from a 
human volunteer, and bovine fat in a 1-mm thick sample 
cell with sapphire windows. Two additional terms were 
added to this fitting procedure to account for spectral  
offsets and sloping baselines. This fitting procedure 
was performed over a spectral range of 4900–4200 cm-1 
according to the following expression:10

Askin = bw × Awater + bc × Acollagen I + bf × Afat 
+ bk × Akeratin + bo × Aoffset + bs × Aslope + e      (1)

where bw, bc, bf, bk, bo, and bs correspond to the 
regression coefficients for each tissue component, Askin 
represents the measured absorption spectrum for a given 
location along the 10 × 10 spectral array for the skin 
sample, and Awater, Acollagen I, Afat, Akeratin, Aoffset, and Aslope, 
are the pure component absorption spectra for each 
skin component (water, collagen I protein, fat, keratin 
protein, spectral offset, and baseline slope), respectively.10 
Lastly, e represents the residual absorbance not accounted 
for by the model.

The fitting procedure generates six regression coefficients 
for each location on the tissue map. Combined, these 
regression coefficients provide a measure of the composition 
of each 360 × 480 µm2 area within the skin matrix. 
More specifically, the magnitude of a given coefficient gives 
a measure of the amount of that component located in 
the volume of tissue through which the incident light 
passes during the microspectroscopic measurement. After 
this fitting procedure, a skin sample can be represented 
as six 10 × 10 matrices of regression coefficients and 
the distribution of these components can be obtained 
by displaying a map of the regression coefficients along 
the tissue array. Examples of such spatial distributions 
for skin samples excised from male and female rats are 
presented in Figure 2 as false-color contour maps.

For comparisons between animals and sexes, weighted 
percent coefficients were calculated for each of the 
four chemical components according to the following 
equation:

bcomp (%)i = 
bcomp

bw + bc + bf + bk

⎛
⎜
⎝

⎞
⎟
⎠ i

 × 100%         (2)

was positioned between two sapphire windows inside a 
compression cell as detailed before.10 Four separate skin 
slices were investigated per animal giving a total of  
32 spectral maps (4 males × 4 slices/animal + 4 females × 
4 slices/animal).

Absorbance maps were collected by using a Nicolet 
Magna 560 Fourier transform infrared (FTIR) spectrometer 
(Thermo Nicolet Corp., Madison, WI) coupled with an IR-
Plan Advantage microscope (Spectra‑Tech, Inc., Shelton, CT). 
The instrumentation was modified by installing a liquid 
nitrogen-cooled InSb detector in the microscope housing. 
This detector was equipped with a K-band interference 
filter to restrict measurements over the combination 
region of the near-infrared spectrum (4000–5000 cm-1 

or 2.0–2.5 µm). As described before, each map was 
constructed from a 10 × 10 array of near-infrared spectra 
collected over a 3.6 × 4.8 mm2 rectangle with the step 
size of the motorized XY-stage being 360 and 480 µm,
respectively. The physical thickness was between 0.5 and  
1.0 mm for each skin tissue sample as confined by the 
compression cell.10 In this manner, each map was 
constructed from the analysis of 100 spectra collected over 
approximately 3 hours. Every 30 minutes, the stage was 
moved to the central position on the tissue slice and a set 
of spectra were recorded as a means to track location-
independent changes in the skin sample for reference 
purposes. The dimensions used for each skin map  
(3.6 × 4.8 mm2) represented a convenient size of sample for 
microscopic analysis. In addition, this size of tissue slice 
permitted the collection of all spectra required across 
the array of the tissue without concern of dehydration.

All spectra were collected as 8k, double-sided interfero-
grams with 128 replicates coadded. Incident radiant 
powers were maximized by removing external apertures 
within the microscope. During the course of data collection, 
no temperature control was exercised and the largest 
degree of ambient temperature change was between 21 
to 24 °C. Air reference spectra used to compute tissue 
absorbance spectra were collected by using a blank 
compression cell equipped with a 0.92  mm Teflon spacer 
with air trapped between two sapphire windows. Data 
collection and processing were performed with OMNIC® 
Atlus™ software (Thermo Nicolet Corp., Madison, WI) 
and MATLAB® 7.0 (The Mathworks, Inc., Natick, MA) 
was used for all multivariate and statistical analyses.

Analysis of Noninvasive Spectra
The amount of each skin component (water, fat, collagen 
protein, and keratin protein) was determined by fitting 
each spectrum in the 10 × 10 spectral array collected for 
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Figure 2. Spatial distribution maps for four chemical components. Darker colors on the maps correspond to lower coefficient values, whereas the 
solid black contour lines denote every 10% of the total change in the specific component. (A) Example of male rat skin (the two-dimensional map for 
water is shown separated into quadrants, each of the four being an independent fiber location); (B) example of female rat skin (white circles 
illustrate interface relocation and correspond to 1.8 mm-diameter optical fibers).
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where bcomp  (%)i is the relative amount of a given chemical 
component at location i on the skin map, bcomp is the 
measured regression coefficient for this component, 
and bw, bc, bf and bk represent the measured regression 
coefficients for each of the four chemical components 
of the tissue model (water, collagen I protein, fat, and 
keratin protein, respectively).

Simulated Noninvasive Spectra
Simulated noninvasive spectra were constructed as linear 
combinations of the absorption spectra corresponding 
to the fitted skin components (water, collagen I protein, 
fat, keratin protein, offset, and slope) as well as glucose.  
In order to model noninvasive spectra collected through the 
fiber-optic interface, the full 3.6 × 4.8 mm2 tissue matrix 
was divided into quadrants, as illustrated in Figure 2. 
The size of each quadrant is indicated in the upper left 
corner of Figure 2A and the size of the optical fibers 
is illustrated in the upper right corner of Figure 2B. 
Each quadrant corresponds to a 5 × 5 subset of the 
collected 10 × 10 spectral array and represents an area 
of 1.8 × 2.4 mm2. There is no overlap in the spectral data 
associated with each quadrant.

A set of simulated noninvasive spectra was constructed 
for each quadrant. These spectra were generated by 
summing the individual pure component spectra for each 
skin component (water, collagen I protein, fat, keratin 
protein, offset, and slope) after applying a weighting 
factor derived from the corresponding regression 
coefficients. The weighting factor for each skin component 
was the average of the 25 regression coefficients obtained 
from the fitting procedure for each spectrum of the 5 × 5 
matrix elements in the quadrant. In other words, the 
chemical composition of each quadrant was represented as 
six regression coefficients computed as the average of the 
25 regression coefficients for that quadrant. From this 
analysis, a base simulated‑skin spectrum was generated 
for each quadrant according to the following expression:

Askin  = bw × Awater + bc × Acollagen I + bf × Afat 
+ bk × Akeratin + bo × Aoffset + bs × Aslope

q-base q q q

q q q     (3)

where Askin
q-base  is the base skin spectrum for quadrant 

q, and bw × Awater
q , bc × Acollagen I

q , bf × Afat
q , bk × Akeratin

q , 
bo × Aoffset

q , and bs × Aslope
q  represent the weighted 

pure component absorption spectra of water, collagen I  
protein, fat, keratin protein, spectral offset, and 
baseline slope, and the weighting coefficients bw

q , 
bc

q , bf
q , bk

q , bo
q , bs

q  correspond to the average regression 
coefficient determined from the fitting procedure for the  
25 tissue locations within the quadrant.

The base spectrum for each quadrant was further modified 
to produce the set of simulated spectra needed to produce 
PLS calibration models for glucose. These additional 
modifications included (1) adding a spectrum of glucose 
corresponding to a specific concentration of glucose,  
(2) adding spectral variance associated with the six  
major matrix components, and (3) adding Gaussian-
distributed noise.

Glucose spectra were added to instill glucose-specific 
information within the simulated noninvasive spectra. 
Glucose concentration spectral information was added 
according to the following equation:11,12

Asolution  = ewℓwCw + eglucoseℓwCglucose

 – ewfw        ℓwCglucose

glucose

glucose
           (4)

where Asolution
glucose  is the component of the solution spectrum 

corresponding to glucose, ewℓwCw is the absorbance due 
to water, eglucoseℓwCglucose is the absorbance due to glucose, 
and ewfw        ℓwCglucose

glucose  is a term that accounts for changes 
in the measured absorbance caused by the displacement 
of water molecules in the optical path by glucose. 
Conventional terms are used where ew and eglucose represent 
molar absorptivities (mm-1 × mM-1) for water and glucose,11 

respectively, ℓw is the effective aqueous path length 
(mm) for the light propagating through the tissue slice,2 
Cw and Cglucose correspond to the concentrations (mM) of
water and glucose, respectively, and fw

glucose  is the water 
displacement coefficient for glucose. The value for ℓw is 
taken as the fitted coefficient for water from Equation 1. 
The water displacement coefficient is a measure of how 
many water molecules are displaced from the light path 
for each molecule of glucose dissolved, and has the  
value of 6.24.11

Spectral variance was added to the base spectrum on 
the basis of the observed variations for the six major 
skin components at the central reference point. As noted 
above, a spectrum was collected at the center point in 
the 10 × 10 array every 30 minutes. The mean and 
standard deviation (SD) were computed for each of the 
six regression coefficients to provide a measure of the 
relative variation for each component. Variation of the 
regression coefficients used for the simulated spectra 
for each quadrant was determined according to the 
following expression:

 (σcomp)q = 
σcomp

x comp

⎛
⎜
⎝

⎞
⎟
⎠center

× ( x comp)q           (5)
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where (σcomp)q is the SD for a given tissue component in 
quadrant q, (σcomp/ x comp)center is the measured relative SD for 
this component at the central point of the map, and ( x comp)q 
is the regression coefficient for this component in 
quadrant q (calculated as the average of 25 coefficients 
in the quadrant). In constructing simulated spectra, 
regression coefficients were selected randomly for each 
tissue component from the normal distribution with a  
mean value of ( x comp)q and a SD of (σcomp)q. Each resulting 
regression coefficient was multiplied by the respective 
pure component absorption spectrum to provide the 
individual component spectrum for simulating noninvasive 
tissue spectra. These variations mimic changes to the 
skin tissue present when the fiber interface is constant  
and account for instrumentation variations as well as 
environment factors, such as dehydration and temperature.

Random noise was the final element incorporated into 
the simulated spectra. Gaussian-distributed noise was 
added to each spectrum at a level that provided RMS 
(root mean square) noise on 100% lines of 12 µAU 
(microabsorbance units) over the 4400–4600 cm-1 spectral 
range.3 This level of noise is representative of values 
obtained from actual noninvasive spectra collected from 
our animal model.

For each quadrant, a set of 40 simulated spectra was 
generated. Each spectrum in the set included (1) the 
linear combination of the six pure component spectra, 
(2) a glucose spectrum corresponding to a randomly 
selected concentration of glucose between 5 and 35 mM, 
and (3) Gaussian-distributed noise. In each case, the six 
pure component spectra were multiplied by the average 
regression coefficient for that quadrant with variation 
added according to the relative SD of the center position 
for that tissue slice. All three sources of variance were 
combined to generate 40 unique simulated noninvasive 
spectra for each quadrant of all 32 maps.

PLS Calibration Models
PLS calibration models were generated for each quadrant. 
Each PLS model was computed by using all 40 of the 
simulated spectra for a given quadrant. In each case, 
six latent variables or factors were used in constructing 
the model. A PLS model generated with spectra in one 
quadrant was then used to predict the concentration of 
glucose using the 40 simulated spectra in each of the  
other three quadrants in the same tissue slice. Errors in 
the concentration of glucose predicted from the resulting 
PLS calibration model were quantified as the standard 
error of calibration (SEC) for the calibration quadrant 

and as the standard error of prediction (SEP) for  
the noncalibration quadrants or prediction quadrants.  
These parameters were computed according to Equations 6 
and 7:

S(Ca – Cp)2

(Nc – f – 1)
SEC =                      (6)

S(Ca – Cp)2

Np 
SEP =                      (7)

where SEC and SEP are in units of mM, Ca and Cp are 
the actual and predicted concentrations of glucose for 
each spectrum, respectively, Nc and Np are the number 
of spectra in the calibration and prediction data sets, 
respectively, and f is the number of factors used in the 
PLS regression analysis.

Statistical analysis was performed by computing 10 
unique sets of simulated spectra for each quadrant and 
assessing the resulting PLS calibration models. Each set 
of 40 simulated spectra included different regression 
coefficients, glucose concentrations, and noise according to 
the procedures described above. A unique PLS calibration 
model was calculated for the 10 data sets in each quadrant, 
which resulted in 10 SEC values for each quadrant.  
In addition, each calibration model was used to predict 
the concentration of glucose in each of the 10 unique sets 
of 40 simulated spectra for the remaining three non-
calibration quadrants in the tissue map, thereby generating 
30 SEP values for each calibration model. This procedure  
was repeated for all four quadrants, thereby accumulating 
40 SEC values and 120 SEP values per map. As noted 
above, four maps were generated per animal, which 
created 160 SEC values and 480 SEP values per animal.

Results
Characterization of Spatial Tissue Heterogeneity
Measured regression coefficients for the six skin 
components, as described in Equation 1, are summarized 
in Table 1 for each animal. This table lists the mean 
and SD values for each animal. Previously performed 
analysis of variance has shown that results from this 
animal model must be treated as separate distributions.10 
The relative values for these tissue components are 
presented in Table 2, according to Equation 2.

Inspection of the values in Table 1 reveals that the 
amounts of water and collagen type I protein are less 



1048

Impact of Tissue Heterogeneity on Noninvasive Near-Infrared Glucose Measurements 
in Interstitial Fluid of Rat Skin Alexeeva

www.journalofdst.orgJ Diabetes Sci Technol Vol 4, Issue 5, September 2010

in the female rats, while levels of keratin and fat are 
essentially the same for both sexes. It should be noted 
that low levels of fat tissue are observed in rat skin 
tissue taken from the back of the neck, which might 

account for small differences in fat observed between 
sexes. Overall, the skin is thicker for male rats compared 
to female rats. Less difference is noted for the relative 
coefficients, however.

Table 1.
Fitted Regression Coefficients,a β, for Four Maleb and Four Female Animals

Component
Male animals

Rat 1 Rat 2 Rat 3 Rat 4

Water 0.42 ± 0.03 0.43 ± 0.05 0.40 ± 0.04 0.40 ± 0.07

Collagen type I 0.57 ± 0.07 0.53 ± 0.05 0.44 ± 0.04 0. 34 ± 0.09

Fat 0.12 ± 0.03 0.04 ± 0.03 0.04 ± 0.02 0.03 ± 0.03

Keratin 0.09 ± 0.02 0.10 ± 0.01 0.10 ± 0.02 0.09 ± 0.03

Offset 0.65 ± 0.06 0.6 ± 0.2 0.6 ± 0.2 0.5 ± 0.1

Slope –0.025 ± 0.007 –0.017 ± 0.008 –0.001 ± 0.009 –0.005 ± 0.006

Component
Female animals

Rat 1 Rat 2 Rat 3 Rat 4

Water 0.33 ± 0.04 0.26 ± 0.06 0.31 ± 0.05 0.32 ± 0.06

Collagen type I 0.27 ± 0.04 0.26 ± 0.04 0.26 ± 0.05 0.31 ± 0.05

Fat 0.03 ± 0.01 0.05 ± 0.02 0.06 ± 0.03 0.05 ± 0.03

Keratin 0.06 ± 0.01 0.052 ± 0.006 0.053 ± 0.07 0.066 ± 0.009

Offset 0.5 ± 0.1 0.46 ± 0.08 0.57 ± 0.07 0.6 ± 0.1

Slope –0.014 ± 0.007 –0.027 ± 0.009 –0.020 ± 0.007 –0.02 ± 0.01

a Mean value (±SD) with 396 degrees of freedom for each value.
b Data for male rats 1 and 2 are identical to an earlier report.10

Table 2.
Relative β (%) Regression Coefficientsa for Major Chemical Components for Four Maleb and Four Female 
Animals

Component
Male animals (%)

Rat 1 Rat 2 Rat 3 Rat 4

Water 35 ± 4 39 ± 3 41 ± 3 48 ± 6

Collagen type I 48 ± 3 48 ± 4 45 ± 3 39 ± 3

Fat 10 ± 2 4 ± 2 4 ± 2 2 ± 3

Keratin 8 ± 2 9 ± 1 10 ± 2 11 ± 2

Component
Female animals (%)

Rat 1 Rat 2 Rat 3 Rat 4

Water 47 ± 3 42 ± 4 46 ± 4 43 ± 3

Collagen type I 39 ± 3 42 ± 4 37 ± 3 41 ± 2

Fat 3 ± 1 5 ± 2 6 ± 3 5 ± 3

Keratin 9 ± 1 9 ± 1 8 ± 2 9 ± 2

a Mean value (±SD) with 396 degrees of freedom for each value.
b Data for the male rats 1 and 2 are the same as those reported before.10
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Lateral distribution of the measured chemical components 
across the skin is best visualized by false‑color contoured 
maps. Example maps are presented in Figure 2 for one 
male (Figure 2A) and one female (Figure 2B) rat. These 
maps provide a two-dimensional view over an area of  
3.6 × 4.8 mm2. Domains of high and low content for 
the chemical components are instantly visible on such 
maps. It must be noted that these maps represent three-
dimensional structures as the probing near infrared light is 
transmitted through the tissue slice.

Figure 2 illustrates the chemical heterogeneity of the skin 
matrix for both male and female rats. These maps are 
representative of all the maps measured for these four 
animals. Although the size of these chemical domains 
varies for different animals and for individual skin 
slices, generally, the domain size is a large fraction of 
the dimensions of the fiber interface, which is illustrated  
as the white circles in Figure 2B. No major difference 
in the domain size or distribution is evident by inspecting 
maps collected from male and female animals.

Simulation of Spectra at Various Locations
The fiber interface used previously to measure glucose 
concentrations in the ISF of rat skin has a working 
diameter of 1.8 mm.3 Consequently, this interface 
collects radiation over a larger area than that resolved by 
microspectroscopic imaging. Moreover, the SNR for the 
microspectroscopic measurements is three orders of 
magnitude lower compared to the SNR used for our 
reported noninvasive glucose measurements in living 
rats.3,10 The low optical throughput of the microscope 
results in low radiant powers and poor SNR’s for the 
microspectroscopic spectral data. As a result, the actual 
microspectroscopic data cannot be used to measure glucose 
concentrations in these samples and cannot be used 
directly to assess the impact of tissue heterogeneity on 
accuracy of multivariate calibration models for measuring 
glucose in these skin matrices. For this reason, simulated 
spectra are necessary to evaluate the impact of tissue 
heterogeneity on noninvasive glucose measurements.

As described above, each skin map is split into four 
quadrants comparable in size to the fiber interface, as  
demonstrated in Figure 2A. Each quadrant then represents 
a unique location of the fiber interface. Simulated spectra  
are then generated based on the average matrix components 
for a given quadrant, as defined by the regression 
coefficients listed in Table 1. These simulated spectra 
include variance related to each of the skin components, 
spectral information related to different concentrations 
of glucose, and random noise. In all, these simulated 

spectra are designed to mimic noninvasive spectra 
collected in our previous ISF measurements.

Effect of Fiber Relocation on Glucose Concentration 
Predictions
The PLS algorithm produces a calibration vector that 
is used to predict the concentration of glucose from 
subsequent noninvasive tissue spectra. The concentration 
of glucose is obtained as the dot-product between this 
calibration vector and the noninvasive spectrum.13–15 
Representative PLS calibration vectors are presented in 
Figure 3 where these calibration vectors were generated 
from an analysis of sets of 40 simulated spectra for 
each quadrant of one male (Figure 3A) and one female 
(Figure 3B) animal. Similarities are noteworthy between 
these calibration vectors. Each vector possesses a 
combination of sharp bands between 4500–4200 cm-1 and 
broader bands around 4700 cm-1. No major differences are 
evident between vectors generated from spectra derived 
from male and female skin.

The impact of chemical heterogeneity was assessed by 
applying the calibration vector determined from simulated 
spectra associated with one quadrant to simulated spectra 
for a different quadrant. The results are presented in 
Table 3, where the SEC values reported for each animal 
correspond to the average SEC (± 1 SD) of 160 individual 
SEC values determined for 4 slices/animal × 4 quadrants/
slice × 10 sets of simulated spectra/quadrant. Likewise, 
the reported SEP values correspond to the average of 4800 
individual SEP values computed for 160 calibration 
models × 3 noncalibration quadrants/calibration model × 10 
sets of simulated spectra/noncalibration quadrant.

The SEC values listed in Table 3 correspond to prediction 
errors expected if the fiber interface remains stationary 
during all measurements, while the SEP values represent 
prediction errors when the calibration vector is generated 
with the interface in one position and the predictions are  
performed at a different location along the tissue matrix. 
The values in Table 3 indicate that the SEP is greater 
than the corresponding SEC. These SEC values are similar 
in magnitude to the reported SEC values for noninvasive 
measurements when the interface is not moved between 
measurements with a stationary animal.3 The SEP values 
in this table indicate that moving the interface position 
increases the prediction error by factors ranging from  
2 to 14.

The impact of spatial heterogeneity is further illustrated 
by the statistical data presented in Figure 4. For this 
figure, the SEP/SEC ratio was determined for each tissue 
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the matrix of the noncalibration quadrant. Ratios close 
to 100% are expected when the two quadrants possess 
similar compositions.

As is evident in Figure 4, most of the SEP/SEC percent 
ratios range between 100 and 1000%. In most cases, the 
additional error introduced by a difference in the skin 
matrix is 2- to 10-fold. In extreme cases, as denoted by 
red crosses in Figure 4, standard errors increase up to 
40-fold for male rats and up to 20-fold for female animals. 
Such high standard errors suggest that this particular 
pair of quadrants had drastically different compositions.

Previously presented results for actual in vivo noninvasive 
glucose measurements3 indicate that the SEP/SEC percent 
ratio is 2.58-fold when the fiber interface is repositioned 
before each measurement. This percent ratio is well 
within the upper and lower quartiles in the box plot 
distributions presented in Figure 4. These findings support 
the postulate that tissue heterogeneity is responsible 
for the degradation in model performance caused by 
repositioning of the interface for each measurement.10

Discussion
Noninvasive spectroscopic measurements through living 
tissue are complicated by the complexity of the living 
skin matrix. Skin heterogeneity is characterized by several 
factors, including (1) the partitioning of glucose between 
blood and ISF, (2) differences in the concentration of 
glucose inside and outside metabolizing skin cells, and 
(3) the existence of spatially relevant chemical domains  
of protein, fat, and water, as illustrated in Figure 2. 
Furthermore, a glucose concentration gradient has been 
demonstrated where the percentage of glucose in skin ISF  
relative to blood glucose of 5  mM increases gradually 
starting at the outer surface of skin and is at its highest 

Table 3.
Standard Errors of Calibration and Prediction for Glucose with PLS Summarized as Mean ± SD for Male and 
Female Animals

Male rats

Rat 1 Rat 2 Rat 3 Rat 4

SEC (mM) 2 ± 1 2 ± 1 1 ± 1 2 ± 1

SEP (mM) 9 ± 11 12 ± 12 14 ± 17 7 ± 8

Female rats

Rat 1 Rat 2 Rat 3 Rat 4

SEC (mM) 1 ± 1 1.5 ± 0.9 1.2 ± 0.7 2 ± 1

SEP (mM) 2 ± 1 7 ± 6 3 ± 3 4 ± 5

Figure 3. Partial least squares calibration vectors for each quadrant 
of a sample map collected across a slice of (A) male skin and (B) 
female skin. The dot product of such a vector with a skin spectrum 
at a specific location and a water path length gives the glucose 
concentration in mM units.

slice and the results are presented in the form of box 
plots for each animal tested. A ratio of 100% corresponds  
to the situation where SEC = SEP and there is no impact 
on the ability to predict glucose concentrations from 
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(98%) at a depth of approximately 600  µm, which 
corresponds to the dermis layer.6

The animal model presented here involves transmission 
of the incident near-infrared light through a fold of 
skin as a means to model transmission measurements 
across a fold of skin on the back of the hand of human 
subjects. Such measurements through human skin will 
reduce the impact of skin heterogeneity by restricting 
measurements to the epidermis and dermis layers of  
skin, thereby avoiding fat containing subcutaneous layers. 
In addition, this measurement site provides a sample 
thickness of approximately 1–1.5 mm, which others report 
to be optimal for measuring glucose in an intralipid  
phantom.16 Still, spatial chemical domains like those 
reported here can adversely impact measurement accuracy.

In Vitro Skin Spectra
The experimental procedure used to collect the micro- 
spectroscopic image involves compressing the soft skin 
tissue between two sapphire plates. Other researchers 
have demonstrated the utility of this experimental  
procedure for collecting transmission-based micro-
spectroscopic FTIR images of complex multilayered 
samples.17,18 Examples include paint samples, which 
are similar to skin in the sense that paint samples 
consist of micrometric layers of organic and inorganic 
components, including proteinaceous compounds, fats, 
and resins. Although pressing layered paint samples 
between diamond windows has been shown to distort 
the geometry of layers somewhat, this procedure keeps 
the sample structure intact and free of contaminants.18 
Alternative methods (preparation of KBr pellets, gluing 
and embedding techniques, etc.) either involve complete 
destruction of the sample structure or introduction of 
strong absorbers.17

Other approaches have been published for using 
spectroscopy to characterize the heterogeneity of skin 
tissue related to the photon migration. In this previous 
work, incident light is launched into the skin through 
one fiber and a separate collection fiber is used to detect 
light that has propagated a certain distance into and 
through the skin matrix. Meglinsky and Matcher have 
used this approach to characterize optical differences 
as the photons travel into the tissue.19–21 These photon 
migration measurements are significantly different 
compared to the measurements preformed here because 
our maps characterize tissue heterogeneity laterally 
across the surface of the tissue matrix while the past 
photon migration work measures heterogeneity of layers 
vertically into the skin structure.

Figure 4. Box plots of distributions of standard error ratios (SEP/SEC, 
%) for male (A) and female (B) rat skin. For each animal, the red line 
represents the median, the green star shows the mean value, the blue box 
includes 75% of all observations (i.e., data points between the 1st and 
3rd quartiles), the black whiskers indicate extreme values within three 
semi-interquartile ranges below 25% and above 75%, and more extreme 
values are presented as red crosses.

Mid-infrared spectroscopy has also been used to 
characterize the distribution of skin components,22–24 but 
mid-infrared wavelengths are limited to a penetration 
depth of a few tens of microns into the tissue matrix 
owing to the strong absorption properties of water and 
other matrix components. For this reason, the results 
reported here are unique, as they characterize the 
heterogeneity through a larger volume of the tissue as 
defined by the 0.5–1.0 mm thickness of the samples.

The tissue compression procedure used here permits 
rapid data collection with SNR’s suitable for quantifying 
the six major components of these skin spectra. The 1 mAU 
RMS noise levels on 100% lines acquired with our 
microscope setup are suitable for measuring the principal 
skin components, but such noise levels are much too 
high for measuring glucose in a noninvasive experiment.3,4
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A notable difference between the in vitro spectra collected 
in these microspectroscopic experiments and the in vivo 
spectra collected in our noninvasive experiments is the 
passage of the incident radiation through one versus 
two layers of the epidermis and dermis. For in vitro 
measurements, the tissue lies flat on the transmission 
window and the radiation passes once through a single 
layer of epidermis and a single layer of dermis tissue.  
For in vivo measurements, on the other hand, the skin 
tissue is folded onto itself and the incident radiation 
passes through two separate epidermis and dermis layers 
as it propagates through the fold of skin. The modeling 
of glucose prediction errors does not consider a two-pass 
model, but only addresses the single-pass experiment. 
Although not confirmed experimentally, the inclusion 
of two skin layers as a fold of skin should reduce the 
spatial heterogeneity of the skin components, thereby 
improving prediction ability and reducing prediction 
errors of the calibration model.

Impact of Animal Sex
Little difference is noted between the chemical hetero-
geneity based on the sex of the animal. Similar chemical 
domains were observed for both male and female 
animals, as illustrated in Figure 2. The major differences 
between male and female skin is the overall thickness, 
with thicker skin for male rats.

Impact of Tissue Heterogeneity on PLS Model 
Accuracy
Selectivity of PLS regression for glucose measurements 
has been demonstrated for both complex in vitro 
mixtures25,26 and in our transient study with a living animal.4 
Overall, the lowest standard error we have observed for 
noninvasive measurements is 0.7 mM (per results of 
samples collected in our laboratory during the study. 
Data are unpublished). In this example, the noninvasive 
spectra were obtained from an anesthetized animal  
with a stationary interface throughout. A prediction error  
of 0.7 mM is within the limits of clinical applicability.27

The impact of tissue heterogeneity can be significant,  
as illustrated in Table 3 and Figure 4. In our noninvasive 
experiment, the SEP increases by 2.58-fold when comparing 
measurements where the interface is held in the 
same position relative to values when the interface is 
repositioned before each measurement.3 This percentage 
increase is within the span of SEP/SEC ratios established 
here from the simulated quadrant data.

It must be noted, however, that the interface was not 
positioned in a completely new location before each 
measurement during the reported in vivo experiments. 
Indeed, the experimenters tried to place the interface 
in nearly the same position before each measurement.3 
One would expect that each interface position was not 
completely different than the others, so our calculations 
using quadrants with no spectral overlap represents 
the worst case scenario in this regard. This fact might 
explain why the measured increase in prediction errors  
is on the low side of the ratios computed here from the 
simulated data.

A strategy is needed to remove or reduce the impact of 
skin heterogeneity on the performance of the calibration 
model. One approach is to incorporate more sources 
of the underlying skin tissue spectral variance into the 
calibration model. This can be accomplished by purposely 
moving the interface to several different positions  
during the calibration phase of the experiment. This way, 
more of the tissue variance will be incorporated into the 
calibration model, thereby making the model less sensitive 
to the exact placement of the interface. Alternatively,  
the sources of skin spectral variance can be incorporated 
directly into the calibration model by using pure 
component spectra from model compounds, such as fatty 
tissue, keratin protein, and collagen protein.

Conclusions
Effects of repositioning the fiber interface used to 
collect noninvasive spectra of living skin tissue were 
explored by using a model based on microspectroscopic 
near‑infrared analysis of both male and female rats. 
Spatial domains of protein, fat, and water were observed 
from this analysis and the degree of heterogeneity is 
essentially the same for skin excised from male and 
female animals. These chemical heterogeneities create 
increases in the prediction errors for PLS calibration 
models when simulated measurements are made through 
regions of skin not used to generate the calibration model 
for glucose. These findings suggest that chemical hetero-
geneity within the skin tissue matrix is at least partially 
responsible for previously measured increases in glucose 
prediction errors when the fiber interface is repositioned 
before each measurement. Still, the basic structure of the 
calibration vectors is similar both across skin quadrants 
and between animals, as shown in Figure 3. The similarity 
in these calibration vectors suggests that the accuracy 
of such glucose concentration predictions depends 
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strongly on the exact features of these vectors and subtle  
differences can have a profound impact on measurement 
performance.

Preliminary experiments with samples of skin excised 
from two human subjects demonstrate similar chemical 
heterogeneity as we have reported for rat skin (per 
results of samples collected in our laboratory during 
the study. Data are unpublished). Both skin samples,  
one from a male subject and one from a female subject,  
display chemical domains on the order of several 
hundred microns, similar to those illustrated in Figure 2. 
In addition, these skin samples were collected from 
different regions of the body (male knuckle and female 
upper leg), which suggests that these spectral domains  
are similar over different areas of the body. Of course, 
more detailed experimentation is required to verify these 
preliminary observations. These preliminary human skin 
maps underscore the significance of this rat model 
for solving the principal issues that limit noninvasive 
glucose measurements.
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