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The presence of the inhibitory neurotransmitters gly-
cine and GABA (gamma-amino butyric acid) and GAD
(glutamic acid decarboxylase), the synthesizing INTRODUCTION
enzyme for GABA, was examined by immunocyto-

Inhibition plays a crucial role in the vertebrate nervouschemistry in the superior paraolivary nucleus (SPON)
system, and glycine and gamma-aminobutyric acidof the rat. Only rarely were SPON neurons observed
(GABA) are the major inhibitory neurotransmitters into be glycine-immunoreactive, but the majority were
the CNS (Nicholls 1994). Although glycine is a com-GABA-immunoreactive. Using unbiased stereological
mon amino acid present in all proteins and cells,counting methods, we estimated that this nucleus con-
GABA is synthesized from the amino acid glutamatetains approximately 2500 neurons. Moreover, 90% of
by the enzyme glutamic acid decarboxylase (GAD)SPON neurons were immunolabeled by antisera
(Roberts and Frankel 1950; Nicholls 1994). Becausedirected against either the 65- or 67-kD isoform of
GABA is a small labile molecule that can be difficultGAD, or a third antiserum that recognizes both GAD
to localize with immunocytochemistry, GAD is widelyisoforms. Morphometric analysis of GAD-immunola-
considered a reliable marker for GABAergic neuronsbeled neurons indicated that SPON neurons possess
(Wu et al. 1973; Oertel et al. 1981). Two isoforms ofcell bodies and dendritic arbors that are elongated
GAD, named according to their molecular weights,rostrocaudally and relatively flattened parasagittally.
have been isolated (Bayon et al. 1977; Spink et al.Abundant glycine-, GABA-, and GAD-immunoreactive
1983; Denner and Wu 1985; Legay et al. 1987; Kaufmanpunctate profiles—presumed to represent, for the
et al. 1991). Although both GAD isoforms are presentmost part, presynaptic axon terminals—were observed
in most GABAergic neurons, GAD 65 and GAD 67in apposition to SPON neurons. We conclude that
(65 and 67 kDa, respectively) are transcribed fromthe rat SPON contains a homogeneous population of
separate genes and have different affinities for themultipolar GABAergic neurons that receive abundant
cofactor pyridoxal 58-phosphate (Erlander et al. 1991;GABAergic and glycinergic innervation. The vast
Martin et al. 1991; Kaufman et al. 1991). Recent immu-majority of glycinergic inputs to SPON are presumed
nocytochemical studies suggest that the two isoformsto originate in the ipsilateral medial nucleus of the
may have different intracellular distributions, withtrapezoid body, but the source(s) of its GABAergic
GAD 67 being widely distributed in somata, dendrites,innervation remains to be determined.
and axon terminals, while GAD 65 is located predomi-
nantly in axon terminals (Esclapez et al. 1994). GAD
67, which is present as the active holoenzyme, is pre-
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and Wu 1985; Erlander and Tobin 1991). In contrast, purely ipsilateral ascending projection to the IC (Ber-
rebi et al. 1997; Saldaña and Berrebi 2000). UsingGAD 65 is active only in the presence of cofactor and

synthesizes GABA in terminals when there is increased antibodies directed against GABA or an antiserum that
recognizes both isoforms of GAD, other investigatorsdemand (Martin and Rimwall 1993).

The neurotransmitters GABA and glycine are have suggested that the rat SPON contains a substantial
proportion of GABAergic neurons (Oertel et al. 1981;found in abundance in central auditory nuclei, and

inhibitory neurotransmission plays a fundamentally Mugnaini and Oertel 1985; Roberts and Ribak 1987;
Moore and Moore 1987; Gonzalez-Hernandez et al.important role in the function of the mammalian audi-

tory system (Helfert and Aschoff 1997). Inhibition has 1996). Glycine-IR has been described in the rat SOC
(Campistron et al. 1986; Aoki et al. 1988; Pourcho etbeen shown to sharpen tuning curves and modulate

discharge properties of auditory neurons, and it is al. 1992) but has not been systematically examined in
the SPON or in other periolivary cell groups.crucial to the ability to localize high-frequency sounds

(Finlayson and Caspary 1989; Yang et al. 1992; Caspary In order to gain a better understanding of the func-
tional role of SPON, we used immunocytochemicalet al. 1994; Park and Pollak 1993; Klug et al. 1995; Le

Beau et al. 1996; Koch and Grothe 1998). GABAergic methods to delineate the distribution of GABAergic
and glycinergic neurons and axon terminals withinand glycinergic neurons are especially prominent in

the superior olivary complex (SOC) (Helfert et al. the nucleus. We also obtained unbiased stereological
estimates of the percentage of SPON neurons that are1989; Spirou and Berrebi 1997; Saint Marie and Baker

1990; Ostapoff et al. 1990, 1997). This auditory brain- GAD IR and performed a quantitative morphometric
assessment of SPON neuronal morphologies. Some ofstem center contains three principal nuclei with identi-

fied roles in sound localization, the medial nucleus of the data contained herein have been presented in
abstract form (Kulesza et al. 1998; Kulesza and Ber-the trapezoid body (MNTB), the medial superior olive

(MSO) and the lateral superior olive (LSO), and sev- rebi 1999).
eral accessory or periolivary cell groups whose roles
in audition are poorly understood (Schwartz 1992;
Helfert and Aschoff 1997).

METHODSThe superior paraolivary nucleus (SPON) is a con-
spicuous periolivary nucleus in the SOC of rodents
and guinea pigs. Situated medial to the LSO and dorso-

Animalslateral to the MNTB, this nucleus receives ascending
inputs from the contralateral cochlear nucleus (Friauf Adult female Sprague–Dawley rats, weighing 230–285
and Ostwald 1988; Kuwabara et al. 1991; Thompson g, were deeply anesthetized by an intramuscular injec-
and Thompson 1991a,b; Schofield 1995), as well as a tion of a xylazine and ketamine mixture (42 mg xylaz-
substantial local inhibitory input from the ipsilateral ine and 57 mg ketamine per 100 g body weight) prior
MNTB (Kuwabara and Zook 1991, 1992a,b; Banks and to vascular perfusion. A total of 36 animals were used
Smith 1992; Sommer et al. 1993). It also sends a promi- for this study. The West Virginia University Institu-
nent projection to the ipsilateral inferior colliculus tional Animal Care and Use Committee approved all
(IC) (Beyerl 1978; Adams 1983; Coleman and Clerici animal protocols used for this project.
1987; Moore 1988; Saint Marie and Baker 1990; Gonza-
lez-Hernandez et al. 1996; Fuentes et al. 1999; Saldaña
and Berrebi 2000). Notably, the SPON of the rat does Postembedding immunocytochemistry for
not receive a descending projection from the IC nor glycine and GABA
does it project to the cochlear nucleus or cochlea
(White and Warr 1983; Osen et al. 1984; Faye-Lund Twelve animals were perfused through the ascending

aorta with a rinse of Ca21-free Ringer’s variant followed1986; Aschoff and Ostwald 1987; Vetter et al. 1991,
1993; Vetter and Mugnaini 1992; Caicedo and Her- by 1 l of fixative composed of 2% paraformaldehyde

and 2.5% glutaraldehyde in 0.1M sodium phosphatebert 1993).
A number of immunohistochemical and retrograde buffer. Animals were placed on ice and remained

undisturbed for 30 minutes before their brains weretransport studies have revealed populations of GABA-
immunoreactive (IR) and glycine-IR neurons in the dissected and immersed in fixative overnight. Using

a Vibratome, the brains were cut into 100-mm-thickguinea pig SPON, suggesting that these two neuro-
chemically defined cell groups have different projec- sections in the coronal plane. The sections were post-

fixed in 1% osmium tetroxide, stained with 2% aque-tion targets (Helfert et al. 1989; Thompson et al. 1985;
Saint Marie and Baker 1990; Ostapoff et al. 1985, ous uranyl acetate, dehydrated, and flat embedded in

Epon (Polybed 812, Polysciences, Warrington, PA).1990). Recent tract-tracing data in rats, however, dem-
onstrate a homogeneous neuronal population with a After polymerization, sections containing the SOC
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were cut into a series of 1-mm semithin sections, heat- regions within the neuronal cytoplasm did not include
the pale staining cell nuclei. The grey value intensitydried onto glass slides, and prepared for immunocyto-

chemistry (Spirou and Berrebi 1997). Briefly, Epon scale was calibrated for each pair of sections so that
the darkest staining soma (i.e., a glycine-IR MNTBwas etched from the sections using sodium ethoxide

(absolute ethanol saturated with sodium hydroxide). neuron) was assigned a value of 255 and the lumen
of a blood vessel was assigned a value of 0. Data wereThe tissues were then rehydrated, first in ethanols and

then in water. Osmium was subsequently removed with entered into JMP (SAS Institute Inc., Cary, NC) and
Statview (Abacus Concepts, Inc., Berkeley, CA) data1% aqueous sodium periodate.

Adjacent pairs of 1-mm sections were incubated in analysis software packages for statistical comparisons
and graphical output.5% normal donkey serum in 0.5M Trizma base–HCl

(Tris, pH 7.6) for 1 h followed by overnight incubation In one pair of sections, the glycine antiserum was
preadsorbed with 5mM GABA and the GABA antise-in a primary antiserum as follows: rabbit anti-glycine

(Chemicon, Temecula, CA; diluted 1:1200), rabbit rum was preadsorbed with 10mM glycine before incu-
bation with the tissue. The optical density dataanti-GABA (gift from Dr. D. Pow, University of Queens-

land, Brisbane, Australia: diluted 1:8000; or purchased obtained from this pair of sections were statistically
indistinguishable from that of the remaining five pairsfrom HTI Bioproducts, Inc., Ramona, CA, now Strate-

gic BioSolutions: diluted 1:1000). Sections were then of sections which were not incubated in preadsorbed
antisera (t 5 1.819, p . 0.07 for GABA antiserum; andincubated in biotinylated secondary antiserum and

further processed using the ABC method (Vector, Burl- t 5 1.056, p . 0.29 for glycine antiserum). Therefore,
the effect of preadsorption will not be considered fur-ingame, CA). The chromogenic reaction took place in

0.05% diaminobenzidine (DAB) with 0.01% hydrogen ther. We also compared the immunostaining patterns
obtained with the GABA antiserum provided by Dr.peroxide in 0.5M Tris.

The specificity of the Chemicon glycine and Pow Pow with the commercially available (HTI Biopro-
ducts) antiserum. Within the range of dilutions weGABA antisera was previously established in our labo-

ratory with preadsorption control experiments using tested, the latter resulted in somewhat weaker staining
intensities throughout the brain, but the pattern ofan amino acid inhibitor complex according to Storm–

Mathisen and Ottersen (1990) (see Fig. 1 of Spirou immunostaining obtained within nuclei of the SOC
were judged to be qualitatively equivalent. Therefore,and Berrebi 1997). The affinity-purified anti-GABA

serum from HTI Bioproducts was reported to display the data obtained from both GABA antisera were
pooled for all analyses.approximately 2% cross-reactivity with glycine. In the

present experiments, we tested the effects of antiserum
preadsorption on intensity of immunoreactivity using GAD immunocytochemistry on frozen sections
an optical densitometric procedure (see below).

A total of 24 animals were perfused through the
ascending aorta with a vascular rinse of physiologicalOptical density
saline, followed by a fixative composed of 4% commer-
cial formaldehyde and a zinc salt (0.5% zinc dichro-To classify individual cells according to their glycine

and/or GABA immunoreactivities, we performed opti- mate, pH4.0, or 0.5% zinc salicylate, pH 6.5) in 0.9%
saline (Mugnaini and Dahl 1983; Berrebi and Mug-cal densitometry in adjacent semithin (1 mm thick)

sections. A total of six pairs of sections (sections in naini 1991). The animals were placed on ice for 30
minutes before brains were dissected and immersedeach pair were within 2–3 mm of each other) from the

SOC of six animals were used in this analysis. Semithin in cryoprotectant (30% sucrose in saline) for at least
24 h. Brainstems were sectioned in series order, eithersections were used because individual neurons could

be identified in sequential sections immunostained coronally or parasagittally, at a thickness of 30 mm on
a freezing microtome.with either glycine or GABA antiserum. We evaluated

every SPON neuron encountered in each section, as Free-floating sections were rinsed in 0.5M Tris,
blocked in 5% normal donkey serum, and incubatedwell as randomly selected MNTB and MSO cells. The

immunostaining intensities of MNTB neurons served for 48 h at 48C in primary antiserum with gentle agita-
tion. To optimize the immunostaining, different proto-as a reference standard for glycine immunopositivity

and those of MSO cells as an indication of background cols were used depending on the primary antiserum.
GAD-1440 antiserum (Oertel et al. 1981; provided byimmunostaining levels.

Images were captured with a SONY video camera Judith Harvey–White, NIH, Bethesda, MD, and used
at a dilution of 1:1200) is a sheep polyclonal antiserummounted on an Olympus BH-2 microscope (40 times

objective, final magnification 980 times). Average pixel that recognizes both GAD isoforms. GAD 6 (Chang
and Gottlieb 1988; purchased from Developmentalgrey values were measured from uniform regions of

neuronal cytoplasm. Care was taken so that sampling Studies Hybridoma Bank, University of Iowa, and used
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at a dilution of 1:1000) is a mouse monoclonal antise- Unbiased stereology
rum directed against the GAD-65 isoform. Both of We estimated the number of Nïssl-stained and GAD-
these antibodies were revealed using the PAP method IR neurons in the SPON using methods of unbiased
(Sternberger 1979), although the best results with the stereology (Gundersen 1988; Gundersen et al. 1988).
GAD-6 antiserum were obtained with the double PAP The Computer Assisted Stereological Toolbox system
method (Ordronneau et al. 1981). K2 antiserum (C.A.S.T.-Grid, Olympus, Denmark) was used to imple-
(Kaufman et al. 1991, sold by Chemicon, Temecula, ment the optical fractionator technique (Gundersen
CA, and used at a dilution of 1:3000) is a rabbit poly- 1986), which incorporates the optical dissector tool
clonal antiserum that primarily recognizes GAD 67 (Sterio 1984). We randomly selected a slide caudal to
and was revealed according to the ABC method. The the SPON as a starting point and sampled uniformly
chromogenic reaction for each antiserum took place spaced sections (every fourth or fifth section) through
in 0.05% DAB with 0.01% hydrogen peroxide in 0.5M the nucleus using the optical dissector tool. A counting
Tris. For reference, alternating sections were not volume (approximately 33,600 mm3) was defined
immunoreacted but were stained for Nïssl substance within the thickness of the tissue section, and only
using cresyl violet according to standard protocols. All cells that were contained and in focus within the appro-
sections were mounted onto glass slides from gelatin- priate boundaries of the counting frame were marked.
alcohol, air-dried, and coverslipped using Accumount. Our final estimates were calculated using the equation:

Specificity assays (preabsorption controls and West-
N 5 number of cells counted 3 area fractionern blots) using the GAD 6 and K2 antisera were per-

formed previously by Esclapez et al. (1994). They 3 section fraction 3 dissector fraction
indicated that the GAD-67-specific K2 antiserum has
a slight cross-reactivity with GAD 65 and that GAD- Quantitative analysis of puncta in plastic
6 antiserum does not cross-react with GAD 67. The sections
specificity of the GAD-1440 antiserum for GAD has The number of perisomatic puncta was quantified at
been established (Oertel et al. 1981). This antiserum 100 times under oil immersion (final magnification
localizes to both isoforms of the enzyme (Kaufman et 1100 times). Measurements of puncta perimeter and
al. 1991). long and short axes were made on the computer moni-

tor with the C.A.S.T.-Grid software package using the
distance/boundary function. The area of punctate
profiles was calculated by modeling them as ellipsesMorphometric analysis
using the equation:

Frozen sections immunoreacted with GAD-1440 or Areapuncta 5 0.5 major axis 3 0.5 minor axis 3 p
GAD-6 antiserum were sampled at 90-mm intervals for
further analysis. All labeled neurons containing nuclei

RESULTSwere traced using a camera lucida with a 100 times oil
immersion objective (final magnification of tissue 1100

The subset of SOC sections stained with cresyl violet
times). Care was taken to estimate the cell body con-

was used to assist in delineating the boundaries of the
tour so that dendrites extending from the soma were SPON and other SOC nuclei. A Nïssl-stained coronal
not included. The drawings were scanned into a Power section of the rat pons at a middle rostrocaudal level
Macintosh computer, and NIH Image software (ver- through the SOC is shown for reference in Figure 1.
sion 1.61, NIH, Bethesda, MD) was used to measure At this level, all three principal nuclei (LSO, MSO,
the area, perimeter, and major and minor diameters and MNTB) can be identified. Several periolivary cell
of each cell body. An index of circularity (Yin et al. groups, including the ventral (VNTB) and lateral
1990) was then calculated for each soma using the nuclei of the trapezoid body (LNTB) and the SPON,
equation: are also present. The SPON is identified as a promi-

nently sized ovoid-shaped nucleus interposed between
circularity 5 4p area/perimeter2

the LSO, MSO, and MNTB. In this material, the SPON
appears to possess a low density of neurons relative towhich yields an estimate of cell shape that is indepen-
the MNTB and LSO.dent of size. Using this formula, a perfectly circular

cell body profile would be assigned a circularity value
Overview of glycine and GABAof 1.0, with increasingly elliptical profiles resulting in
immunoreactivities in the SOCdecreasing values. Statistical comparisons were per-

formed using the Statview data analysis software Postembedding immunocytochemistry for glycine and
GABA revealed immunolabeled somata, dendrites,package.
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FIG. 1. Organization of the rat superior olivary complex. Cresyl
violet-stained coronal section through the SOC at the level of the
seventh cranial nerve (7n) root. The three principal nuclei of the
SOC—the lateral superior olive (LSO), medial superior olive (MSO),
and the medial nucleus of the trapezoid body (MNTB)—can all be
seen in this section, along with several periolivary nuclei. It is evident
that the superior paraolivary nucleus (SPON) has a relatively low
density of neurons. D-dorsal, LNTB-lateral nucleus of the trapezoid
body, M-medial, rf-pontine reticular formation, tb-trapezoid body,
VNTB-ventral nucleus of the trapezoid body. Scale bar 5 200 mm.

fibers, and punctate profiles, presumed to represent
for the most part axon terminals, throughout the SOC
(Fig. 2). Qualitatively, neurons of the MNTB appeared
most intensely glycine IR, and the VNTB contained

FIG. 2. Overview of glycine IR and GABA IR in the rat SOC. Postem-most of the intensely GABA-IR neurons. Glycine- and
bedding immunocytochemistry performed on plastic-embedded sem-GABA-IR cell bodies of varying staining intensities
ithin sections demonstrates glycine IR and GABA IR within SOCwere also found scattered in the LSO and LNTB, as nuclei. A. In glycine material, MNTB neurons are easily recognized

well as other nuclei. Cell bodies of the MSO appeared by their darkly immunostained somata. The SPON contains only rare
immunonegative after incubation with either anti- glycine-IR cell bodies but the neuropil reveals a high density of

glycine-IR fibers and punctate profiles. B. In sections processed toserum.
reveal GABA, cell bodies and neuropil in VNTB are the most promi-The boundary between the SPON and LSO was
nently immunolabeled. SPON contains numerous GABAergic cellclearly identified by an immunonegative fiber bundle bodies, most of which are lightly to moderately immunolabeled.

coursing between these nuclei. The medial border of GABA-IR punctate profiles are distributed throughout the neuropil
the SPON was somewhat more difficult to define pre- of SPON. Abbreviations as in Fig. 1. Scale bar 5 100 mm.
cisely. In some sections, we noted a thin wedge of tissue
located dorsolateral to the MNTB that contained a
small number of neurons and a densely immunoreac- SPON, although at a lower density than glycine-IR

profiles (Fig. 3).tiveneuropil (Fig. 2). The morphological appearance
of these cells suggested that they belong to SPON,
but we cannot exclude the possibility that displaced Quantitative analysis of glycine and GABA
neurons from the MNTB or the reticular formation immunoreactivities
were occasionally included with the limits of SPON.
Nonetheless, inclusive of these few peripherally A quantitative densitometric method was used to clas-

sify the glycine and GABA immunoreactivities of SOClocated cell bodies, the SPON contained only rare
somata qualitatively judged to be glycine IR, and such neurons (Fig. 4). The IR intensity values representing

MNTB neurons were localized to the upper portioncells were lightly immunostained. Most SPON neurons
appeared lightly to moderately GABA IR, while a small of the glycine-IR intensity scale and the lower portion

of the GABA-IR intensity scale, while values of MSOpercentage were intensely immunolabeled (Figs. 2, 3).
Glycine-IR and GABA-IR puncta were observed neurons were clustered at the lower extreme of both

intensity scales. The IR intensity values associated withthroughout the SOC. Glycine-IR punctate profiles
were densely distributed in the SPON, the middle and SPON neurons were widely dispersed across nearlythe

entire GABA-IR intensity scale.lateral limbs of the LSO, the LNTB, and the VNTB.
GABA-IR punctate profiles were also abundant in the The densitometric data are summarized in Table 1.
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FIG. 3. Glycine IR and GABA IR
of the SPON neurons. High-mag-
nification photomicrographs of
coronal semithin sections show
the range of immunolabeling
intensities observed in SPON and
MNTB. A, B. Five neurons are
shown, and the dashed line
denotes the boundary between
MNTB and SPON. The two MNTB
neurons (m) are distinctly glycine
IR and GABA immunonegative.
One of the SPON cells (1) displays
light glycine IR while all three are
intensely GABA IR. C, D. Two
additional SPON cells are illus-
trated. Cell 4 is glycine immuno-
negative and GABA IR. Cell 5 is
lightly glycine IR and GABA
immunonegative. Scale bar 5

20 mm.

For clarity of presentation, the immunostaining inten- membership, while 72% of MSO neurons and 91 %of
SPON neurons were assigned to the proper group.sity scales were subdivided into equal thirds roughly

corresponding to (1) immunonegative or light IR, (2) The remaining MSO and SPON neurons, which could
not be reliably categorized to either group, all dis-moderate IR, and (3) dark IR. Eighty-nine percent

of SPON neurons were immunonegative or displayed played low values for both glycine-IR and GABA-IR
intensities. Taken together, we concluded from theselight glycine-IR intensity, while 11% displayed moder-

ate glycine-IR intensity. Approximately two-thirds of data that the vast majority of SPON neurons in the rat
express light to moderate GABA immunoreactivity.SPON cells displayed glycine-IR intensities below and

GABA-IR intensities above those representing the most GABA-IR and glycine-IR puncta in the SPON. We also
performed a quantitative comparison of the innerva-intensely immunostained MSO cells. Only 9 SPON

cells (, 6%) displayed glycine-IR intensity values tion densities of SPON neurons by glycinergic and
GABAergic puncta. To account for the variations ingreater than 100. Nearly half of SPON neurons were

immunonegative or displayed light GABA IR, 41% dis- cross-sectional area of SPON neurons and because of
the limited thickness of the sections processed for post-played moderate GABA IR, and 10% displayed dark

GABA IR. embedding immunocytochemistry, we computed the
innervation density relative to the perimeter of theWe then performed a logistic regression analysis

with group membership (nucleus) as the response and SPON neurons. Uniformly throughout the nucleus,
SPON somata were apposed to an average of 19.42 6with glycine-IR and GABA-IR intensity values as pre-

dictors. Glycine-IR and GABA-IR intensities were both 0.72 (S.E.M.) glycine-IR puncta per 100 mm of somal
perimeter. The cross-sectional area of glycine-IR pun-significantly associated with group membership ( p ,

0.001 level, likelihood ratio chi-squared). All MNTB cta was an average of 2.16 6 0.13 mm2. GABA-IR punc-
tate profiles measured an average of 1.57 6 0.91 mm2neurons analyzed were assigned to the correct group
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FIG. 4. Assessment of glycine-IR and GABA-IR intensities in somata IR values of SPON neurons are distributed mostly within the lower
of the SOC. The same neurons were immunolabeled with antiserum third of the glycine-IR intensity scale. The number at the top left of
directed against glycine or GABA in adjacent semithin sections from each panel indicates the experimental animal identification number.
six animals. IR intensity values for MSO cells (squares) cluster at the The sections from all animals were incubated with the commercial
lower end of both intensity scales. In contrast, the IR intensity values glycine antiserum (Chemicon) and the GABA antiserum provided by
representing MNTB neurons (circles) cluster at the high end of the Dr. David Pow, except those from animal 054/97 (top left panel)
glycine-IR and the low end of the GABA-IR scales. SPON neurons which were incubated with the commercial GABA antiserum (HTI
(triangles) show a wide range of GABA-IR intensities and are the most Bioproducts). In animals 054/97 and 031/96, but not the remaining
intensely immunoreactive for GABA among the three nuclei. Glycine- cases, the antisera were preadsorbed as described in Methods.
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TABLE 1

Classification of glycine and GABA immunoreactivities in SOC neurons

Glycine-IR intensity proportion of cells GABA-IR intensity proportion of cells

Neg. - Light Moderate Dark Neg. - Light Moderate Dark
Nucleus (OD 5 0–85) (OD 5 85–170) (OD 5 170–255) (OD 5 0–85) (OD 5 85–170) (OD 5 170–255)

MNTB 0% 43% 57% 95% 5% 0%
(n 5 60)
MSO 100% 0% 0% 100% 0% 0%
(n 5 60)
SPON 89% 11% 0% 49% 41% 10%
(n 5 154)

and were found in apposition to somata throughout
the SPON. However, somata in the ventro lateral SPON
were apposed to an average of 15.04 6 0.76 GABA-IR
puncta, whileneurons in the dorsomedial portion of
the nucleus were apposed to an average of 23.37 6
0.96 puncta per 100 mm of somal perimeter. This dif-
ference in innervation density was statistically signifi-
cant by ANOVA ( p , 0.0001).

Overview of GAD IR in the SOC

GABA is a small labile molecule that can be difficult
to localize with immunocytochemistry and may not

FIG. 5. Immunoreactivity for glutamic acid decarboxylase (GAD)accumulate to detectable levels in somata of neurons
in the SOC. Frozen coronal tissue section processed using the GAD-that utilize GABA as neurotransmitter (Ottersen and
1440 antiserum, which cross-reacts with both isoforms of GAD. The

Storm–Mathisen 1984). Moreover, optimal conditions LSO, SPON, VNTB, and LNTB contain GAD-IR neurons. MNTB and
of tissue fixation and processing to reveal GABA by MSO neurons are GAD immunonegative but receive GAD-IR innerva-

tion which outlines their cell bodies and proximal dendrites. In theimmunocytochemistry are most conducive to post-
coronal plane, most SPON neurons appear bipolar, although roundembedding protocols on thin sections, which are not
or multipolar forms are also seen occasionally. Scale bar 5 100 mmideally suited to quantitative morphological and

stereological analyses. For these reasons, we chose to
employ isoform-specific antisera directed against GAD,

SPON contained many labeled neurons and a moder-the synthesizing enzyme for GABA and a reliable
ate density of GAD-IR puncta. Overall, the labeling ofmarker of GABAergic neurons (Wu et al. 1973; Oertel
punctate profiles in the SOC was more intense withet al. 1981; Oertel 1983).
the GAD-65-specific GAD-6 antiserum.GAD immunocytochemistry revealed cell bodies,

dendrites, and punctate profiles throughout the SOC
(Figs. 5, 6). The LSO contained a subpopulation of GAD-IR somata in the SPON
IR neurons situated among immunonegative neurons;
it also contained abundant GAD-IR punctate profiles. Regardless of the antisera used, immunolabeling of

SPON neurons appeared as a dark reaction productMore LSO somata were immunolabeled by GAD-1440
(cross-reacts with both GAD isoforms) and K2 antisera that filled the cytoplasm and often extended into prox-

imal dendrites. GAD-IR neurons appeared to be evenly(specific for GAD 67; Figs. 5 and 6B) than with GAD-
6 antiserum (recognizes the 65-kD isoform; Fig. 6A). distributed throughout SPON, and it was our impres-

sion that the vast majority of SPON neurons were GADThe MSO and MNTB contained no GAD-IR cells, but
neurons in both nuclei were surrounded by numerous IR. Unbiased stereology performed in five animals

indicated that the rat SPON contains approximatelyGAD-IR puncta. Among the periolivary nuclei, the
VNTB contained the most intensely labeled neurons 2,555 neurons (revealed by cresyl violet counter-

staining) and 2,313 GAD-IR neurons (Table 2). Thus,and dense punctate labeling. The LNTB also con-
tained both GAD immunopositive and immunonega- roughly 90% of SPON neurons express GAD. The 65

and 67-kD isoforms of the enzyme were present intive somata as well as GAD-IR punctate profiles. The
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TABLE 2

Unbiased estimates of Nïssl-stained and GAD-IR neurons
in the rat SPON

Estimated number of neurons

Animal No. Isoform GAD Nissl

002/97aa 2,398
002/97b GAD65&67 2,158 2,278
037/98 GAD65 2,314
024/98 GAD67 2,346
005/94 — 2,499
035/94 — 2,611

Overall estimates 2,313 2,555

aTo verify the realibility of the unbiased stereology method in our material,
two separate estimates of GAD-IR neurons were obtained from aniaml 002/
97 using the GAD-1440 antiserum. The number of GAD-IR neurons were then
estimated from two other animals using either the GAD-6 or the K2 antiserum.
We also estimated the number of Nïssl-stained cells in the SPON of two
additional animals. Approximately 90% of SPON neurons are GAD-IR, and
each antiserum reveals essentially the same number of cells.

FIG. 6. GAD-65 IR and GAD-67 IR in the SOC. Coronal sections
illustrate the distribution of GAD isoforms in the SOC as revealed
by antisera specifically directed against either A GAD 65 or B GAD
67. Immunoreactive neurons are present in SPON, VNTB, and LNTB.
Fewer LSO neurons were immunolabeled for GAD 65 than for GAD
67. GAD-IR dendrites (arrowheads) appear to extend between the
ventral SPON and the VNTB. Scale bar 5 100 mm.

equal numbers of neurons (2,314 and 2,346 neurons,
respectively), indicating a great degree of coex-
pression.

Neuronal morphology

SPON neurons exhibited some variability in size and
shape (Figs. 5, 6). In the coronal plane of section, the
majority of GAD-IR SPON neurons were either bipolar
or oval with a vertical orientation, while a small fraction
appeared to have a multipolar morphology. When
viewed in the parasagittal plane, SPON neurons typi-

FIG. 7. GAD IR in a parasagittal section through the SOC. A. Frozencally displayed a more homogeneous multipolar
parasagittal tissue section processed according to the PAP methodappearance, with multiple dendrites extending from
using GAD-65 antiserum. At this level through the SOC, portions ofthe soma in various directions (Fig. 7). Parasagittally
the VNTB, MNTB, and SPON (outlined by dashed border) are visible.

sectioned profiles of SPON somata (traced separately Bundles of GAD-IR dendrites (arrowheads) are separated by immuno-
from their dendrites) were significantly larger and less negative fascicles of trapezoid body fibers. B. Higher-magnification

photomicrograph of the bracketed region in A. SPON neurons appearcircular than coronally sectioned profiles (Table 3).
distinctly multipolar when sectioned parasagittally. Note also theThese morphometric data, taken together, indicate
dense axosomatic and axodendritic GAD-IR innervation of thesethat typical GAD-IR SPON neurons are large (335.9
neurons. In some cases, the ventrally directed GAD-IR dendrites

6 10.64 mm2 average cross-sectional area in the para- (arrowheads) could be traced to their parent cell bodies in the SPON.
sagittal plane), multipolar cells whose somata and den- C-caudal, D-dorsal, rf-pontine reticular formation. Scale bar 5 100

mm in A, 50 mm in B.dritic trees are flattened parasagittally.
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TABLE 3

Morphometric analysis of GAD-labeled SPON neuronsa

Mean Mean
Mean maximum minimum Mean

Plane of Mean area perimeter diameter diameter circularity
section (mm2 6 S.E.) (mm 6 S.E.) (mm 1 S.E.) (mm 6 S.E.) (6 S.E.)

Coronal (n 5 138) 184.89 6 5.74 63.69 6 1.22 21.51 6 0.43 10.90 6 0.24 0.578 6 0.01b

Sagittal (n 5 108) 335.90 6 10.64b 113.81 6 2.42b 29.64 6 0.71b 14.61 6 0.39b 0.336 6 0.01

aGAD-immunoreactive cell bodies were larger and less circular when sectioned parasagitally than when sectioned coronally, supporting the conclusion that
SPON cell bodies are multipolar, elongated rostrocaudally and flattened parasagitally.

bDifference is significantly different ( p , 0.05) by ANOVA.

In both planes of section, GAD-IR dendrites were
seen extending between the SPON and the neuropil
of the nearby VNTB (Figs. 6, 7). In coronal sections,
these dendrites appeared to form a single narrow bun-
dle. In parasagittal sections it was possible to view a
considerable portion of the rostrocaudal extent of the
SPON, and GAD-IR dendrites appeared as several
small bundles separated by distinct immunonegative
fascicles of trapezoid body fibers (Fig. 7). In some cases
it was evident that the GAD-IR dendrites belonged to
SPON neurons (Fig. 7B).

GAD-IR puncta density in the SPON

Each of the three antisera used revealed myriad GAD-
IR punctate profiles in SPON, which we interpret as
largely representing axon terminals. These puncta
were apposed to GAD-IR somata throughout the
SPON, forming characteristic perisomatic and peride-
ndritic arrays (Fig. 8). Some of the puncta were con-
nected by delicate fibers, suggesting that they were en
passant boutons. GAD-IR puncta were uniform in cross-
sectional area throughout the nucleus, measuring an
average of 1.58 6 0.54 mm2.

FIG. 8. GAD-IR puncta apposed to a GAD-IR neuron in the SPON.
SPON neuron displaying a distinct multipolar morphology andDISCUSSION
strongly expressing the 65-kD isoform of GAD. Numerous GAD-65-
IR punctate profiles can be seen apposed to the soma (arrowheads)
and dendrites (arrows) of this cell. Scale bar 5 10 mm.Constituent neurons of the SPON

Previous studies of the rat SOC utilizing antisera to
GABA or GAD have revealed a GABAergic population
of neurons within the SPON (Mugnaini and Oertel distinct GABAergic and glycinergic neuronal popula-

tions (Helfert et al. 1989; Saint Marie and Baker 1990;1985; Li et al. 1995; Gonazalez–Hernandez et al.
1996). Mugnaini and Oertel (1985) did not focus on Ostapoff et al. 1990, 1997). These findings, considered

in combination with tract-tracing studies in guinea pig,the SPON per se but, using the same non-isoform-spe-
cific GAD-1440 antiserum used in this study, estimated led Schofield (1991) to suggest that somal morphology

and neurochemical phenotype are correlated withthat between 50% and 90% of the neurons in the rat
SPON were GAD immunoreactive. It has also been efferent projection target of SPON neurons. Our data

demonstrate remarkable homogeneity of the SPON ofreported that aspartate-IR neurons dominate in the
rat SPON (Kumoi et al. 1993), but this isolated finding the rat in that the vast majority of rat SPON neurons

are immunoreactive for GAD. Moreover, it has beenhas not been confirmed. In contrast, immunocyto-
chemical studies of guinea pig SPON have described reported recently that virtually all SPON neurons in
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the rat project to the ipsilateral central nucleus of the Glycinergic and GABAergic inputs to SPON
IC (Saldaña and Berrebi 2000). Taken together, these neurons
studies suggest that the rat SPON represents a relatively

Rat SPON neurons express GABA and glycine recep-simply organized nucleus with virtually all of its cells
tors on their membranes (Friauf et al. 1997, 1998),providing a purely GABAergic innervation of the ipsi-
and we observed abundant glycine IR and GABA IRlateral IC. For these reasons, we propose that the rat
in the neuropil of the nucleus. Our data and previousis an ideal species in which to study the physiology

and pharmacology of GABAergic projections. reports suggest an extremely dense glycinergic synap-
tic input to SPON which arises, in large part, from
MNTB (Morest 1968; Helfert et al. 1989; Kuwabara
and Zook 1991, 1992b; Banks and Smith 1992; SommerColocalization of GAD isoforms in SPON
et al. 1993). Our results also coincide with the highneurons
concentration of glycine reported in the rat SPON by
high-performance liquid chromatography (Godfrey etThe fact that both the 65- and 67-kD isoforms of GAD
al. 2000).colocalize in SPON somata is noteworthy. Esclapez and

The prominent punctate labeling revealed by GABAcoworkers (1994) reported that in many neurons the
and GAD immunocytochemistry indicates that SPONtwo GAD isoforms occupy different intracellular com-
also receives GABAergic synaptic input, but the sourcepartments, with GAD 65 highly concentrated in termi-
of this innervation is not known. One candidate is thenals and GAD 67 distributed in both somata and
nearby VNTB, which contains a population of GABAer-terminals. However, there is molecular evidence that
gic neurons (Mugnaini and Oertel 1985; Moore andGAD 65 and 67 can form heterodimers (Sheikh and

Martin 1996), and biochemical data suggest that GAD Moore 1987). In rats, VNTB and SPON display higher
67 is targeted to the perikaryal Golgi membrane via GABA concentrations than other SOC nuclei (Godfrey
an interaction with GAD 65 (Dirkx et al. 1995). The et al. 2000). However, tract-tracing studies in the rat
membrane-bound GAD 65–67 heterodimer is then have failed to show such a projection (Warr and Beck
presumably shipped from the Golgi apparatus to nerve 1996), and we consider it unlikely that the VNTB repre-
terminals, possibly resulting in the cell body and axon sents a significant source of GABAergic puncta in
terminal colocalization of GAD isoforms in our study. the SPON.
The production and possible dimerization of GAD 65 The lemniscal nuclei are also possible sources of
in somata may explain our localization of this isoform GAD-IR puncta in the SPON. Both the dorsal and
in SPON perikarya. The precise role of these isoforms ventral nuclei of the lateral lemniscus (DNLL and
in GABAergic neurotransmission and cellular metabo- VNLL) contain GABAergic neurons (Thompson et al.
lism is not yet understood. Based on counts of GAD- 1985; Moore and Moore 1987; Roberts and Ribak 1987;
IR neurons we obtained by unbiased stereology, we Gonzalez–Hernandez et al. 1996; Riquelme et al.
report that both isoforms were present in the vast 1998). Tract-tracing data provide evidence that the
majority of SPON neurons. Even though it is difficult DNLL innervates the SOC in rats, although it is uncer-
to quantify immunolabeling intensity in our material,

tain if the SPON receives any of this input (Bajo et al.
the intense labeling found with both the GAD-6 and

1993). The VNLL in cats has been shown to project toK2 antisera suggests that both isoforms are located in
the dorsomedial periolivary nucleus (DMPO) (Whitleysomata at relatively high levels. GAD 65 is inactive in
and Henkel 1984), the presumed homolog of thethe absence of cofactor (pyridoxal 58 phosphate, PLP)
SPON of rodents, but we are not aware of any reportsand cannot synthesize GABA in cell somata since the
of a similar projection in the rat.cofactor is specifically localized to nerve terminals

It is also quite possible, in fact likely, that a propor-(Nicholls 1994). Therefore, if GAD 67 is responsible
tion of GAD-IR puncta within the SPON arises fromfor metabolic processes, such as the GABA shunt which
branches of SPON axons. Preliminary intracellularmoves glutamate into the Krebs cycle (Baxter 1970),
labeling experiments from our laboratory indicate thatthen pools of GABA made by this enzyme are likely
SPON axons collateralize before leaving the nucleusto be quickly converted to another metabolite (e.g.,
and contact other SPON neurons (Kulesza et al. 2000).succinic semialdehyde) and not be involved in neuro-
Such an arrangement suggests that SPON neuronstransmission. The inactivity of GAD 65 and the possible
may provide modulatory feedback to local targets inmetabolic role of GAD 67 might contribute to the
and around the nucleus. We are particularly interestedcommon difficulties in revealing GABAergic cell
in this possibility, especially given the recent demon-bodies using antisera directed against GABA (e.g.,
strations that the SPON of the rat is tonotopically orga-Gonzalez–Hernandez et al. 1996; see also Ottersen

and Storm–Mathisen 1994). nized (Kelly et al. 1998; Saldaña and Berrebi 2000).
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Furthermore, more refined tracing studies are neces- or narrowly (from multipolar and globular cells), and
sustained responses (from multipolar cells) may besary to adequately resolve these local collaterals and

their potential impact on SPON function. narrowly tuned and could reveal monaural or binaural
(from MSO cells) interactions. These excitatory influ-
ences are presumably balanced in SPON by finelyMorphology of SPON neurons
tuned glycine-mediated inhibition arising in the
MNTB (Banks and Smith 1992; Sommer et al. 1993;Our morphometric study complements previous tract-

tracing work showing that the rat SPON contains a Smith et al. 1998) and also by its own GABAergic collat-
eral innervation.population of multipolar neurons that project to the

inferior colliculus and whose somata and dendritic Despite broad tuning in some of its excitatory input,
SPON provides a topographic and presumably tono-arbors are elongated rostrocaudally and flattened para-

sagittally (Saldaña and Berrebi 2000). The present topic projection to the inferior colliculus (Kelly et al.
1998; Saldaña and Berrebi 2000). GABAergic and gly-data also corroborate the observation that SPON neu-

rons appear different in size and shape depending on cinergic inhibition originating from the SOC is
reported to sharpen tuning curves of IC neurons tothe sectioning plane in which they are viewed. Further-

more, their anisotropic organization coincides with certain types of sound (Yang et al. 1992; Koch and
Grothe 1998) and influence the temporal firing pat-the expected geometric arrangement of cells within a

tissue displaying a lateral-to-medial tonotopic order terns of IC units (LeBeau et al. 1996), and they are
involved in tuning for duration of sound stimuli in theof frequency representation, as demonstrated for the

SPON (Kelly et al. 1998; Saldaña and Berrebi 2000), IC (Casseday et al. 1994). GABA is also a powerful
mediator of interaural intensity disparity sensitivity insince each neuron is expected to receive synaptic

inputs localized in mediolaterally restricted territories. the colliculus (Park and Pollak 1993). Thus, the inhibi-
tory GABAergic projections of the SPON may influ-We noted that some ventrally located SPON neu-

rons possessed dendrites that appeared to enter the ence midbrain auditory circuitry in a manner that
enables distinction of subtle changes in the frequencyVNTB, a feature previously demonstrated in retro-

gradely labeled SPON neurons (Saldaña and Berrebi and/or temporal characteristics of sounds. There are
no published studies of the physiological response2000). Neither the frequency of occurrence nor pur-

pose served by this outgrowth of dendritic processes properties of rat SPON neurons that shed light on
their contribution to the above-mentioned features ofis clear at this time. However, one can envision that

selected SPON neurons may be “sampling” some of collicular physiology. There is evidence from other
species that some DMPO and SPON neurons arethe synaptic input received by VNTB cells, including

an excitatory descending projection originating in the broadly tuned [cat (Guinan et al. 1972); gerbil (Spitzer
and Semple 1995; Dehmel et al. 1999)]. The place-IC which does not innervate the SPON directly (Faye–

Lund 1986; Rajan 1990; Vetter et al. 1993). ment of SPON in a clearer functional context awaits
the identification of the source or sources of its abun-
dant GABAergic synaptic input and the physiologicalFunctional implications
response characteristics of its constituent neurons.

The SPON receives presumably excitatory projections
from octopus and multipolar cells of the ventral
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