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Epistasis (i.e. gene–gene interaction) has long been recognized as an important mechanism underlying the
complexity of the genetic architecture of human traits. Definitions of epistasis range from the purely molecu-
lar to the traditional statistical measures of interaction. The statistical detection of epistasis usually does not
map onto or easily relate to the biological interactions between genetic variations through their combined
influence on gene expression or through their interactions at the gene product (i.e. protein) or DNA level.
Recently, greater high-dimensional data on protein–protein interaction (PPI) and gene expression profiles
have been collected that enumerates sets of biological interactions. To better align statistical and molecular
models of epistasis, we present an example of how to incorporate the PPI information into the statistical
analysis of interactions between copy number variations (CNVs). Among the 23 640 pairs of known human
PPIs and the 1141 common CNVs detected among HapMap samples, we identified 37 pairs of CNVs overlap-
ping with both genes of a PPI pair. Two CNV pairs provided sufficient genotype variation to search for epi-
static effects on gene expression. Using 47 294 probe-specific gene expression levels as the outcomes,
five epistatic effects were identified with P-value less than 1026. We found a CNV–CNV interaction signifi-
cantly associated with gene expression of TP53TG3 (P-value of 2 3 10220). The proteins associated with
the CNV pair also bind TP53 which regulates the transcription of TP53TG3. This study demonstrates that
using PPI data can assist in targeting statistical hypothesis testing to biological plausible epistatic inter-
action that reflects molecular mechanisms.

INTRODUCTION

The term ‘epistasis’ was first used by Bateson (1) to describe
the blocking of the phenotypic effect of one genetic mutation
by another genetic locus. Fisher created the term ‘epistacy’ to
define the statistical deviation of the linear combination of
multiple genetic effects for a trait (2). Epistasis has long
been used as a general term to describe the complex inter-
actions among genetic loci (3). For example, ‘functional epis-
tasis’ (the molecular interactions among proteins and other
functional elements) and ‘statistical epistasis’ (the deviation
from the additive contributions of multiple genetic loci
within a population) have distinct meanings but have been
referred to by the same term of ‘epistasis’ (3). Although we
would expect a phenotypic effect to arise from the functional
interruption of the relationship between two genes, the trans-
lation of the statistical interactions to the functional inter-
actions is not straightforward and has been extensively

debated (4). The common genetic variants identified by the
genome-wide association studies (GWAS) using additive
genetic models without considering dominance or potential
epistatic associations only explain a small fraction of the her-
itability (5). Although it has been suggested that the epistatic
associations could be responsible for a portion of the unex-
plained heritability of in GWAS (5,6), the challenge remains
to identify how to conduct genome-wide epistatic studies
with prior biological knowledge (7) to connect the statistical
evidence to a testable molecular model. Developing databases
that curate and annotate information about all the molecular
interactions within a cell (e.g. DNA–DNA, DNA–RNA,
DNA–protein, RNA–RNA, RNA–protein and protein–
protein) would greatly assist in providing an a priori biologi-
cal hypothesis space for testing for epistasis (8,9). It would
also greatly facilitate faster validation of the putative molecu-
lar epistatic mechanisms. Given the current state of this type of
molecular interaction knowledge, we have chosen to focus on
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demonstrating the use of a protein–protein interaction (PPI)
database on the identification of epistasis.

The physical interactions between proteins are important for
a wide range of biological functions—e.g. biochemical reac-
tions, cytoskeletal structures, cellular transport systems, tran-
scriptional activation and regulation. With the advancement
of molecular technologies, there are now several biochemical
and biophysical high-throughput methods (e.g. two-hybrid
system and affinity purification-mass spectrometry) that are
being used to identify the physical interactions among pro-
teins. Combining the high-throughput affinity purification,
mass spectrometry and computational algorithms (10,11), or
using protein-fragment complementation arrays (12), the
global maps of PPI have been constructed in the budding
yeast (Saccharomyces cerevisiae). The genetic interaction
network of yeast has also been constructed by a synthetic
genetic array method which screens the synthetic lethal
genetic interactions through high-density arrays of double
mutants (13,14). The overlap between the genetic interactions
and the PPI in yeast ranges 10–20%, which is significantly
higher than the random expectation (14). The yeast two-hybrid
system was used to screen over 4000 human proteins and
identified over 3000 mostly novel PPI interactions (15).
Other high-throughput studies of human interactome also
identified a large number of PPI pairs (16,17). PPI databases,
such as BioGRID (18) and MIPS (19), have been developed to
document all known PPI information from multiple organisms
including human. As a result, we are able to query thousands
of identified interactions among human proteins using these
databases, to define the hypothesis testing space for a new
type of evaluation of gene–gene interaction that integrate
aspects of statistical and functional epistasis.

While the set of measured genetic variations (and thus
gene–gene interaction) continues to expand with advances
in sequencing, in this paper we focus on copy number vari-
ations (CNVs) which are a less common type of genetic
variant in human compared with single nucleotide variations.
A CNV is a segment of DNA that is present at a variable
number of copies compared with a reference genome
sequence. CNVs have been demonstrated to be associated
with quantitative gene expression levels (20,21) that in some
cases are likely to have causative, functional effects (21).
CNVs have also been reported to be associated with human
disorders such as Parkinson’s disease (22), schizophrenia
(23–25), autism (26,27) and Crohn’s disease (28). When a
CNV overlaps with a gene coding region, it may influence
the function of the gene product by shifting the amino acid
structure of the encoded protein.

Integrating the rich information available from PPI data-
bases and the high-throughput measurements of genetic var-
iants, we have a unique opportunity to relate the functional
interaction between gene products (i.e. proteins), and the stat-
istical interactions (epistasis) associated with human traits. In
this study, we established an analytical framework to demon-
strate that the functional espistasis and statistical epistasis can
be integrated to identify interacting genetic loci. We combined
the human PPI and CNV data into a statistical model and
identified epistatic associations with gene expression levels
(the intermediate traits influencing protein production) in
transformed lymphocytes of human.

RESULTS

Following our integrative approach to identifying epistatic
associations described in Figure 1, we first filtered and
merged the PPI and the CNV databases. Thirty-seven pairs
of CNVs were identified as representing potential functional
gene–gene interaction that could be manifested at the
protein levels. Of these 37 pairs, 20 represented homodimeric
pairs (i.e. a protein interacting with itself and functions as a
homodimer) that were excluded from this study because they
represent potential intragenic epistasis rather than intergenic
epistasis that would represent the impact of PPI on gene
expression. The annotations of the remaining 17 pairs of
CNVs that overlap with genes that form heterodimeric
protein pairs were listed in Table 1. Limited by HapMap
sample size of 210 and the low minor allele frequency
(MAF) of some CNVs, we finally selected two CNV pairs
(CNP109–CNP10282 and CNP865–CNP10140) that have a
non-zero count in at least four out of nine genotype combi-
nations to conduct the following epistatic association analysis.

We tested the association of the epistatic interaction between
the two CNV pairs and 47 293 gene expression levels using the
model described in the Materials and Methods section. The epi-
static associations with the P-value lower than 1024 were listed
in Table 2. Using Bonferroni corrected threshold of P-value
(0.05/47 293 ¼ 1.06 × 1026), we identified five statistically
significant epistatic associations after correcting for multiple
testing (Table 2). The most significant epistatic association
(P-value of 1.98 × 10220) is between CNV pair, CNP865
(PCDHA4)–CNP10140 (SETDB1), and the gene expression
level of TP53TG3 (probe GI_7706742-A). This epistatic associ-
ation was illustrated in Figure 2. The other four epistatic associ-
ations that passed the genome-wide significance threshold are
between CNP865–CNP10140 and the gene expression level
of MGC20553 (probe GI_34222248-S), CNP865–CNP10140
and the gene expression level of Hs.522383 (probe
Hs.522383-S), CNP865–CNP10140 and the gene expression
level of PPIA (probe GI_45439310-I) and CNP109
(ARNT)-CNP10282 (EPAS1) and the gene expression level of
hmm31138 (probe hmm31138-S).

In order to better understand the effects of the most signifi-
cant epistatic association (P-value of 1.98 × 10220) between
CNV pair, CNP865 (PCDHA4)–CNP10140 (SETDB1),
and the gene expression level of TP53TG3 (probe
GI_7706742-A), we also examined the main effect of the
CNVs on their gene’s expression level. Specifically, we exam-
ined the associations between CNP865 and the gene
expression level of its overlapping gene PCDHA4, as well
as the association between CNP10140 and the gene expression
level of its overlapping gene SETDB1. Furthermore, we eval-
uated whether the two CNV had any statistical evidence of a
main effect, knowing completely that it could be a single-
dimensional reflection of the gene–gene epistatic effect on
TP53TG3 levels. The statistics of these association tests
were summarized in Table 3. After adjusting for the popu-
lation structure by the first 10 principal components (PCs),
we identified that CNP10140 (SETDB1) was significantly
associated with TP53TG3 gene expression with a P-value of
0.0065. The other three associations were not statistically sig-
nificant at an alpha level of 0.05.
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DISCUSSION

The most statistically significant epistatic interaction between
CNV pairs is associated with the TP53 target 3 (TP53TG3)
gene expression level. TP53TG3 is located on the short arm
of chromosome 16. The gene expresses several transcripts
by alternative splicing. The two major transcripts,
TP53TG3A and TP53TG3B, encode 124- and 132-amino
acid peptides that are expressed predominantly in testis. The
TP53TG3 gene is induced in a TP53-dependent manner (29).
CNP865 and CNP10140 overlap with PCDH4 and SETDB1
correspondingly. The protein product of PCDH4 not only
binds SETDB1 protein but also binds TP53 protein (15). In
this example, we started with the evidence of physical inter-
action from a PPI database (SETDB1–PCHDA4). Then we
identified the statistically significant epistatic association of
CNP10140 (SETDB1) and CNP865 (PCDHA4) with
TP53TG3 gene expression. Combining additional experimen-
tal data, we proposed a plausible molecular mechanism under-
lying the epistatic association illustrated in Figure 3. The pair
of proteins, SETDB1–PCDHA4, affects TP53TG3 gene
expression through PCDHA4 binding with TP53, which
is known to induce the gene expression of TP53TG3. This
molecular model may be experimentally validated in human
cell lines by mutating SETDB1 and PCDHA4 to mimic
the CNV.

Limited by the sample size, we could only test the epistatic
associations of two CNV pairs. Fifteen additional CNV pairs
(Table 1) showed evidence of physical interaction between
the protein products of their overlapping genes. Several of
the genes containing these CNV pairs are associated with
the pathogenesis of human diseases. For instance, the CNV
pair CNP11948–CNP12589 (overlaps with SCNN1A and
NEDD4L correspondingly) is a candidate pair for testing the
epistatic association with hypertension and diseases associated
with electrolyte transport. SCNN1A encodes the alpha subunit
of an epithelial sodium channel (ENaC) which controls fluid
and electrolyte transport across epithelia in many organs.
Mutations in this gene have been associated with the

autosomal recessive form of pseudohypoaldosteronism type
1, a salt wasting disease resulting from target organ unrespon-
siveness to mineralocorticoids. Genetic variants of SCNN1A
had been reported as a genetic risk factor of hypertension
(30). NEDD4L had strong affinity binding to SCNN1A and
potentially regulate the activity of ENaC (31). Therefore, the
genetic effect of SCNN1A may be modified by NEDD4L to
affect human diseases such as hypertension or kidney
disease. With larger samples from epidemiological studies,
testing the epistatic associations of all these CNV pairs with
disease traits may help us identify additional genetic mechan-
isms underlying human diseases.

Although we focused on the application of combining PPI
data and CNV data in this study, our approach to identifying epi-
static associations can be expanded to other types of molecular
interaction [e.g. between transcriptional factors (TFs) and cis-
regulatory elements (CREs)] as well as other types of genetic
variants (e.g. SNPs, especially non-synonymous variations).
Both experimental and computational approaches have been
used to identify the interactions between the TFs and CREs of
genes in human (32,33). The database derived from these
studies will provide high-quality cell-type-specific interaction
information between TFs and CREs to facilitate the similar
approach to incorporating TF–CRE interactions in the epistatic
analysis in human. Potential epistatic associations may also
exist between CNVs and SNPs. In this study, we tested the epi-
static associations with gene expression levels in transformed
lymphocytes. Because different gene expression patterns exist
in different cell types (34–36), the profile of epistatic associ-
ations is expected to be different in various cell lines/tissues
even though the primary sequence of DNA remains the same
across human cells. Therefore, selecting the appropriate
tissue, organ or model system is critical for studying the epistatic
associations of intermediate phenotypes such as gene expression
levels. It should also be noted that many different kinds of phe-
notypes (e.g. proteomic or metabolomic profiles) could easily be
examined using this methodology.

Animal and plant studies have shown more gene–gene
(epistatic) interactions than previously expected (37). The

Table 1. Seventeen pairs of CNVs overlapping with genes involved in interacting protein pairs

CNV1 CNV2
CNV ID Chromosome CNV start (bp) CNV end (bp) Gene CNV ID Chromosome CNV start (bp) CNV end (bp) Gene

CNP10045 chr1 22 193 098 22 209 830 HSPG2 CNP10479 chr3 13 682 416 13 684 365 FBLN2
CNP109 chr1 150 822 330 150 853 218 ARNT CNP10282 chr2 46 549 602 46 551 188 EPAS1
CNP11463 chr8 54 122 300 54 154 739 OPRK1 CNP12537 chr17 72 728 774 72 743 351 SLC9A3R1
CNP11164 chr6 162 658 558 162 660 430 PARK2 CNP12039 chr12 125 388 402 125 395 161 UBC
CNP11164 chr6 162 658 558 162 660 430 PARK2 CNP10878 chr5 886 628 928 018 TRIP13
CNP10375 chr2 128 538 342 128 543 406 WDR33 CNP12349 chr15 84 142 284 84 151 045 SH3GL3
CNP865 chr5 140 204 020 140 223 940 PCDHA4 CNP10140 chr1 150 915 736 150 923 166 SETDB1
CNP10145 chr1 151 940 298 151 959 872 S100A10 CNP10140 chr1 150 915 736 150 923 166 SETDB1
CNP11948 chr12 6 407 756 6 453 667 SCNN1A CNP12589 chr18 55 803 727 55 815 999 NEDD4L
CNP11538 chr9 2 138 837 2 140 663 SMARCA2 CNP2563 chr22 23 993 985 24 248 712 SMARCB1
CNP12014 chr12 79 349 306 79 352 242 SYT1 CNP10981 chr5 141 998 202 142 000 197 FGF1
CNP12303 chr15 29 798 781 30 027 160 TJP1 CNP104 chr1 147 303 148 147 526 040 GJA8
CNP12303 chr15 29 798 781 30 027 160 TJP1 CNP11167 chr6 168 078 125 168 338 764 MLLT4
CNP11931 chr11 123 592 514 123 601 125 ZNF202 CNP12670 chr19 50 542 545 50 583 764 ZNF473
CNP12010 chr12 69 785 308 69 796 518 YEATS4 CNP2563 chr22 23 993 985 24 248 712 SMARCB1
CNP10878 chr5 886 628 928 018 TRIP13 CNP11670 chr10 5 705 468 5 757 133 ASB13
CNP11633 chr9 80 628 360 80 658 853 GNAQ CNP12537 chr17 72 728 774 72 743 351 SLC9A3R1
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evidence of epistatic effects has been documented in yeast
(38), A. thaliana (39), fruit fly (40) and mice (41). Given the
biological complexity of most disease phenotypes, it is not
surprising that epistatic interactions play a major role and
explain a larger proportion of variation in the phenotype
than main genetic effects alone (42). Although computation-
ally efficient methods of screening statistical epistatic inter-
actions are available (43–45), conducting a complete
genome-wide survey of epistatic interactions (2 × 1012 tests
for 2 million genetic variants) requires a huge amount of
resources and suffers from a serious multiple testing
problem. Instead of targeting the genome-wide discovery of
epistatic interactions, our approach focused on a limited set
of gene pairs with strong evidence of physical interaction.
The combined evidence of physical interactions and statistical
interactions will greatly strengthen the confidence of the find-
ings and leads to practical targets for validating biological
functions.

In this study, we did not observe significant associations
between the CNVs and the gene expression levels of their
overlapping gene, namely between CNP865 and Illumina

probe GI_14165412-A (PCDHA4), and between CNP10140
and Illumina probe GI_41281392-S (SETDB1). The 50 bp
long GI_14165412-A specifically targets mRNA
NM_031500 which is the shorter isoform of PCDHA4.
NM_031500 spans from 140 186 672 to 140 189 167 bp on
chromosome 5. CNP865 spans a 20 kb genomic region
(140 204 020–140 223 940 bp) on chromosome 5. It is
located about 15 kb downstream of NM_031500 and over-
laps with the longer isoform of PCDHA4 mRNA,
NM_018907. It is likely that the CNV of CNP865 affects
the function of PCDHA4 protein through NM_018907
expression rather than NM_031500. Therefore, no signifi-
cant association is observed between CNP865 and
NM_031500 expression. Illumina probe GI_41281392-S
targets the last exon of gene SETDB1 (NM_012432:
150 898 815–150 937 220 bp on chromosome 1), and is
located over 13 kb downstream of CNP10140
(150 915 736–150 923 166 bp). The association between
CNP10140 and SETDB1 gene expression is marginal with
a P-value of 0.06. It is unclear whether this CNP affects
the expression level.

Figure 1. The workflow of the integrated analysis of epistasis between CNV pairs with evidence of physical interaction.
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Although technologies have been greatly improved in
measuring PPIs and CNVs in human, the current databases
of human PPIs and CNVs are still relatively new and still
being developed. Several databases host PPI data from
human (e.g. BioGRID, MIPS etc.). Each database chooses
its own standard to include PPI data from published
results and has its own style of annotating and presenting
the data. Therefore, each PPI database is likely to be
limited both in size and through the experimental methods
used to obtain the information about the protein interactions.
Both of these are likely to improve with each new release.
Comparing all PPI databases is a very ambitious task and
is out of the scope of this study. We selected one PPI data-
base that we are familiar with to demonstrate the utility of
combining the physical interaction data with statistical epis-
tasis test to identify novel molecular interactions. Admit-
tedly, the bias and incompleteness of the current PPI
database restricts us from knowing or testing the entire set
of possible epistatic effects associated with PPIs. We
expect to identify more testable molecular mechanisms
using our approach as the identification and availability of
PPI evolves. A recent study of a large population identified
11 700 CNVs and revealed a more complete but complex
picture of the human CNV map (46). Being aware of the
limitations of the imperfect measurements and incomplete
database, we tried to demonstrate that we could identify
novel epistatic effects by combining the high-throughput

experimental measurements and statistical/bioinformatic
methods, rather than claiming an approach to screening
genome-wide epistatic associations.

Testing epistatic associations usually requires a larger
sample size; however, human CNVs overlapping with genic
regions tend to be less common (46). Because of the limited
size of the HapMap sample and the low allele frequency of
the measured CNVs, we were only able to test the epistatic
associations of two pairs of CNVs with putative interaction
effect. For the same reason, we were not able to test the race-
specific epistatic associations within each racial group.
Despite these limitations, our approach illustrates the use of
empirical data about the physical interaction among human
proteins to formulate a statistical model of testing epistatic
associations of complex traits such as gene expression
levels. This approach to investigating potential epistasis
creates a foundation for a whole range of future experimental
and epidemiological studies focused on understanding both the
molecular mechanisms and its impact of human disease risk.

MATERIALS AND METHODS

Sample and data

Two hundred and seventy subjects (210 unrelated) in three
racial groups were available from the HapMap project for
the current study. There were 60 unrelated subjects from
Utah; these individuals represent the United States Caucasian
population with Northern and Western European ancestry
(parents in 30 trios). There were 60 unrelated subjects col-
lected from the Yoruba people in Nigeria (parents in the 30
trios). Forty-five unrelated Han Chinese in Beijing, China
and 45 unrelated Japanese in Tokyo, Japan were collected
for the Asian group. All subjects gave specific consent for
their inclusion in the HapMap project (47).

The mRNA gene expression data for the HapMap samples
were obtained from Wellcome Trust Sanger Institute. The Illu-
mina’s Sentrix Human-6 Expression BeadChip (Illumina, San
Diego, CA, USA) was used to measure 47 294 human tran-
scripts. The quantification and normalization of the gene
expression data were described in a previous report (20).

Table 2. The epistatic effects of CNV pairs with P-value lower than 1024

Outcome Gene name CNV1 CNV2 BetaCNP1∗CNP2 SECNP1∗CNP2 P (CNP1∗CNP2)

GI_7706742-A TP53TG3 CNP865 (PCDHA4) CNP10140 (PCTDB1) 21.994 0.192 1.98 3 10220

GI_34222248-S MGC20553 CNP865 (PCDHA4) CNP10140 (PCTDB1) 20.997 0.177 5.99 3 10208

Hs.522383-S Hs.522383 CNP865 (PCDHA4) CNP10140 (PCTDB1) 20.297 0.058 8.96 3 10207

GI_45439310-I PPIA CNP865 (PCDHA4) CNP10140 (PCTDB1) 1.236 0.244 9.41 3 10207

GI_6005877-S SLC22A1LS CNP865 (PCDHA4) CNP10140 (PCTDB1) 20.952 0.200 3.89 × 10206

GI_15011899-A SYTL2 CNP865 (PCDHA4) CNP10140 (PCTDB1) 21.759 0.391 1.19 × 10205

GI_37675279-A JUB CNP865 (PCDHA4) CNP10140 (PCTDB1) 20.914 0.216 3.54 × 10205

GI_34147589-S LOC56901 CNP865 (PCDHA4) CNP10140 (PCTDB1) 21.102 0.261 3.70 × 10205

Hs_462524-S Hs.462524 CNP865 (PCDHA4) CNP10140 (PCTDB1) 20.206 0.050 5.27 × 10205

Hmm10297-S hmm10297 CNP865 (PCDHA4) CNP10140 (PCTDB1) 20.290 0.073 9.36 × 10205

hmm31138-S hmm31138 CNP109 (ARNT) CNP10282 (EPAS1) 20.097 0.014 2.06 3 10210

Hs.143656-S Hs.143656 CNP109 (ARNT) CNP10282 (EPAS1) 20.054 0.013 3.44 × 10205

Hs.459819-S Hs.459819 CNP109 (ARNT) CNP10282 (EPAS1) 20.057 0.014 4.15 × 10205

GI_42657279-S LOC401208 CNP109 (ARNT) CNP10282 (EPAS1) 20.108 0.027 9.10 × 10205

Epistatic interactions with significant P-value after adjusted for multiple testing are highlighted in bold.

Table 3. CNV main effects of gene expression levels of TP53TG3, PCDHA4
and SETDB1

Outcome Predictor
GE Probe Gene CNV Gene P-value

GI_7706742-A TP53TG3 CNP865 PCDHA4 0.351
GI_7706742-A TP53TG3 CNP10140 SETDB1 0.0065
GI_14165412-A PCDHA4 CNP865 PCDHA4 0.302
GI_41281392-S SETDB1 CNP10140 SETDB1 0.060

The first 10 PCs were used as covariates to adjust for the population structure of
the HapMap population. Bold value indicates P , 0.05.
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The CNV genotype data for the 210 unrelated HapMap sub-
jects were merged with their gene expression data using the
anonymous, unique identifiers.

Copy number variation analysis

The genotyping data for the 270 HapMap subjects were pro-
duced and distributed by Affymetrixw using the Genome-
Wide Human SNP Array 6.0 platform. Prior to CNV analysis,
the Contract QC (CQC) value was calculated for each chip
(Affymetrix 6.0) for each of the HapMap subjects using Affy-
metrix Genotyping ConsoleTM. All the studied chips passed
the CQC threshold of 0.4, which is recommended by Affyme-
trix for controlling genotyping quality.

We used the Affymetrixw Genotyping Console (GTC) 3.0.1
to generate a reference genome for comparing copy numbers
generated using all 270 raw intensity files (CEL files) from
the human SNP 6.0 array (Affymetrixw Genotyping Console
3.0.1 User Manual). Using the common reference genome
for comparisons, the intensity ratio of each probe (both SNP
probe and copy number probe) on each array was calculated.
The boundaries of the common CNV segments were deter-
mined using the predefined CNV regions (48). A hidden
Markov model (HMM) was utilized to call the copy number

state (i.e. the number of DNA copies, two for a diploid
genome) for each identified CNV. Genotype calls for the
common CNVs (observed in multiple unrelated subjects)
were determined using the Canary algorithms (48). The chro-
mosomal boundaries as well as the copy number states were
exported and utilized in the association analysis of gene
expression levels.

Identification of potential interacting CNV pairs

We retrieved 23 640 pairs of human PPI from BioGRID data-
base version 2.0.51 (http://www.thebiogrid.org/). The
BioGRID database was developed to house and distribute col-
lections of protein and genetic interactions from major model
organism species including human (18). Using 1141 CNV
regions identified in 210 unrelated HapMap samples, we ident-
ified 37 CNV pairs where both CNVs overlapped with the genic
region represented in a PPI pair. In this study, we define the
‘overlap’ as more than 1 bp in common between the CNV
region and the genomic region (including the 5 kb flanking
regions) of a given gene represented in the PPI pair. The annota-
tions (e.g. gene symbol and chromosomal locations) of human
genes were obtained from NCBI Built 36.1.

Statistical analysis

Population genetic parameters for CNVs (copy number states)
were calculated, including MAFs, genotype frequencies and a
chi-square test for departures from expectations under Hardy–
Weinberg equilibrium for the 210 unrelated subjects in three
racial groups. Summary statistics for CNVs and least-squares
linear regression models were estimated using the statistical
software R. Single CNV associations and CNV–CNV epi-
static associations with gene expression levels were evaluated
in the pooled HapMap samples using the linear regression
model. A single variable was used to represent the additive
effect of a CNV genotype (i.e. the copy number states of 0,
1 or 2 exported from Affymetrixw GTC 3.0.1 using Canary).

In this study, we pooled the three racial groups to increase the
power of the analysis and to adjust for population stratification
we used PC representations of the genetic variation in this
pooled sample in the linear regression models (49). Briefly,
906 602 SNPs were genotyped in the HapMap samples using
the Affymetrixw Genome-Wide Human SNP Array 6.0 plat-
form. SNPs were excluded if they had an unknown chromoso-
mal location, a call rate less than 95% or a MAF less than
0.05. These quality control filters resulted in 752 286 autosomal
SNPs available for analysis in 210 independent HapMap sub-
jects. The top 10 PCs of the 752 286 autosomal SNPs
(MAF . 0.05 and call rate .95%) were calculated and used
as covariates in the multivariable linear regression model of
testing epistatic associations of CNV pairs.

eQTL = b1PC1 + · · · + b10PC10 + b11CNV1 + b12CNV2

+ b13CNV1 ∗ CNV2 + e

b13 was tested to determine the statistical significance of the
epistatic associations of the CNV pairs.

Figure 2. Genotype-specific means of the gene expression level of TP53TG3.

Figure 3. A plausible molecular mechanism of the epistatic effect of
SETDB1–PCDHA4 associated with gene expression of TP53TG3.
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