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Longitudinally collected outcomes are increasingly 
common in cell biology and gene therapy research. In 
this article, we review the current practice of statistical 
analysis of longitudinal data in these fields, and recom-
mend the “best performing” statistical method among 
those available in most statistical packages. A survey of 
papers published in Molecular Therapy indicates that 
longitudinal data are only properly analyzed in a small 
fraction of articles, and the most popular approach was 
analyzing each measurement time point data sepa-
rately using an analysis of variance (ANOVA) model with 
Tukey’s post hoc tests. We show that first, such cross-
sectional ANOVA approach does not utilize all the power 
that the longitudinal design of a study provides, and 
second, Tukey’s post hoc tests applied at each measure-
ment time separately could result in a false positivity rate 
as high as 30% using a simulation study. We recommend 
mixed effects model analysis instead. We also discuss the 
complexities of multiple comparison adjustment in the 
post hoc testing that result from within experimental unit 
correlation existing in longitudinal data. We recommend 
resampling as a method that readily adjusts the post hoc 
testing to be limited to only interesting comparisons and 
thereby avoids unduly sacrificing the power.

Received 22 March 2010; accepted 17 May 2010; published online  
29 June 2010. doi:10.1038/mt.2010.127

Introduction
Longitudinal data consist of outcome measurements repeatedly 
taken on each experimental unit (e.g., cell line or mouse) over 
time. Such data are collected to address research questions that are 
concerned with changes in the mean response or potentially vary-
ing mean differences over time, in contrast to cross-sectional data 
that are concerned with the mean response and mean differences 
at a single time point. For example, suppose one plans to study an 
epidermal growth factor receptor inhibitor in a human malignant 
peripheral nerve sheath tumor (MPNST) xenograft model alone 
and in combination with inhibitors of the small GTPase protein 

Rac, a major downstream mediator of epidermal growth factor 
receptor signaling. Tumor volume will be measured repeatedly 
in each mouse over, for example, 7 weeks during and after treat-
ment. One may select the baseline and one post-treatment mea-
surement, and analyze changes from the baseline. This does not 
generally constitute longitudinal data analysis and does not entail 
the complexities of longitudinal analysis described below. The 
rigor of such cross-sectional statistical analysis, however, requires 
determining a priori that post-treatment measurement data will 
be included in the analysis, forbidding its post hoc determination. 
Such an a priori decision is often not feasible in practice as the 
most differential time point may not be predictable. Longitudinal 
analysis, in contrast, analyzes the entire dataset and compares the 
mean tumor growth trajectory among treatment groups. It is more 
powerful as it uses the entire data and can answer research ques-
tions such as whether and how long a differential tumor growth, 
if present, is sustained.

Longitudinal analysis is distinctive from cross-sectional analy-
sis as it addresses dependency among measurements taken on the 
same experimental unit (e.g., a given mouse). In the above example 
of the human MPNST xenograft study, tumor volume measure-
ments taken on a given mouse are generally positively correlated 
and vary less among themselves than tumor measurements taken 
among different mice. Such positive correlation, if not properly 
addressed, leads to underestimating the variability of data among 
experimental units, which may in turn lead to a false significance 
when treatment group means are compared. The within experimen-
tal unit correlation also complicates multiple comparison adjust-
ment in post hoc testing. In the human MPNST xenograft example, 
the mean tumor growth needs to be compared among treatment 
groups pairwise to identify a molecule with the most growth 
inhibiting effect or to compare the effect of a molecule singularly 
with the effects of its combination with other molecules. Due to the 
within experimental unit correlation, pairwise comparisons at one 
time point are positively correlated with pairwise comparisons at 
another time point. Ignoring this correlation leads to unnecessarily 
conservative results as we describe in a section below.

We conducted a survey of papers published in Molecular 
Therapy, with a key word of “longitudinal,” and identified a 
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total of 76 articles and abstracts that were published over the 
past 10 years. Among them, 47 (62%) have appeared in the past 
4 years (December 2005 to December 2009). This indicates an 
increasing trend of longitudinal data collection in the fields of 
cell biology and gene therapy, and calls for attention to the afore-
mentioned important statistical issues. In this article, we review 
the current practice of statistical analysis of longitudinal data in 
the concerned fields, review statistical models available for longi-
tudinal analysis in most statistical software packages, and discuss 
multiple comparison adjustment methods with the results from 
our simulation study.

Results
Statistical models for longitudinal analysis 
Four statistical models are generally available for the analysis of 
longitudinal data: univariate repeated measures ANOVA model,1 
multivariate ANOVA (MANOVA) model,2 mixed effects model,3,4 
and generalized linear models.5 Generalized linear model is quite 
distinctive from the first three models as it does not require the 
normality of data and provides robust results against the devia-
tion of the normality in longitudinal data.6 The model is fitted to 
a longitudinal data by generalized estimating equations method. 
Although well known to statisticians, the generalized estimating 
equation method is not popular in cell biology or gene therapy 
research applications, and often is not included in biomedical 
application–oriented software programs. Thus, we focus on the 
first three models here. Table 1 summarizes comparative features 
of these models. We included ordinary ANOVA as well to com-
pare it with univariate repeated measures ANOVA.

The three models differ primarily by their distributional 
assumptions on the underlying measurements including assump-
tions on the “within experimental unit” dependency. The uni-
variate approach of repeated measures ANOVA works with a 
certain type of the within experimental unit dependency known 
as Huynh–Feldt (type H) structure,7,8 although the MANOVA 
approach is constrained to assume a nonspecific generic structure 
known as unstructured (see Table  1 for details). Measurements 
taken on the same experimental unit are often more strongly cor-
related as their measurement time points are closer and the corre-
lation decays in time as their measurement time points get further 

apart. Such a time decaying correlation structure does not fit the 
type H structure and, strictly speaking, cannot be modeled by the 
univariate repeated measures ANOVA model. Adjustments are 
available, but their performance varies depending on the sample 
size and the degree of discrepancy between the true dependency 
structure of the data and the type H structure.9–11 On the other 
hand, the MANOVA model does not enable one to model this 
specific pattern of dependency, failing to incorporate such knowl-
edge in the modeling.

In contrast, the time decaying dependency can be modeled 
by the mixed effects model. Among many dependency structures 
available with the mixed effects model in most statistical software 
packages are an autoregressive of order one and a spatial structure. 
Both represent diminishing dependency in time with the covari-
ance between measurements in autoregressive of order one follow-
ing a power of the correlation, a first order autoregression process, 
and in the spatial structure as an exponential function of distance 
between two measurement points. Spatial power and spatial sphe-
ricity structures also capture such timing decaying correlation. In 
addition, the mixed effects model allows users to choose a general 
nonspecific structure (unstructured), independent structure (no 
dependency), or compound symmetry (constant dependency) 
and much more.

The mixed effects model even allows the variability of the data 
to change over time. In the above human MPNST xenograft study 
example, the variability of the tumor volume data may increase 
with time as differential growth of tumors becomes more evident 
with time. Whether the increasing variability of the data can be 
accommodated is an important consideration in the analysis of 
these data. The univariate repeated measures ANOVA cannot 
accommodate increasing variability, whereas the mixed effects 
and MANOVA models can do so (see Table 1). The mixed effects 
model also utilizes data more efficiently. It is a likelihood-based 
method and allows incorporating missing observations under the 
assumption of missing at random.12 Missing at random refers to the 
condition that a missing observation may depend on the observed 
components of data but not on the unobserved. In designed exper-
imental settings common to cell biology or gene therapy research, 
missing at random is often not different from missing completely 
at random, which requires that whether an observation will be 

Table 1 C omparison of statistical models for longitudinal analysis

 ANOVA
Univariate repeated  
measures ANOVA MANOVA Mixed effects models

Assumption on the between 
experimental unit correlation

Independence Independence Independence Independence

Assumption on the within 
experimental unit correlation 
or covariance matrix

Independence Type H variance–covariance 
structurea

A generic structureb

Do not allow modeling 
a specific structure

Allow a variety of correlation/
covariance structures including 
a generic structure

Assumption on the variability 
of the data over time

Constrained to be the same Constrained to be the same Constrained to vary Allowed to vary

Missing observations Excluding experimental units 
with missing observations

Excluding experimental units 
with missing observations

Excluding experimental units 
with missing observations22

Using all available data under 
the assumption of missing at 
random (MAR)12

Abbreviations: ANOVA, analysis of variance; MANOVA, multivariate analysis of variance.
aType H7,8 is a circular matrix that satisfies the condition of σi

2 + σj
2 − σij = 2λ, where σi

2 and σj
2 are variances, σij is covariance, and λ is a constant. This condition can 

be tested by applying a sphericity test.23 For all practical purposes, the type H structure is equivalent to compound symmetry structure.24

bAny structure that is symmetric and positive definite. Symmetry and positive definiteness is the minimum requirement for a correlation or covariance structure.
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missing may not depend on data at all.12 For example, suppose that 
three mice in the human MPNST xenograft study have missing 
values for reasons unrelated to the treatments. A mouse could die 
of a cage flood or from too aggressive gavage feeding, or a mouse 
can be killed for pharmacokinetics or pharmacodynamics study. 
Missing at random or missing completely at random condition is 
satisfied in these cases, and the mixed effects model will utilize 
their nonmissing tumor measurement data, whereas the univari-
ate ANOVA and MANOVA approach will exclude the three mice 
with missing values from the analysis.

Figure 1 provides a graphical presentation of four commonly 
used within experimental unit dependency structures to better 
illustrate different choices. The top panels illustrate the assump-
tions on the variability of the data at each time point. The non-
specific generic structure (unstructured) allows the variability to 
change over time, whereas the others do not. The bottom panels 
illustrate the correlation structures. The diagonals correspond to 
correlations between measurements at each time point with them-
selves, which are 1. The off-diagonals correspond to correlations 
between a pair of measurements. Color gradients are used to show 
the relative strength of the correlations. Independent structure 
assumes zero correlations and compound symmetry assumes a 
constant correlation. Autoregressive of order one assumes a decay-
ing correlation as the time interval between the time points of the 
concerned measurement pair increases. The general unstructured 
covariance does not assume a specific structure except the sym-
metry about the diagonals.

All three models are available in popular professional statis-
tical software such as SAS (SAS Institute, Cary, NC), JMP (SAS 
Institute, Cary, NC), SPSS (SPSS, Chicago, IL), S-plus (Insightful, 
Seattle, WA), and STATA (StataCorp, College Station, TX). On the 
contrary, biomedical application–oriented software packages only 
provide the relatively simpler models. For example, only univari-
ate repeated measures ANOVA is available in GraphPad Prism 
(GraphPad Software, San Diego, CA).

To properly apply these models, the modeling assumptions 
have to be checked including the normality of data using graphical 
tools. If the assumptions are violated, mending adjustments need 

to be made. For example, if data are skewed, log transformation of 
the data might mitigate the skewness.

Multiple comparison adjustment 
Another important statistical issue with longitudinal data analy-
sis is multiple comparison adjustment for post hoc tests. Post hoc 
tests such as pairwise group comparisons are often conducted 
to identify pairs of groups that are significantly different and 
involve more than one hypothesis test. Importantly, the hypoth-
eses tested in the post hoc testing are scientifically associated with 
one another. In a drug discovery, when a particular biological tar-
get is thought to be important in a disease, a group of molecules 
that act on the same biological target may be tested together. 
Should the particular biological target not in fact be important, 
the molecules under investigation collectively will not have any 
treatment effects, and in this sense, post hoc tests of individual 
molecules are scientifically associated with one another. Due to 
this association, for the statistical rigor of post hoc testing results, 
it is the overall false positivity rate that is called for to be con-
trolled rather than a false positivity rate of individual tests. The 
overall false positivity rate refers to the probability that at least 
one test may result in a statistical significance due to chance when 
no comparisons are in fact scientifically significant. On the other 
hand, in the previous example of the human MPNST xenograft 
study, molecules are tested both singularly and as combinations 
for their antitumor growth effects. Should individual molecules 
not be effective, their combinations are likely to be noneffective, 
and pairwise comparisons of treatment groups with the control 
are scientifically associated.

The overall false positivity rate increases as the number of 
hypothesis tests entailed increases. In the human MPNST xeno-
graft study, we suppose that a molecule is found to suppress 
MPNST growth compared to the control. If this finding resulted 
from one hypothesis test, that is, comparing the molecule-treated 
group with the control only, the finding is false only 5% of the 
time. If the finding resulted from comparing two molecules with 
the control and the molecule is one of the two, the finding is false 
9% of the time (based on 10,000 simulations). In other words, we 
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attain at least one false statistical significance 9% of the time by 
testing each of the molecules against the control at a significance 
level of 0.05. The overall false positivity rate increases to 12.6% 
(based on 10,000 simulations) if the comparisons included three 
molecule groups. This implies that without adjusting the post hoc 
testing results to control the overall false positivity rate, we do not 
know how more likely than 5% a significant result can be false and 
hence cannot compare the importance of unadjusted significant 
results, when the significant results are found by multiple tests 
entailing different numbers of hypothesis tests.

Many statistical methods or tests are available to account for the 
multiplicity of post hoc tests. Their control of the overall false posi-
tivity rate varies as they have different goals. Table 2 summarizes 
the varying degree of the control for multiple comparison methods 
and tests available with ANOVA in most of the professional statis-
tical software packages mentioned in the last section. We refer to 
the GLM chapter of the SAS manual13 and references therein for 
more details. Bonferroni’s, Sidak’s, Schaffe’s, and Tukey’s method 
strictly control the overall false positivity rate at a claimed signifi-
cance level (usually α = 0.05). When pairwise comparisons are con-
cerned, Tukey’s or Tukey–Kramer method is the most powerful. 
Bonferroni’s and Sidak’s methods control the upper bound of the 
overall false positivity rate and hence are conservative compared to 
Schaffe’s and Tukey’s method, particularly as the number of groups 
involved in the post hoc comparison increases. On the other hand, 
the other tests do not strictly control the overall false positivity rate 
at the claimed significance level α. For example, with an extensive 
simulation study, Hoffman and colleagues14 showed that the overall 
false positivity rate could be as high as 50% when using Dunnett’s 
adjustment in a longitudinal setting. A resampling-based method15 
also strictly controls the overall false positivity rate.

A challenge with the longitudinal analysis is that most of the 
existing methods or tests for multiple comparisons are developed 
for independent data. How to adapt those methods to the analy-
sis of longitudinal data is not straightforward. In the longitudinal 
analysis, pairwise mean comparisons are often meaningful among 
groups only at the same measurement time point or across time 
points within the same groups. However, many statistical soft-
ware programs compute all possible pairwise mean comparisons 
by default. When longitudinal analysis includes three treatment 
groups at three measurement time points, 36 pairwise compari-
sons are computed by default when meaningful comparisons are 
9 or 18 at most (3 pairwise group comparisons per measurement 
time point and/or 3 pairwise measurement time comparisons per 
group). The excess number of pairwise mean comparisons leads to 
unnecessarily conservative results, as the multiplicity adjustment 
gets more severe as the number of comparisons involved increases. 
Multiple degree of freedom contrasts can be used to limit the post 
hoc testing to a subset of interesting comparisons and to control 
the overall false positivity rate only over the subset. However, they 
test the comparisons collectively as a group and do not provide 
adjusted results for individual contrasts involved. Another issue is 
that due to the within experimental unit correlation, a compari-
son between a pair of group means at one time point is correlated 
with comparisons between the same pair at different time points. 
Ignoring these correlations also leads to unnecessarily conserva-
tive results. Many variations of the traditional methods had been 

proposed to address this problem.16–20 However, they are rather 
specific to particular applications under investigation. The prob-
lem of how to adapt the traditional methods to the within experi-
mental unit correlation remains to be discussed.

We recommend resampling method as a method that readily 
adjusts the post hoc testing to be limited to only interesting com-
parisons and properly addresses the correlated comparisons.

Numerical experiment results
We focused on the methods that strictly control the overall false 
positivity rate, and conducted a simulation study to compare 
their performances. For comparison, we also included Tukey’s 
test applied at each measurement time point separately without 
adjusting the significance level because it was the most popular 
choice of tests we found in the survey of current statistical practice 
on longitudinal data in the concerned fields (to be described in 
the Materials and Methods section below). We generated 5,000 
datasets with two different per group sample sizes (n = 5 or n = 
20), assuming equal group size and a correlation of 0.5 among 
the within experimental unit measurement. This corresponds to 
a compound symmetry within experimental unit dependency 
structure with a 0.5 correlation (see Figure 1 for the illustration 
of the dependency structure). We assumed 3 or 10 treatment 
groups were considered with 3 or 10 longitudinally measured 
observations per experimental unit. The simulation parameter 
combinations considered for (no. of group, no. of measurement 
time points) were (3, 3), (3, 10), and (10, 3). We assumed pairwise 
group mean comparisons at the same measurement time points 
were the only interesting comparisons, and therefore, the number 
of interesting pairwise comparisons were 9, 30, and 135 for the 
combinations (3, 3), (3, 10), and (10, 3), respectively. We used R 
library mvtnorm (R 2.7.2 version) to generate the data.

We conducted mixed effects model analyses for each set of 
simulated data using the MIXED procedure in SAS (SAS version 

Table 2 C ommon post hoc pairwise comparison methods or post hoc 
comparison adjusted tests

 

Whether to strictly 
control the overall  

false positivity  
rate at a claimed  
significance level

Whether to provide 
multiple comparison 
adjusted confidence 
intervals for mean  

differences

Bonferroni Yes Yes

Sidak Yes Yes

Tukey, Tukey–Kramer, 
or Tukey HSD

Yes Yes

Dunnett No Yes

Fisher’s least significant 
difference (LSD) test

No Yes

Scheffe Yes Yes

Duncan No Yes

Student–Newman–
Keuls (SNK)

No Yes

Resampling Yes No

Abbreviation: HSD, honestly significant difference.
We refer to the GLM chapter of the SAS manual13 and references there in for 
more details.
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9.1.3) and obtained pairwise comparison results of interest that 
were not yet adjusted for multiple comparison. The adjusted 
results for Bonferroni’s and Sidak’s methods were computed by the 
MULTTEST procedure in SAS. For Tukey’s test, we applied the test 
separately at each measurement time point with the significance 
level of the test adjusted by Bonferroni’s and Sidak’s methods for 
the number of measurement time points. That is, we first adjusted 
the significance level for the number of measurement time points 
by Bonferroni’s or Sidak’s method, and applied Tukey’s test for 
pairwise comparisons at each measurement time point with the 
adjusted significance level. For example, when three measure-
ment time points were considered, the significance level of our 
application of the Tukey’s test is adjusted to 0.05/3 by Bonferroni’s 
method. The default application of Tukey’s test would have used 
0.05 significance level but would have considered all possible 
pairwise mean comparisons instead of mean comparisons at the 
same measurement time under consideration. As the number of 
all possible comparisons is much larger than the number of com-
parisons under consideration, the default application of Tukey’s 
test is more conservative than our application of the Tukey’s 
test. Such adjusted results are denoted by Tukey–Bonferroni and 
Tukey–Sidak, respectively. Tukey-only denotes results obtained 
by applying Tukey’s test at each measurement time point sepa-
rately without adjusting the significance level. We considered two 
resampling methods. Parametric residual resampling method of 

Westfall and Young15 was implemented by Glimmix procedure 
in SAS software (SAS version 9.2). It can be implemented with 
SAS version 9.1 with a macro add-on. The permutation method 
was applied with 500 resamplings each. We refer to Westfall and 
Young15 for details of these resampling methods.

Figure  2 summarizes the simulation results for the overall 
false positivity rate. The closer a simulated false positivity rate is 
to the 5% nominal level, the better a test is. A simulated overall 
false positivity rate >5% indicates that the test is liberal, whereas 
a test is conservative if the simulated rate is <5%. The most liberal 
was Tukey’s test applied separately at each measurement time 
point without adjusting the significance level for multiple times 
the test is applied (denoted by Tukey-only). The false positivity 
rate was as high as 30% in our simulation. Among the remaining 
ones, the more conservative were Bonferroni’s and Sidak’s meth-
ods. This result was expected as they target to control the upper 
bound of the overall false positive rate. Tukey’s test combined with 
Bonferroni’s and Sidak’s performed better, whereas the resampling 
methods outperformed the rest of the methods. The permutation 
method showed a more reliable performance in all simulation 
settings, particularly when n = 5 per group, and in this sense, it 
was slightly better. Westfall’s parametric bootstrapping method 
could be quite liberal in a small sample with many time points (3 
groups and 10 time points). A notable point with the sample size 
is that the overall false positivity rate of the resampling methods 
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will approach the 5% nominal level more closely as sample size 
increases as assured by statistical theory. This is not the case with 
the rest of the methods, however, as they will remain either con-
servative or liberal.

We conducted a separate simulation study to compare the power. 
We did not include the Tukey-only method because it does not con-
trol the false positivity rate as shown above. Using the same experi-
mental settings as above, we considered an alternative hypothesis 
scenario that the treatment group differences exit in the last mea-
surement time point only. Figure 3 summarized the results based 
on 1,000 simulated data. The power plot shows similar patterns as 
with the overall false positivity rate. Bonferroni and Sidak methods 
have the lowest power. Tukey–Bonferroni and Tukey–Sidak have 
slightly better power. The permutation method remained as the clear 
winner. Although the power was greatly affected by the number of 
time measurement points, its power was higher than the rest as 
much as 5% at all three settings. We considered different alternative 
scenarios and obtained similar results.

Discussion
In this article, we reviewed the current practice of statistical analysis 
of longitudinal data and provide a comparative review of the three 
most popular statistical models and their implementations in 
statistical software packages. The survey of the current practice 
indicated that longitudinal data are only properly analyzed in a 
small fraction of articles, and the most popular approach was ana-
lyzing each measurement time point data separately using analy-
sis of variance (ANOVA) model. Such a cross-sectional approach 
fails to utilize all the power that the longitudinal design of a study 
provides and is less efficient. In contrast, the survey indicated that 
slightly >50% of manuscripts adjusted the post hoc testing results 
for multiple comparison with Tukey’s test being the most popu-
lar choice. Although we found that applying Tukey’s test without 
modification in the longitudinal setting might result in a false 
positivity rate of 30%, the survey results are encouraging in that 
more and more scientists understand and adjust for the increased 
risk of false positive results with multiple hypothesis testing. At 
the same time, however, it also indicates that multiple comparison 

adjustment is not yet as widely accepted and practiced as it should 
be. An explanation may be that many studies in this field are at 
an exploratory stage, for example, in drug discovery with interest 
lying in identifying potent molecules, and the error of false nega-
tives (false nonsignificance) is considered more serious than the 
error of false positives (false significance). The increased overall 
false positivity rate due to multiple testing, therefore, may not 
be a concern to biomedical scientists as much as to statisticians. 
However, the issue is not that significant findings without mul-
tiplicity adjustment can be false >5% of the time. As described 
in the previous section, the issue is that without the adjustment, 
we do not know how more likely than 5% a significant result can 
be false and hence cannot compare the importance of unadjusted 
significant results, when they are found by multiple tests entailing 
different numbers of hypothesis tests. The statistical rigor required 
for multiple comparisons, therefore, is not so much about strictly 
controlling the false positivity at the usual 5%. It is rather about 
fairly disclosing and informing the scientific community and reg-
ulatory agencies of how likely reported significant results are to 
be false due to chance and enabling findings from post hoc testing 
entailing different number of comparisons to be comparable. For 
this reason, post hoc Tukey’s test is also known as Tukey’s honestly 
significant difference test.

A widely held misperception is that no result will remain 
significant as the number of comparisons increases, and it may 
contribute to the less desirable acceptance of multiple comparison 
adjustment. When 20 groups are compared pairwise, the number 
of possible pairwise comparisons is 190 and a P value has to be 
smaller than 0.026% or 0.00026 (= 0.05/190) to be significant by 
Bonferroni’s method. The significance level gets smaller linearly 
as the number of comparisons increase by Bonferroni’s method, 
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Table 3 S urvey summary of the current practice of statistical analysis 
of longitudinal data

Statistical issues N (%) Details

Within experimental unit dependency addressed (N = 67)

  Yes 12 (18%) Linear mixed effects model 
Repeated measures ANOVA 
General linear regression 
Generalized estimating 
equation (GEE)

  No 50 (75%) t-Test, ANOVA, Mann–
Whitney test, linear regression

  Absent 4 (6%) Only descriptive statistics and 
plots

  Unclear 1 (1%) No specific description of 
statistical methods at all

Post hoc multiple comparison addressed (N = 67)

  Yes 35 (52%) Bonferroni’s method, Tukey’s 
test, Student–Newman–Keuls 
test, Fisher’s LSD test, 
Dunnett’s test, Scheffe’s test, 
Tamhane, or Siegel–Castellan

  No 29 (44%) 25 Did not adjust and 4 did 
not do any tests

  Unclear 3 (4%) No specific description

Abbreviations: ANOVA, analysis of variance; LSD, least significant difference.
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and this may give such a misperception. However, as explained, 
Bonferroni’s method controls the upper bound of the overall 
false positivity error rate and hence is inherently conservative. 
In the same situation, with Tukey’s method, the most powerful 
test for pairwise comparisons, and n = 10 per group, two group 
means need to be different by 2.04 times of the standard devia-
tion (2.04 SD = 6.467 times of the standard error) to be significant. 
This shows the importance of a choice of multiple comparison 
adjustment method. In the longitudinal setting, however, a direct 
application of Tukey’s method is difficult due to the within experi-
mental unit dependency. Based on the simulation study, we rec-
ommend resampling methods as methods that best reflect the 
design structure of longitudinal data and avoid unduly sacrificing 
the power by adjusting the post hoc testing to be limited to only 
interesting comparisons. A shortcoming of resampling methods is 
that confidence intervals are not available (see Table 2). P values 
may be sufficient if a statistical significance is only of interest. 
However, in some cases, the magnitudes of mean differences 
are also of interest and confidence intervals provide such infor-
mation. We recommend using resampling methods to test for a 
statistical significance, while using ordinary confidence intervals 
(unadjusted for multiple comparisons) for the magnitude of mean 
differences. Although we focused on pairwise group comparisons 
in the discussion, the recommended resampling-based methods 
are also applicable to other types of contrasts involved in post hoc 
testing, as detailed in ref. 15.

Materials and Methods
Current practice of statistical analysis of longitudinal data. We surveyed 
articles published in Molecular Therapy with a key word “longitudinal” for 
the past 4 years (December 2005 to December 2009) and with a key word 
“ANOVA” for the past 3 years (January 2007 to December 2009). We use 
the search results as a bench mark for the current practice of statistical 
analysis of longitudinal data in the fields of cell biology and gene therapy.

A total of 67 eligible articles were identified and Table 3 summarizes 
the findings. Although the majority (93%) conducted statistical analyses, 
only 18% addressed the within experimental unit correlation and 
conducted longitudinal analyses. Seventy-five percent conducted cross-
sectional analyses, either analyzing only a part of the data (baseline and 
one post-treatment measurement) or analyzing each measurement time 
point data separately. The most popular approach was analyzing each 
measurement time point data separately using ANOVA model with 
Tukey’s post hoc pairwise tests. In general, a cross-sectional analysis does 
not utilize all the power that the longitudinal design of a study provides 
and is less powerful.21 The loss of statistical power is clear when only a 
fraction of data such as baseline and one post-treatment measurement 
time point data are analyzed. When each measurement time point data 
are analyzed separately, the loss of power can be seen with modestly 
different group means. Although mean differences at each time point may 
not reach the magnitude that attains a statistical significance, the pooled 
mean differences over time may be significant. Other issues exist with the 

cross‑sectional approaches. When a fraction of data is analyzed, the rigor 
of the statistical analysis requires determining which portion of the data to 
be included in the analysis a priori. When each measurement time point 
data are analyzed separately by ANOVA, conclusions need to be drawn 
after adjusting for the multiplicity of the ANOVA analyses to avoid the 
overall false positivity rate exceeding the widely accepted 5%.

Our survey also found that 52% acknowledged the multiplicity issue of 
post hoc multiple comparisons and reported adjusted results. However, their 
adjustment methods varied. Some controlled the overall false positivity rate, 
the probability that one or more comparisons attain statistical significance 
due to the chance when no comparison is significant, too strictly, and some 
did not control adequately. We will visit this issue with more details in the 
next section. The overall survey results imply that longitudinal data are not 
adequately analyzed in the fields of cell biology and gene therapy and an 
inadequate analysis often leads to a less powerful conclusion.
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