Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Apr;95(4):1710–1716. doi: 10.1172/JCI117847

Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats.

C Wang 1, L Chao 1, J Chao 1
PMCID: PMC295685  PMID: 7535795

Abstract

Hypertension is a multigene and multifactorial disorder affecting approximately 25% of the population. To demonstrate potential therapeutic effects of human tissue kallikrein in hypertension, spontaneously hypertensive rats were subjected to somatic gene therapy. Two human tissue kallikrein DNA constructs, one under the promoter control of the metallothionein metal response element and the other under the control of the Rous sarcoma virus 3'-LTR, were generated. We delivered naked DNA constructs into spontaneously hypertensive rats via intravenous injection. The expression of human tissue kallikrein in rats was identified in the heart, lung, and kidney by reverse transcription polymerase chain reaction followed by Southern blot analysis and an ELISA specific for human tissue kallikrein. A single injection of both human kallikrein plasmid DNA constructs caused a sustained reduction of blood pressure which began 1 wk after injection and continued for 6 wk. A maximal effect of blood pressure reduction of 46 mmHg in rats was observed 2-3 wk after injection with kallikrein DNA as compared to rats with vector DNA (n = 6, P < 0.05). The hypotensive effect caused by somatic gene delivery of human tissue kallikrein in hypertensive rats is reversed by subcutaneous injection of aprotinin, a potent tissue kallikrein inhibitor. No antibodies to either human tissue kallikrein or kallikrein DNA were detected in rat sera after injection of the human kallikrein gene. These results show that direct gene delivery of human tissue kallikrein causes a sustained reduction in systolic blood pressure in genetically hypertensive rats and indicate that the feasibility of kallikrein gene therapy for treating human hypertension should be studied.

Full text

PDF
1710

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ader J. L., Pollock D. M., Butterfield M. I., Arendshorst W. J. Abnormalities in kallikrein excretion in spontaneously hypertensive rats. Am J Physiol. 1985 Mar;248(3 Pt 2):F396–F403. doi: 10.1152/ajprenal.1985.248.3.F396. [DOI] [PubMed] [Google Scholar]
  2. Bellini C., Ferri C., Piccoli A., Carlomagno A., Di Francesco L., Bonavita M. S., Santucci A., Balsano F. The influence of salt sensitivity on the blood pressure response to exogenous kallikrein in essential hypertensive patients. Nephron. 1993;65(1):28–35. doi: 10.1159/000187436. [DOI] [PubMed] [Google Scholar]
  3. Bhoola K. D., Figueroa C. D., Worthy K. Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev. 1992 Mar;44(1):1–80. [PubMed] [Google Scholar]
  4. Chao J., Chao L., Tillman D. M., Woodley C. M., Margolius H. S. Characterization of monoclonal and polyclonal antibodies to human tissue kallikrein. Hypertension. 1985 Nov-Dec;7(6 Pt 1):931–937. doi: 10.1161/01.hyp.7.6.931. [DOI] [PubMed] [Google Scholar]
  5. Clements J. A. The glandular kallikrein family of enzymes: tissue-specific expression and hormonal regulation. Endocr Rev. 1989 Nov;10(4):393–419. doi: 10.1210/edrv-10-4-393. [DOI] [PubMed] [Google Scholar]
  6. Favaro S., Baggio B., Antonello A., Zen A., Cannella G., Todesco S., Borsatti A. Renal kallikrein content of spontaneously hypertensive rats. Clin Sci Mol Med. 1975 Jul;49(1):69–71. doi: 10.1042/cs0490069. [DOI] [PubMed] [Google Scholar]
  7. Flotte T. R. Prospects for virus-based gene therapy for cystic fibrosis. J Bioenerg Biomembr. 1993 Feb;25(1):37–42. doi: 10.1007/BF00768066. [DOI] [PubMed] [Google Scholar]
  8. Fukushima D., Kitamura N., Nakanishi S. Nucleotide sequence of cloned cDNA for human pancreatic kallikrein. Biochemistry. 1985 Dec 31;24(27):8037–8043. doi: 10.1021/bi00348a030. [DOI] [PubMed] [Google Scholar]
  9. Furuto-Kato S., Matsumoto A., Kitamura N., Nakanishi S. Primary structures of the mRNAs encoding the rat precursors for bradykinin and T-kinin. Structural relationship of kininogens with major acute phase protein and alpha 1-cysteine proteinase inhibitor. J Biol Chem. 1985 Oct 5;260(22):12054–12059. [PubMed] [Google Scholar]
  10. Geller R. G., Margolius H. S., Pisano J. J., Keiser H. R. Urinary kallikrein excretion in spontaneously hypertensive rats. Circ Res. 1975 Jun;36(6 Suppl 1):103–106. doi: 10.1161/01.res.36.6.103. [DOI] [PubMed] [Google Scholar]
  11. Gilkeson G. S., Bloom D. D., Pisetsky D. S., Clarke S. H. Molecular characterization of anti-DNA antibodies induced in normal mice by immunization with bacterial DNA. Differences from spontaneous anti-DNA in the content and location of VH CDR3 arginines. J Immunol. 1993 Aug 1;151(3):1353–1364. [PubMed] [Google Scholar]
  12. Glanville N., Durnam D. M., Palmiter R. D. Structure of mouse metallothionein-I gene and its mRNA. Nature. 1981 Jul 16;292(5820):267–269. doi: 10.1038/292267a0. [DOI] [PubMed] [Google Scholar]
  13. Griesbacher T., Lembeck F. Effects of the bradykinin antagonist, HOE 140, in experimental acute pancreatitis. Br J Pharmacol. 1992 Oct;107(2):356–360. doi: 10.1111/j.1476-5381.1992.tb12751.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guesdon J. L., Ternynck T., Avrameas S. The use of avidin-biotin interaction in immunoenzymatic techniques. J Histochem Cytochem. 1979 Aug;27(8):1131–1139. doi: 10.1177/27.8.90074. [DOI] [PubMed] [Google Scholar]
  15. Jaffa A. A., Harvey J. N., Sutherland S. E., Margolius H. S., Mayfield R. K. Renal kallikrein responses to dietary protein: a possible mediator of hyperfiltration. Kidney Int. 1989 Dec;36(6):1003–1010. doi: 10.1038/ki.1989.294. [DOI] [PubMed] [Google Scholar]
  16. Jaffa A. A., Vio C. P., Silva R. H., Vavrek R. J., Stewart J. M., Rust P. F., Mayfield R. K. Evidence for renal kinins as mediators of amino acid-induced hyperperfusion and hyperfiltration in the rat. J Clin Invest. 1992 May;89(5):1460–1468. doi: 10.1172/JCI115736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson D. A., Salvesen G., Brown M. A., Barrett A. J. Rapid isolation of human kininogens. Thromb Res. 1987 Oct 15;48(2):187–193. doi: 10.1016/0049-3848(87)90415-4. [DOI] [PubMed] [Google Scholar]
  18. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Madeddu P., Gherli T., Bacciu P. P., Maioli M., Glorioso N. A kallikrein-like enzyme in human vascular tissue. Am J Hypertens. 1993 May;6(5 Pt 1):344–348. doi: 10.1093/ajh/6.5.344. [DOI] [PubMed] [Google Scholar]
  21. Margolis H. S., Geller R., Pisano J. J., Sjoerdsma A. Altered urinary kallikrein excretion in human hypertension. Lancet. 1971 Nov 13;2(7733):1063–1065. doi: 10.1016/s0140-6736(71)90382-5. [DOI] [PubMed] [Google Scholar]
  22. Margolius H. S., Geller R., De Jong W., Pisano J. J., Sjoerdsma A. Altered urinary kallikrein excretion in rats with hypertension. Circ Res. 1972 Mar;30(3):358–362. [PubMed] [Google Scholar]
  23. Margolius H. S., Horwitz D., Pisano J. J., Keiser H. R. Urinary kallikrein excretion in hypertensive man. Relationships to sodium intake and sodium-retaining steroids. Circ Res. 1974 Dec;35(6):820–825. doi: 10.1161/01.res.35.6.820. [DOI] [PubMed] [Google Scholar]
  24. Margolius H. S. Tissue kallikreins and kinins: regulation and roles in hypertensive and diabetic diseases. Annu Rev Pharmacol Toxicol. 1989;29:343–364. doi: 10.1146/annurev.pa.29.040189.002015. [DOI] [PubMed] [Google Scholar]
  25. Nolly H., Carbini L. A., Scicli G., Carretero O. A., Scicli A. G. A local kallikrein-kinin system is present in rat hearts. Hypertension. 1994 Jun;23(6 Pt 2):919–923. doi: 10.1161/01.hyp.23.6.919. [DOI] [PubMed] [Google Scholar]
  26. Nolly H., Scicli A. G., Scicli G., Carretero O. A. Characterization of a kininogenase from rat vascular tissue resembling tissue kallikrein. Circ Res. 1985 Jun;56(6):816–821. doi: 10.1161/01.res.56.6.816. [DOI] [PubMed] [Google Scholar]
  27. Ogawa K., Ito T., Ban M., Mochizuki M., Satake T. Effects of orally administered glandular kallikrein on urinary kallikrein and prostaglandin excretion, plasma immunoreactive prostanoids and platelet aggregation in essential hypertension. Klin Wochenschr. 1985 Apr 1;63(7):332–336. doi: 10.1007/BF01731977. [DOI] [PubMed] [Google Scholar]
  28. Pravenec M., Kren V., Kunes J., Scicli A. G., Carretero O. A., Simonet L., Kurtz T. W. Cosegregation of blood pressure with a kallikrein gene family polymorphism. Hypertension. 1991 Feb;17(2):242–246. doi: 10.1161/01.hyp.17.2.242. [DOI] [PubMed] [Google Scholar]
  29. Saed G. M., Carretero O. A., MacDonald R. J., Scicli A. G. Kallikrein messenger RNA in rat arteries and veins. Circ Res. 1990 Aug;67(2):510–516. doi: 10.1161/01.res.67.2.510. [DOI] [PubMed] [Google Scholar]
  30. Scicli A. G., Carretero O. A. Renal kallikrein-kinin system. Kidney Int. 1986 Jan;29(1):120–130. doi: 10.1038/ki.1986.14. [DOI] [PubMed] [Google Scholar]
  31. Shimamoto K., Chao J., Margolius H. S. A method for determination of human urinary inactive kallikrein (prekallikrein). Tohoku J Exp Med. 1982 Jul;137(3):269–274. doi: 10.1620/tjem.137.269. [DOI] [PubMed] [Google Scholar]
  32. Shimamoto K., Chao J., Margolius H. S. The radioimmunoassay of human urinary kallikrein and comparisons with kallikrein activity measurements. J Clin Endocrinol Metab. 1980 Oct;51(4):840–848. doi: 10.1210/jcem-51-4-840. [DOI] [PubMed] [Google Scholar]
  33. Shimamoto K., Tanaka S., Nakao T., Ando T., Nakahashi Y., Sakuma M., Miyahara M. Measurement of urinary kallikrein acitvity by kinin radioimmunoassay. Jpn Circ J. 1979 Mar;43(3):147–152. doi: 10.1253/jcj.43.147. [DOI] [PubMed] [Google Scholar]
  34. Wang J., Xiong W., Yang Z., Davis T., Dewey M. J., Chao J., Chao L. Human tissue kallikrein induces hypotension in transgenic mice. Hypertension. 1994 Feb;23(2):236–243. doi: 10.1161/01.hyp.23.2.236. [DOI] [PubMed] [Google Scholar]
  35. Wolff J. A., Malone R. W., Williams P., Chong W., Acsadi G., Jani A., Felgner P. L. Direct gene transfer into mouse muscle in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]
  36. Woodley-Miller C., Chao J., Chao L. Restriction fragment length polymorphisms mapped in spontaneously hypertensive rats using kallikrein probes. J Hypertens. 1989 Nov;7(11):865–871. doi: 10.1097/00004872-198911000-00003. [DOI] [PubMed] [Google Scholar]
  37. Zhu N., Liggitt D., Liu Y., Debs R. Systemic gene expression after intravenous DNA delivery into adult mice. Science. 1993 Jul 9;261(5118):209–211. doi: 10.1126/science.7687073. [DOI] [PubMed] [Google Scholar]
  38. Zinner S. H., Margolius H. S., Rosner B., Kass E. H. Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation. 1978 Nov;58(5):908–915. doi: 10.1161/01.cir.58.5.908. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES