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Abstract
Since the initial description of the phenomenon by Jennings et al 50 years ago, our understanding of
the underlying mechanisms of reperfusion injury has grown significantly. Its pathogenesis reflects
the confluence of multiple pathways, including ion channels, reactive oxygen species, inflammation,
and endothelial dysfunction. This complexity should not deter our efforts to intervene in this process,
however, since nearly 2 million patients annually undergo either spontaneous (in the form of acute
myocardial infarction) or iatrogenic (in the context of cardioplegic arrest) ischemia-reperfusion. The
purpose of this review is to examine our current state of understanding of ischemia-reperfusion injury
and highlight recent interventions aimed at this heretofore elusive target.
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Each year in the United States, there are approximately 1 million myocardial infarctions (MI)
and 700,000 patients undergoing cardioplegic arrest for various cardiac surgeries.1 Minimizing
ischemic time in both of these clinical scenarios has appropriately received a great deal of
attention owing to the long-established relationship between duration of ischemia and the
extent of myocardial injury. Once coronary flow is restored, however, the myocardium is
susceptible to another form of insult stemming from reperfusion of the previously ischemic
tissue. Given that cardiac ischemia is either unpredictable (MI) or inevitable (in the operating
room), there is great interest in developing strategies to minimize reperfusion-mediated injury.

Historical perspective
The seminal observation that reperfusion following ischemia was associated with myocardial
injury was made in 1960 by Jennings and colleagues.2 Their report was based on experiments
with canine hearts subjected to coronary ligation in which reperfusion appeared to accelerate

© 2010 Excerpta Medica, Inc. All rights reserved.
cCorresponding author: Telephone: (214) 645-7558, Fax: (214) 645-7501, aslan.turer@utsouthwestern.edu, 5323 Harry Hines Blvd,
Dallas, TX 75230-9047 .
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.
Conflicts of Interest Disclosures
None

NIH Public Access
Author Manuscript
Am J Cardiol. Author manuscript; available in PMC 2011 August 1.

Published in final edited form as:
Am J Cardiol. 2010 August 1; 106(3): 360–368. doi:10.1016/j.amjcard.2010.03.032.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the development of necrosis. For example, the authors noted that the histological changes seen
following only 30-60 minutes of ischemia/reperfusion (I/R) were comparable to the degree of
necrosis normally seen after 24 hours of permanent coronary occlusion.2

Whether reperfusion is independently responsible for tissue injury, or simply hastens the
demise of cells otherwise destined for necrosis, remained a matter of debate for some years.
Evidence for direct myocardial reperfusion-dependent injury was summarized in 1985 in the
classic editorial by Braunwald and Kloner.3 However, it was not until the discovery of ischemic
preconditioning that the independent effects of ischemia and reperfusion began to be unraveled
from one another.

In 1986, Murry and Reimer described a process whereby repetitive short bouts of ischemia
preceding a prolonged period of ischemia with reperfusion resulted in significantly decreased
infarct size in dogs.4 Subsequently, this “ischemic preconditioning” was confirmed in a number
of animal models, including humans, highlighting it as an evolutionarily conserved mechanism.
Subsequent experiments revealed that the reperfusion event is key to the initiation of a
molecular cascade leading to cardioprotection,5 thereby serving to solidify the important
distinction between ischemia and subsequent reperfusion.

Mechanisms of I/R injury
Molecular and cellular events underlying I/R injury are complex, representing the confluence
of divergent biological pathways. Further, the extent to which each of these pathways is relevant
to human disease remains unclear, as animal models do not always faithfully recapitulate the
I/R disease process in humans. These limitations notwithstanding, several key
pathophysiologic features of clinically relevant I/R have emerged (Table 1).

Ischemia induces accumulation of intracellular sodium, hydrogen, and calcium ions,
culminating in tissue acidosis. Reperfusion, in turn, elicits rapid alterations in ion flux, and
some evidence suggests that rapid renormalization of pH paradoxically leads to enhanced
cytotoxicity.6,7 Sodium-dependent pH regulatory mechanisms, including the Na+-H+

exchanger and the Na+-HCO3
− transporter, are activated, which consequently lead to

intracellular sodium accumulation. High sodium concentrations, in turn, drive increases in
sarcoplasmic reticular Ca2+ via the Na+-Ca2+ exchange.8 Enhanced Ca2+ entry via
sarcolemmal L-type Ca2+ channels9,10 and a deficient import of cytosolic Ca2+ into the
sarcoplasmic reticulum by the SERCA Ca2+−ATPase11,12 further promote Ca2+ overload. The
result is myofibrillar hypercontractility, ATP depletion, ultrastructural damage to
mitochondria, and myocardial stunning.13-15

Cardiac myocytes consume large quantities of energy. To accommodate this requirement, these
cells host a high density of mitochondria. Thus, it is not surprising that these complex, energy-
generating organelles, filled with reactive intermediates and pro-apoptotic signals, are
intimately involved in I/R injury. As part of this, the mitochondrial permeability transition pore
(mPTP) has been the center of a growing amount of attention. The inner mitochondrial
membrane, responsible for maintaining mitochondrial transmembrane potential, is normally
impermeable to ions and proteins. Dissipation of the electrical potential across this membrane
is termed “permeability transition”, a process thought to be mediated through the mPTP.
Although the constituent protein components of the pore remain unknown, formation of the
pore creates a non-selective channel between the inner membrane of the mitochondrion and
the sarcoplasm. This results in loss of the electrochemical gradient, release of reactive oxygen
species (ROS), and apoptosome formation. Triggers for mPTP include Ca2+ overload,16 rapid
normalization of pH,17 and oxidative stress.17-19
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Generation of free radicals through incomplete reduction of oxygen during I/R has been well
described. These oxygen species are highly reactive and can quickly overwhelm the cell’s
endogenous free radical scavenging system. This, in turn, triggers cellular injury by reactions
with lipids, proteins, and nucleic acids. The enzyme, xanthine oxidase, has been particularly
implicated as a generator of free radicals in the reperfused heart, as its substrates (xanthine and
hypoxanthine) accumulate during ischemia.20,21 In addition to damaging nuclear and cytosolic
elements, ROS can trigger the opening of the mPTP.22 This results in a positive feedback loop
of additional free radical release from the mitochondria (“ROS-induced ROS release”).23

Not only is I/R injury dependent on events occurring within cardiomyocytes, but the
endothelium is an active participant as well. The endothelium is the major source of the
evanescent molecule, nitric oxide (NO). Under normal conditions, NO generation elicits
vasodilation, which has beneficial, protective effects during I/R, likely by influencing oxygen
consumption,24 platelet aggregation,25 leukocyte adhesion,26 and free radical scavenging.27

Paradoxically, in high concentrations, NO may potentiate ROS-mediated toxicity by promoting
the formation of highly reactive species, such as peroxynitrite.27,28 Beyond NO, the coronary
endothelium has several other pathophysiological roles in I/R, such as serving as a source of
vasoactive substances and by activating the immune system through expression of cytokines,
chemokines, and adhesion molecules.

Recent work has implicated autophagy, an evolutionarily ancient mechanism of controlled
cellular cannibalism, in the pathogenesis of I/R.29,30 Time will tell whether this mechanism is
a suitable target for therapeutic manipulation in this and other heart disease–related contexts.

Endothelial activation and injury increase vascular permeability and recruitment of
inflammatory cells. Cellular adhesion molecules elicited by the injured endothelium (eg,
ICAM-1, VCAM-1, E-selectin) promote tissue invasion by inflammatory cells. These
infiltrating cells, including (and in particular) neutrophils, are directly toxic to the myocardium
by secreting proteases, generating ROS, and occluding the microvasculature. Other
components of the innate immune system, such as Toll-like receptors,31 mannose-binding
lectin,32 and the complement cascade,33 also appear to participate in the pathogenesis of I/R
stress. Additionally, there is a growing appreciation of the role of cell-mediated immunity (ie,
T-cells and macrophages) in the pathogenesis of myocardial damage after reperfusion.34,35

I/R in acute MI
Although reperfusion injury in the most general sense refers to that component of the infarction
process related to restoration of epicardial patency and anterograde blood flow, in the
catheterization laboratory, I/R injury is often synonymous with the “no-reflow” phenomenon.
The term was first applied to myocardial ischemia following coronary ligation in dogs.36

Regarded as a dreaded complication of acute MI intervention, it is estimated to occur in more
than 30% of cases and is associated with adverse prognosis.37-40 No reflow is thought to be
related in-part to microvascular plugging by vasoactive debris. While dramatic, no-reflow is
probably just the most angiographically apparent form of I/R injury in acute MI, and it should
be recognized that significant reperfusion injury occurs even without the obvious “hang-up”
of contrast dye.

Deciphering the contribution of I/R to myocardial infarct size in humans is more challenging
than in animal models. Acute MI in humans is generally associated with thrombotic occlusion
of an epicardial coronary, and this prothrombotic and proinflammatory event is not well
captured in models involving surgical ligation of the artery. This may be particularly important
as microvascular plugging with leukocytes and platelet “debris” has been implicated as an
important component of the I/R process.41,42 Another complexity relates to patient
comorbidities that influence the myocardial substrate during I/R. Factors such as left
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ventricular hypertrophy,43,44 diabetes mellitus,45-47 and chronic ischemia preceding artery
total occlusion (ie, recapitulating ischemic preconditioning),48,49 potentially influence
sensitivity to I/R injury. The resulting heterogeneity in the human myocardial phenotype
renders analyses of experimental models challenging and limits the degree to which the
findings can be extrapolated to the human case. Finally, the emergent nature of most acute MI
cases (ST-segment elevation MI, in particular) makes it challenging, often both ethically and
logistically, to study these patients, as issues arise of informed consent and seeming coercion
during the race to achieve vessel patency. Nonetheless, these limitations have not precluded
the testing of a series of therapeutic interventions in patients over the last three decades.

Therapeutic interventions targeting I/R injury in acute MI
Despite the substantial progress in understanding mechanisms of I/R based on models of acute
MI, and the associated enthusiasm for translating these findings into patient care, results of
clinical studies have been largely disappointing. Whether this reflects our still incomplete
understanding of the biology of I/R, or just a naïve belief that a single intervention could be
protective against a process involving multiple major pathophysiological components, is not
clear. Initial pilot successes have been met with subsequent failures in larger confirmatory
trials. The results of these trials have been summarized elsewhere,50 but interventions have
included a spectrum of targets, including oxidant, inflammatory, sodium-hydrogen exchange,
NO metabolism, and metabolic pathways (Table 2).

Despite these setbacks, investigation continues in this field. Erythropoietin (EPO), for instance,
is currently undergoing investigation in clinical studies51-53 of acute MI following the
discovery of EPO receptor expression in the myocardium.54 EPO has anti-apoptotic activity,
55,56 positive effects on remodeling,57-59 and recruits endothelial progenitor cells.60 It is hoped
that this drug may exert positive effects by one or more of these pathways. Other therapeutic
strategies currently in clinical trials include the IL-1-receptor antagonist, anakinra61,62 and
glucagon-like peptide-1 analogues.63,64

Although most pharmacologic interventions have been administered systemically, the
availability of primary percutaneous coronary revascularization has allowed for direct
administration of drug to the coronary endothelium and myocardium. One well-studied drug
is adenosine. Adenosine, in addition to its well-known vasodilating properties, is intimately
involved with both pre-65 and post-conditioning66-67 (see below), as well as inhibition of mPTP
opening.68 Although systemic adenosine infusion did not reduce overall mortality in the
AMISTAD-II trial, some effect on infarct size was noted.69 Subsequent smaller scale
investigation into the potential adjunctive role of intracoronary (IC) administration has
demonstrated some benefit with regards to electrocardiographic and angiographic endpoints
in the setting of acute MI.70-71 Similarly, there has been some enthusiasm, though muted
somewhat by the small-scale nature of the studies, for IC nitroprusside in the treatment of no-
reflow.72-74 This direct NO-donor may be of particular benefit when co-administered with IC
adenosine.75

Ischemic post-conditioning, a process wherein the myocardium is subjected to repetitive bouts
of iatrogenic I/R during the course of an on-going acute MI, is also under clinical investigation.
This procedure involves several short intracoronary balloon inflations after primary vessel
patency has been re-established. Data from animal models suggest that final infarction size is
diminished by this strategy,76-78 and some preliminary data in humans appear promising.
79-81 The mechanism of benefit is unclear, but it may involve induction of a more gradual pH
shift in the myocardium or decreasing ROS and Ca2+-induced mPTP opening.77,82-84

There is an evergrowing focus on the role of mPTP in I/R. This structure, as outlined previously,
appears to be the common effector of a series of upstream intracellular signals and, therefore,
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has obvious appeal as a target of therapy. Recently, results of a pilot study of intravenous
cyclosporine A (CSA), a non-specific inhibitor of the mPTP, during STEMI were reported.
85 Although a small study, the results were promising, suggesting that inhibition of mPTP may
be of benefit in larger trials.

I/R injury during cardiac surgery
I/R stress resulting from cardiac surgery is distinctly different from that occurring during
spontaneous MI. Ischemia is induced artificially by aortic cross-clamping, and myocardial
preservation strategies are employed throughout this ischemic period. Cardioplegia is achieved
via hyperkalemic, hypothermic cardiac arrest and maintained with the intermittent use of a
glucose-containing cardioplegic solution (usually mixed with blood) delivered anterograde in
the aortic root and/or retrograde via the coronary sinus. These maneuvers are designed to
minimize myocardial metabolic activity and consequent oxygen demand during this period of
myocardial vulnerability.

Once surgery has been completed, the aortic cross-clamp is released, and the heart is suddenly
and globally reperfused with blood that is fully anticoagulated, immunologically primed by
exposure to the cardiopulmonary bypass circuit, and characterized by a very high partial
pressure of oxygen. As a result, the post-cardiac surgery myocardium is exposed to dramatic
extremes of ischemia and reperfusion. And, again, it is important to recognize that hearts
undergoing cardiac surgery are highly heterogeneous, ranging across a spectrum of
comorbidities, hypertrophy, and contractile function. Patients undergoing aortic arch surgery
may have essentially normal hearts, while other patients may be chronically ischemic with
severe contractile dysfunction. These tissue substrates would be expected to react differently
to such extremes of environmental stress.

Clinically, I/R injury after cardiac surgery can manifest as arrhythmia, myocardial stunning,
low cardiac output, and perioperative myocardial infarction. In patients dying soon after
coronary artery bypass surgery (CABG), histologic evidence of I/R on autopsy is detected in
25%-45% of patients.86-88 Furthermore, biochemical evidence of myocardial injury (eg,
elevated levels of circulating CK-MB and/or troponin) has been clearly linked with adverse
events after cardiac surgery.89,90

Interventions targeting I/R injury after cardioplegic arrest
Although the operating theater may appear daunting given the number of personnel,
environmental factors, and pieces of equipment needed to successfully manage a patient
through cardiac surgery, it is, in many ways, an ideal place to perform research. Duration of
ischemia is known, electrolytes and glucose concentrations are meticulously regulated, and
hemodynamics can be followed throughout the procedure, including the pre- and post-
operative phases. Furthermore, local drug delivery, as opposed to systemic therapy, can be
administered reliably via the cannulated coronary circulation.

The cornerstone of cardioprotection in cardiac surgery has been the cardioplegia solution.
These solutions typically contain potassium, mannitol, and glucose. By arresting and cooling
the heart, the metabolic demands of the myocardium are minimized. However, despite decades
of experience with cardioplegia, there has been surprisingly little change in these formulations
except for, perhaps, the adoption of blood cardioplegia. And despite the use of cardioplegia,
I/R injury still occurs.

There are some small studies supporting the use of metabolic additives, such as pyruvate91 and
glutamate/aspartate.92,93 The goal of such metabolic supplementation is to provide the arrested
myocardium with energy substrates with favorable characteristics (e.g., avoidance of fatty acid
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oxidation), and to replete the cell with anaplerotic substrates. However, evidence to date
supporting the use of these agents have not been sufficiently convincing to lead to widespread
clinical use.

The concept of ischemic preconditioning has also been applied during cardiac surgery. Either
before or just following establishment of cardiopulmonary bypass, the aorta is cross-clamped
for several minutes, released for several minutes and then once again cross-clamped for
cardioplegia. Several groups have utilized this technique, and some benefit has been seen in
small studies. A recent meta-analysis concluded that this form of pre-conditioning decreased
post-operative ventricular arrhythmias and inotrope use and translated into shorter ICU
stays94. These suggestive findings await prospective testing in patients.

Given the association of immune system activation with I/R injury, together with the marked
systemic inflammation elicited by surgery and by exposure to the bypass circuit, a number of
investigators have focused their attention on modulating immune responses. Leukocyte filters,
95-97 steroids,98-100 and specific volatile anesthetics101-103 have all been tested in small studies
with no clear signal of benefit. Initial data on the anti-C5a antibody, pexelizumab, appeared
promising and prompted two large randomized clinical trials. PRIMO-CABG104 demonstrated
a strong trend toward decreasing death or MI, but these results were not confirmed in the larger
follow-up PRIMO-CABG II study.105 Finally, aprotinin, an antifibrinolytic protein with anti-
inflammatory properties, was documented to have favorable effects on myocardial I/R in
human and animal studies, but was later taken off the market because of clear evidence for
harm associated with its use.106-108 In aggregate, results of inhibiting the inflammatory
response occurring in cardiac surgery have been disappointing.

The naturally occurring pyridoxine metabolite and purinergic receptor antagonist,
pyridoxal-5′-phosphate (MC-1), was studied in two large CABG clinical studies. MC-1 was
found to prevent intracellular Ca2+ overload and appeared promising for mitigating I/R injury.
109 Indeed, phase II data from the MEND-CABG I study suggested lower post-procedural
infarct sizes.110 Based on this result, a larger phase III study was undertaken. Disappointingly,
however, MEND-CABG II failed to find any difference in infarct size and reported a slight
early increase in mortality with MC-1 (1.0% vs 0.3%, P=0.03).111

Another strategy to prevent intracellular Ca2+ overload is antagonism of the sodium-hydrogen
exchanger. Cariporide, a potent inhibitor of this transporter, was first evaluated in the
GUARDIAN trial, a catch-all study of patients with non-ST segment elevation acute coronary
syndrome (NSTE-ACS) or planned elective revascularization with either percutaneous
coronary intervention (PCI) or CABG.112 An efficacy signal was noted for the CABG subset,
113 and the drug was subjected to a larger trial dedicated to CABG.114 The primary endpoint
in EXPEDITION (death or MI) was lower in the cariporide arm as compared with placebo
(16.6% vs 20.3%, P=0.0002), the first time a phase III clinical study of myocardial protection
had met its primary endpoint. However, whereas the composite endpoint was driven by a
significant reduction in perioperative MI (18.9% vs 14.4%, P<0.0001), there was a paradoxical
increase in overall mortality (2.2% vs 1.5%, P=0.02), which appeared to be driven by an
increase in cerebrovascular events. Indeed, there was a significant increase in stroke and altered
mental status associated with the drug.

Perhaps the most thoroughly studied drug in surgical ischemia-reperfusion is acadesine, a
purine analog that increases tissue adenosine levels in energy-deprived tissues.115,116 A potent
cardioprotective role has been ascribed to stimulation of adenosine receptors in I/R via
modulation of mPTP opening.68,117 Acadesine, given as an additive in cardioplegia solution,
has been investigated in a number of smaller studies,118-120 as well in as the ~2,700 patient
phase III Acadesine 1024 Trial.121 Although the largest study failed to show a statistically
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significant difference in the primary outcome of peri-procedural MI (3.4% vs 4.0%, P=0.24 in
favor of acadesine), a subsequent meta-analysis of all available data on acadesine suggested a
27% reduction in MI (3.6% vs 4.9%, P=0.02) and a 26% decrease in the combined outcome
of stroke/MI/cardiac death (7.6% vs 4.6%, P=0.04).122 Acadesine is currently undergoing
study in the Reduction in cardiovascular Events by acaDesine in subjects undergoing CABG
(RED-CABG) trial, which plans to enroll 7,500 high-risk subjects.123
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Table 1
Pathophysiologic Mechanisms of Myocardial I/R Injury

■ Ion accumulation

○ Intracellular calcium overload

○ Increased intracellular sodium

○ Drop in pH with rapid normalization upon reperfusion

■ Dissipation of mitochondrial membrane potential

○ Mitochondrial permeability transition pore (mPTP)

■ Free radical formation/reactive oxygen species (ROS)

○ Generation from Xanthine oxidase

○ Release of reactive mitochondrial intermediates

○ Neutrophil infiltration

○ ROS-induced ROS

■ Dysregulated nitric oxide (NO) metabolism

○ Loss of NO-vasodilation

○ Accumulation of reactive peroxynitrite

■ Apoptosis and autophagy

■ Endothelial dysfunction

○ Cytokine and chemokine signaling

○ Expression of cellular adhesion markers

○ Impaired vasodilation

■ Platelet aggregation and microembolization

■ Immune activation

○ Innate immunity (e.g. complement activation, expression of Toll-like receptors)

○ Neutrophil accumulation

○ Cell-mediated damage (macrophage and T-cell)
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Table 2

Some notable therapeutic interventions which have been used (with variable success) to mitigate I/R injury in
acute MI and CABG

Acute MI

• Anti-inflammatory

○ Inhibition of leukocyte accumulation, e.g. anti-CD11/CD18125

○ Complement inhibition, e.g. pexelizumab126

• Increasing local adenosine concentrations

○ Systemic infusions69

○ Intracoronary bolus dose70,71

• Inhibition of mPTP

○ Cyclosporine85

• Ischemic post-conditioning

○ Repetitive balloon inflations79-81

• Nitric oxide metabolism

○ Nitroprusside72-75

• Prevention of intracellular calcium overload

○ Inhibition of Na+-H+ exchange, e.g. cariporide,112 eniporide127

○ Calcium channel blockers128-130

• Reducing ROS

○ Inhibition of xanthine oxidase, e.g. allopurinol131

• Vasodilation

○ Potassium-channel opening, e.g. nicorandil132

Cardiac Surgery

• Metabolic additives in cardioplegic solutions

○ Pyruvate91

○ Amino acids92,93

• Ischemic pre-conditioning

○ Remote pre-conditioning124

○ Repetitive aortic cross-clamping94

• Volatile anesthetics101-103

• Anti-inflammatory

○ Leukocyte filters95-97

○ Steroids98-100

○ Complement inhibition104,105

• Prevention of intracellular calcium-overload

○ Pyridoxal-5′-phosphate (MC-1) 110,111

○ Calcium-channel blockers133-135
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○ Inhibition of Na+-H+ exchange, e.g. cariporide113,114

• Increase local adenosine levels

○ Acadesine118-122
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