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In hematologic malignancies, the microenvironment is often characterized by nonneoplastic cells with peculiar phenotypic and
functional features. This is particularly true in Hodgkin’s lymphoma (HL), in which T lymphocytes surrounding Hodgkin’s Reed-
Sternberg cells are essentially polarized towards a memory T-helper type 2 phenotype. In this paper we will first evaluate the
main processes modulating T-cell recruitment towards the lymph node microenvironment in HL, especially focusing on the role
played by cytokines. We will then consider the most relevant mechanisms of immune escape exerted by neoplastic cells in order to
evade antitumor immunity. The potential pathogenetic and prognostic impact of regulatory T cells in such a context will be also
described. We will finally overview some of the strategies of cellular immunotherapy applied in patients with HL.

1. Infiltrating Lymphocytes in
Hodgkin’s Lymphoma

In hematologic malignancies, a specific pathogenetic role is
often played by nonneoplastic cells within the microenvi-
ronment. This is particularly true in Hodgkin’s lymphoma
(HL), in which T lymphocytes surrounding Hodgkin’s Reed-
Sternberg cells (HRSCs) show peculiar phenotypic and
functional features. A possible impairment of the T-cell com-
partment has been investigated in HL since the tuberculin
purified protein derivative (PPD) skin test was found to be
frequently negative in large series of patients, and therefore
a dysregulation involving delayed cellular immune responses
was hypothesized [1]. Although infiltrating T lymphocytes
are essentially polarized towards a memory T-helper type 2
(Th2) phenotype [2], several studies have shown possible
differences among the different subtypes of HL. Among the
molecules potentially involved in modulating the pattern of
T-cell infiltration, TARC (thymus and activation-regulated
chemokine), a chemokine able to attract activated Th2 cells,
was found on immunohistochemical staining to be highly
expressed in most-classical HL, but not in lymphocyte-
predominant HL and non-Hodgkin lymphomas (NHL).

This different expression may at least partially justify the
discrepancies observed among T-cell infiltrates in distinct HL
subtypes [3]. Also, the T-cell transcription factor profile was
shown to be consistent with the lymphoid compartment of
origin of the different HL subtypes. In particular, in classical
and nodular lymphocyte-predominant HL, the expression
of GATA-3 and T-bet recalls the pattern typical of normal
interfollicular T-cells and normal germinal centers, respec-
tively [4]. Interestingly even the T-cell activation profile
was compared in patients with lymphocyte-predominant HL
with nodular or diffuse pattern. By evaluating CD134 and
CD38 expression, it was shown that in the nodular variant,
T cells express markers of transient/early T-cell activation,
while the diffuse pattern is characterized by persistent cellular
activation, resembling what was observed in T-cell-rich large
B-cell NHL [5]. More recently, another report focused on
lymphocyte-rich classical HL, showing that this subtype is
characterized by a stronger expression of B-cell transcription
factors in neoplastic cells and by a follicular T-cell back-
ground with features intermediate between the classical and
the nodular lymphocyte-predominant variants [6].

The microarray technology was even able to highlight
the prognostic significance of the composition of the T-cell


mailto:cfozza@uniss.it

infiltrate in a cohort of 267 patients. In fact, low numbers
of infiltrating CD8+, CD56+, and CD57+ cells and high
numbers of granzyme B+ and TIA-1+ cells were associated
with a significantly worse outcome, as outlined by a higher
frequency of leukocytosis, B symptoms, advanced clinical
stage, and by lower response rates [7].

In order to shed some light on the mechanisms
determining the composition of this microenvironment,
the expression and function of T-cell homing molecules
were specifically evaluated. Chemokine receptors: CXCR3,
CXCR4, and CCR7 and adhesion molecules including CD62
ligand were found to be expressed on most T-cells within
HL tissues, while the corresponding ligands were expressed
on malignant cells and vascular endothelium. These features
resemble the mechanisms of T cell recruitment observed
in normal lymph nodes, thus further highlighting the cross
talk among neoplastic and nonneoplastic cells within the HL
microenvironment [8].

The issue of the clonality of infiltrating T lymphocytes
was also assessed in two different studies. In the first one,
CD8+ T cells were shown to be a polyclonal population with
limited clonal expansion. In fact, although sequence analysis
of the V regions revealed the presence of CD8+ expansions in
all cases, most of these clonal expansions accounted for less
than 10% of the whole CD8+ T cell population. Moreover,
a comparison of the V region sequences did not provide
evidence that CD8+ T-cells were driven towards a common
antigen [9]. In the second study, the T cells adherent to HRSC
were examined by single-cell analysis for the T cell receptor
(TCR) gamma gene in 5 HL patients. While no evidence of
a clonal expansion was obtained in four of five patients with
classic HL, clonal TCR gamma sequences were detected in the
only patient with lymphocyte-predominant HL, suggesting
that even in HL patients, neoplastic cells may sometimes act
as antigen-presenting cells [10].

A gene expression profile analysis was performed also
on peripheral CD3+ T cells isolated from untreated patients
with HL, showing that this cell subset seems to be involved in
a Th1 immune response even in peripheral blood. However,
this cell subpopulation, hypothetically supporting the anti-
tumor immunity, appears to be functionally impaired, as
shown by the balance in the expression of genes modulating
either the cell cycle or the immune response [11].

2. Cytokine Production in the Hodgkin’s
Lymphoma Microenvironment

The release of cytokines within the lymph node microenvi-
ronment has been often advocated as possible mediator in
the crosstalk among HL neoplastic cells and infiltrating T-
cells. The overall pattern of cytokine gene expression has
been shown to be similar in classic HL and reactive lymph
nodes, as regards IL-2, IL-4, IL-5, and interferon (IFN)-
gamma [12]. On the other side, it is known that HRSC
can bind T lymphocytes in an antigen-independent way,
based on LFA-3 (lymphocyte function-associated antigen 3)
to CD2 and ICAM-1 (intercellular adhesion molecule 1) to
LFA-1 interactions. Moreover, they show unusually strong
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expression of the costimulatory molecules CD80 and CD86,
whose ligand CD28 is expressed on T-cells [13]. HRSC
cells are also known to produce interleukin-(IL-) 1a, TNF-
alpha, IL-6, IL-7, IL-9, IL-10, IL-13, and tumor growth
factor-(TGF-) beta [14], the latter being characterized by a
prominent role in suppressing T-cell responses [15].

More recently, the expression of potentially relevant
chemokines and chemokine receptors was studied in lymph
nodes from 24 patients with HL and in 5 control lymph
nodes by combining in situ hybridization, immunohis-
tochemistry, and flow cytometry. Among the different
cytokines tested, RANTES was expressed almost exclusively
by T cells. Among receptors, CCR3 and CCR5 were highly
expressed in T cells—the former in both CD4+ and CD8+
cells, while the latter mainly in CD4+ cells. However, all these
chemokines and receptors were not detected on neoplastic
cells. This preferential distribution seems to suggest a
potential but yet not completely explained involvement of
these molecules in the leukocyte recruitment towards the HL
lymph node [16]. The relationship between the expression
on neoplastic cells of some specific CXC and CC chemokines
such as MIG, IP10, and TARC and the infiltration of Th1 and
Th2 lymphocytes was evaluated in another study, showing
that all these chemokines may influence the Th2 polarization
typical of HL [17].

Similarly, several interleukins with the relative receptors
have been shown to play a role in the interaction among
neoplastic and infiltrating cells. After the detection of the
IL-3 receptor (IL-3R) on HRSC, it has been hypothesized
that these neoplastic cells could be able to increase the
production of IL-3 by preactivated T cells, thus suggesting
an involvement of IL-3/IL-3R interactions in the neoplastic
proliferation through a paracrine mechanism [18]. More-
over, both HL-derived cell lines and primary HRSC from
lymph node tissues of HL patients express the IL-7 receptor.
As these cell lines show the constitutive production of IL-
7 and neutralizing anti-IL-7 antibodies induce a relevant
inhibition of their basal proliferation, IL-7 seems to be also
involved in autocrine circuitries modulating neoplastic cell
growth. Moreover, the IL-7/IL-7R axis appears to act as
a cofactor for the expansion of regulatory T-cells (Treg)
and as a potential enhancer for the microenvironmental
production of IL-6, a cytokine associated with the presence of
“B” symptoms and poor outcome in HL [19]. Interestingly,
in HL patients, also peripheral T lymphocytes have been
shown to display an atypical profile of cytokine production,
characterized by reduced intracellular IL-2, TNF-alpha, and
[FN-gamma and increased cytoplasmic IL-4 production,
being the CD3+CD8+ subpopulation specifically responsible
for the increased levels of IL-4 [20, 21].

3. Mechanisms of Immune Escape by
Neoplastic Cells

Considering that neoplastic cells are able to proliferate
in HL although their microenvironment is characterized
by an extensive inflammatory infiltrate, the mechanisms
of immune escape have been deeply investigated in this
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disorder. For instance, one of the potentially involved
molecules is the immunoregulatory glycan-binding protein
galectin-1 (Gall) which has been shown to be selectively
overexpressed on HRSC. In fact, blockade of Gall was able
to restore the Th1/Th2 balance which is usually inverted
in HL, whereas treatment of activated T-cells with Gall
favored the secretion of Th2 cytokines and the expansion
of CD4+CD25 high forkhead box P3 (FOXP3)+ Treg. This
finding therefore implies that Gall is involved in the develop-
ment and maintenance of an immunosuppressive Th2/Treg-
skewed microenvironment [22]. The role of this molecule
was also examined in the context of Epstein-Barr virus-
(EBV-) specific CD8+ T-cell responses in HL. Its expression
was associated with a reduced CD8+ T-cell infiltration and
more specifically with an impaired response towards latent
membrane proteins (LMP) 1 and 2. Moreover, the in vitro
exposure to recombinant Gal-1 inhibited proliferation and
interferon-gamma expression by EBV-specific T cells [23].

Also the possible role played by the PD-1 (programmed
death-1) protein was explored. In fact, this molecule and
its ligand are thought to be involved in the functional
impairment of T cells in chronic viral infections or tumor
immune evasion. HL and T cell NHL, but not B-cell NHL,
were shown to overexpress PD-1 ligand, while PD-1 was
markedly elevated in tumor-infiltrating and peripheral T
cells of HL patients. Moreover, blockade of the PD-1 system
was able to restore the IFN-gamma production by HL-
infiltrating T cells [24]. Using a genome-wide transcriptional
approach, CD4+ T cells in HL but not in follicular NHL
were demonstrated to be under the inhibitory influence
of both TGF-beta and PD-1 in vivo [25]. An increase in
the number of PD-1+ lymphocytes, measured within a
tissue microarray platform, was also shown to be a stage-
independent negative prognostic factor of overall survival
as opposed to the number of FOXP3+ Treg [26]. All these
findings seem to suggest that the impairment of the cellular
immunity typical of HL can mirror a T cell exhaustion,
which is at least partially mediated by the PD-1 signaling
pathway.

It is worth noting that very recently an increased number
of tumor-associated macrophages was shown by gene-
expression profiling to be significantly associated with pri-
mary treatment failure, shortened progression-free survival,
increased likelihood of relapse after autologous hematopoi-
etic stem cell transplantation, and shortened disease-specific
survival in a large cohort of HL patients [27].

Several other molecules have been tested for their
possible involvement in such a context. For instance,
Prostaglandin E2 has been shown to impair CD4+ T-cell
activation by interfering with the mechanisms of intracellular
transduction downstream TCR and CD28 [28]. Another
possible mechanism of T-cell activation impairment was
identified in the reduced expression by HRSC of the B7 pro-
teins [29]. Tissue inhibitor of metalloproteinases 1 (TIMP-
1) is a protein with proteinase-inhibiting and cytokine
properties which has been advocated not only as a survival
factor for HRSC but, even more importantly, as potential
immunosuppressive agent. In fact, in situ hybridization
showed TIMP-1 RNA expression on HRSC, while TIMP-1

production by HRSC cells was demonstrated on immunohis-
tochemical analysis. TIMP-1 was also shown to inhibit T cell
cytotoxicity both against autologous cells presenting tumor-
associated antigens and within allogeneic mixed lymphocyte
cultures [30]. Also, the downregulatory molecule cytotoxic
T lymphocyte-associated antigen 4 (CTLA-4) was shown to
play a possible role, as the proportion of CTLA-4+/CD3+
cells negatively correlated with proliferative activity, IL-2 and
IFN-gamma production by T lymphocytes in HL patients
[31]. Even CD30, which is typically expressed on HRSC, was
shown to inhibit T cell proliferation. More specifically, anti-
CD3-stimulated T cells in the presence of CD30 failed to
increase tritium uptake, to express CD25 and CD26 and to
produce IL-2. This effect was however, reversed after addition
of exogenous IL-2 or pretreatment of HRSC with anti-CD30
[32]. Interestingly, also the intracellular serpin proteinase
inhibitor 9 (PI9) was found to be expressed in 10% of HL
patients. This protein is the only known inhibitor of the
proteolytic activity of granzyme B, the primary mediator
of apoptosis induced by cytotoxic T lymphocytes and
natural killer (NK) cells, thus suggesting another possible
mechanism by which neoplastic cells could interfere with
antitumor immunity in HL [33]. At least in other subtypes
of lymphoma indoleamine 2,3-dioxygenase has been shown
to be specifically, involved in the mechanisms of tumor
resistance to chemoimmunotherapeutic treatments, likely
due to an abnormally increased stimulation of tryptophan
catabolism and to the consequent inhibition of antitumor
immunity [34, 35].

4. Role of Regulatory T Cells

Treg represent a small fraction of peripheral CD4+ T cells
which plays a crucial role in the maintenance of immune
tolerance [36]. More specifically, they have been shown
to influence the susceptibility to and the evolution of
infective, neoplastic, and autoimmune diseases [37-39]. The
possible involvement of T cells with immunomodulatory
properties in HL pathogenesis was firstly hypothesized in
2004. Infiltrating T cells were shown to be anergic to different
kinds of stimulation and to suppress peripheral mononuclear
cells when cocultured. Furthermore, flow cytometry demon-
strated a high frequency of both IL-10 and CD4+CD25+ Treg
secretion in the lymph nodes of HL patients. Interestingly,
their suppressive function was abrogated by IL-10 neutral-
ization, prevention of cell-to-cell contactade and block of
CTLA-4 [40]. One year later, some studies firstly suggested
a possible positive prognostic impact for Treg in patients
with HL. Expression of granzyme B, TIA-1, and FOXP3 was
evaluated by immunohistochemistry in tissue microarrays
of 257 patients, showing that low infiltration of Treg in
association with high infiltration of cytotoxic T cells could
predict an unfavorable outcome [41]. Similarly, a reduced
FoxP3/granzyme B+ ratio was shown to predict poor failure
free survival [42]. The absolute number of intratumoral
FOXP3+ cells studied by immunohistochemistry on tissue
microarrays was of independent prognostic significance for
failure-free survival and of borderline significance for overall
survival in classical HL [43]. All these findings, based on



samples taken at diagnosis, were confirmed also in a cohort
of patients with refractory or relapsed disease [44]. Only one
study had results not in line with the above-mentioned data,
showing that a high ratio of Treg over Th2 cells may result
in a significantly shortened disease-free survival, therefore
implying a possible inhibitory effect performed by Treg on
antitumor immune responses [45].

Several mechanisms have been considered as possible
mediators of Treg recruitment towards the HL microenvi-
ronment. For instance, the inhibition of CCR4 by using
a chimeric anti-CCR4 monoclonal antibody was shown
to deplete CCR4+ T cells and to inhibit the migration
of CD4+CD25+ T cells in vitro [46]. Also, the aberrant
expression of IL-21, apart from regulating STAT3 signaling
and protecting HRSC from apoptosis, was demonstrated
to attract Treg via regulation of macrophage-inflammatory
protein-3alpha MIP-3alpha in HRSC [47]. The EBV infec-
tion was similarly considered as a potential mediator of
Treg recruitment. In fact, the expression of the EBV nuclear
antigen 1 in HRSC was shown to mediate the upregulation
of the chemokine CCL20 and consequently the migration of
Treg [48]. On the other side, some data seem to suggest that
the expression of LAG-3 by tumor-infiltrating lymphocytes
with regulatory properties could impair the anti-EBV CD8+
immune reaction in HL patients [49]. In another study,
KM-H2, which was established as an HRSC line, was
demonstrated to promote a bidirectional differentiation of
CD4+ naive T cells toward Foxp3+ T-cells and CD4+
cytotoxic lymphocytes, suggesting that neoplastic cells may
act within the HL microenvironment as antigen-presenting
cells driving the differentiation of T helper cells [50].

The enrichment of Treg among infiltrating lymphocytes
has been even suggested as a possible diagnostic marker,
useful in distinguishing classical HL from other entities
[51]. Increased frequencies of CD4+CD25+ Treg have also
been demonstrated on peripheral blood of patients with
HL [52]. More recently, apart from CD4+CD25+FoxP3+
Treg, other subfamilies of cells with immunomodulatory
properties, such as CD4+CD26— T cells, have been sug-
gested to potentially exert immunomodulatory functions
within the lymph node microenvironment of patients with
HL [53].

5. Strategies of Cellular Imnmunotherapy

Opver the last few years, several studies have tried to establish
if the biological impact that T lymphocytes have on HL
pathogenesis could be translated into potential immunother-
apeutic strategies. The demonstration, even in HL patients,
of a graft-versus-lymphoma effect in the context of allogeneic
hematopoietic stem cell transplantation and donor lympho-
cyte infusions [54], represents the ideal platform for such an
approach. In order to overcome the apparent impairment of
the antitumor immunity typical of HL, different mechanisms
have been investigated.

In particular, several laboratory studies have addressed
the defective interaction among HRSC and T cells observed
in course of HL. For instance, it is well known that HRSC
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preferentially attract Th2 T cells and Treg, therefore gen-
erating an immunosuppressed tumor environment. On the
other side, CD8+ T cells lack CCR4 and are nonresponsive
to chemokines usually expressed on HRSC. In this regard it
was shown that a potential approach to make CD8+ T cells
able to efficiently migrate towards HRSC was the induced
expression of CCR4. Moreover, the concomitant expression
of both CCR4 and of an anti-CD30 chimeric antigen
receptor even allowed them to enhance tumor control when
infused intravenously in mice engrafted with human HL
[55]. Another potentially reversible feature of HRSC is the
resistance to CD8+-mediated killing via granzyme B, at least
partially due to defects in mitochondrial apoptotic pathways
and elevated XIAP (X-linked inhibitor of apoptosis protein)
expression. In fact, the expression of the proapoptotic factor
Smac and the downregulation of XIAP by RNA interference
were demonstrated to enhance the apoptotic response of
HRSC as well as their susceptibility to CD8+ cytotoxicity
[56]. Also, the stimulation of the zeta chain expression has
been explored as potential immunotherapeutic approach in
an in vitro study, as HL patients express on their peripheral
T and NK cells reduced levels of this key molecule in TCR
activation [57].

Another strategy designed to revert the functional anergy
of T cells surrounding HRSC was based on a fusion protein
represented by an anti-CD30 antibody targeting also IL-
2, or IL-12. After binding to CD30+ HL cells, anti-CD30-
IL-2 or anti-CD30-IL-12, antibody-cytokine fusion proteins
were able to induce resting NK cells, but not T cells,
to lyse the lymphoma cells with very high efficiency [58,
59]. Moreover, as TGF-beta secretion is able to inhibit
tumor-specific cellular immunity, cytotoxic T lymphocytes
have been engineered with a dominant negative TGF-beta
receptor in order to resist the antiproliferative effects exerted
by this molecule both in vitro and in vivo [60-62].

A very interesting point of view has been also offered
by studies focusing on the role of the so-called side-
population, constituted by progenitor cells within the
neoplastic population with increased resistance to radiation
and chemotherapy. It was shown that both HL cell lines
and primary HL tumor samples contain a distinct side cell
population, showing increased resistance to gemcitabine but
also expressing higher levels of tumor-associated antigens,
which could be potentially recognized and killed by specific
cytotoxic T lymphocytes [63]. It is worth noting that even the
pharmacologic effect of histone deacetylase inhibitors in HL
may be associated with the induction of an antitumor activity
and with a modulation of the cytokine and chemokine
secretion within the lymph node microenvironment
[64].

Lastly, cytokine-induced killer cells, that is, peripheral
blood mononuclear cells expanded in the presence of IFN-
gamma, IL-2, and a monoclonal antibody against CD3- have
been infused in 7 patients with relapsed HL, showing some
limited responses in few of them. Interestingly, these cells
share functional and phenotypic properties with both T
cells and NK cells and exhibit nonhuman leukocyte antigen
(HLA-) restricted killing of tumor cell targets both in vitro
and in vivo [65].
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6. EBV Antigens as Potential Targets of
Cytotoxic T Cells

Several studies have highlighted the pathogenetic role of
the EBV infection in HL pathogenesis, thus implying that
immunotherapeutic approaches could potentially rely on
cytotoxic T-cells specifically directed towards EBV antigens.
Interestingly, EBV expression seems to influence the compo-
sition of the infiltrating lymphocyte population, which on
the other side may have an impact on clinical presentation
and outcome [66].

As it is known that HLA class I molecules present viral
peptides for recognition by CD8+ T cells and that this
T cell subset plays a pivotal role in the control of EBV
infection [67], several studies have focused on the possible
impact on HL pathogenesis of the HLA-mediated EBV
antigen presentation. Very interestingly, segments within the
HLA class I locus have been demonstrated to be specifi-
cally associated with the susceptibility to EBV-positive HL,
therefore suggesting that the antigenic presentation of EBV-
derived peptides is somehow involved in the development
of HL [68]. In another study by logistic regression, HLA-
A*01 alleles were shown to be associated with increased and
HLA-A*02 alleles with decreased risk of EBV-related HL.
These allele-specific associations correspond to nearly 10-
fold variation in the risk of HL between HLA-A*01 and
HLA-A*02 homozygotes, pointing once again at the critical
role of cytotoxic T-cell responses in EBV-related HL [69].

Interestingly, in the only case of spontaneous remission
ever reported in HL, a specific impairment of the anti-
EBV immunity was described at relapse [70]. The cytotoxic
response to EBV latent antigens has been specifically char-
acterized in both blood and tumor-infiltrating lymphocytes
of HL patients. Actually EBV-specific CD8+ T cells were
detected in blood and biopsy samples from both EBV-
negative and EBV-positive patients. However, EBV-specific
cytotoxic T-lymphocyte precursors were very rare in the
blood of HL patients or even undetectable at the tumor site,
further suggesting a possible impairment of the immune
responses against EBV [71]. The existence of anti-EBV
cytotoxic T cell responses in patients with EBV-negative HL
was also confirmed in another study addressing the dynamic
variance of this cell population during treatment [72].

The first relevant steps in the clinical setting were made
in 2002 when EBV-specific cytotoxic T-lymphocytes were
ex vivo generated in 13 patients with relapsed HL, by
using autologous EBV-transformed B cells as stimulator
cells. The infusion of these cytotoxic T-lymphocytes was
followed by an increase in EBV-specific immunity, a decrease
in virus load, homing and persistence of CD8+ T cells to
sites of malignancy, resolution of constitutional symptoms,
and some degree of tumor responses [73-75]. Even better
results were obtained by exploiting genetically modified
APCs in order to augment the expression and immuno-
genicity of LMP2 and, therefore, the frequency of LMP2-
specific cytotoxic T lymphocytes [76]. Very interestingly,
also allogeneic anti-EBV cytotoxic T cells have been applied
in such a context, showing a good safety profile and once
again some clinical responses [77]. Local delivery of IL-12 to

tumor sites, by using EBV-specific T cells transduced with a
retroviral vector expressing the p40 and p35 subunits of this
cytokine, was explored as a possible strategy to overcome the
inhibitory effects of the HL microenvironment on cytotoxic
T lymphocytes [78].

As patients with active disease display a functional
impairment of Ag-specific CD8+ T cells, some studies
have focused on an improved targeting of these CD8+ T
cells towards viral antigens expressed in HL. One of these
strategies was based on the development of an adenoviral
antigen presentation system able to reverse the functional
T cell impairment and restore both IFN-gamma production
and cytolytic function. With this approach, activated CD8+
T cells became able to respond to tumor cells and showed
phenotypic features consistent with those of effector T cells
[79]. One of the limits of immunotherapeutic approaches
targeting EBV antigens is that a subset of malignant cells in
the tumor may lack or lose the expression of these potential
targets. EBV-specific cytotoxic T lymphocytes expressing
a chimeric antigen receptor specific for CD30 have been
designed in order to overcome this problem. These cells,
generated from healthy donors and HL patients, were able to
kill both EBV-positive and -negative cells and, in a xenograft
model, produced antitumor effects against EBV—/CD30+
tumors [80].

7. Future Perspectives

Although HL is considered as one of the most curable
hematologic malignancies, some relevant issues are yet to
be resolved. Firstly, the prognosis of patients which poorly
respond to or relapse after first-line treatments is still
unsatisfactory. Moreover, identifying therapeutic approaches
with minimal toxicity still looks essential in a disorder usually
occurring in young adults. Studies further addressing the
functional features of the T cell immune system in HL
patients could not only offer a deeper understanding of the
biology of this disease but, much more importantly, help
to design new targeted immunotherapeutic strategies with
increased specificity and therefore improved efficacy and
toxicity profile.
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