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Abstract

Biological pathways are structured in complex networks of interacting genes. Solving the 

architecture of such networks may provide valuable information, such as how microorganisms 

cause disease. Here we present a method (Tn-seq) for accurately determining quantitative genetic 

interactions on a genome-wide scale in microorganisms. Tn-seq is based on the assembly of a 

saturated Mariner transposon insertion library. After library selection, changes in frequency of 

each insertion mutant are determined by sequencing of the flanking regions en masse. These 

changes are used to calculate each mutant’s fitness. Fitness was determined for each gene of the 

gram-positive bacterium Streptococcus pneumoniae, a causative agent of pneumonia and 

meningitis. A genome-wide screen for genetic interactions identified both alleviating and 

aggravating interactions that could be further divided into seven distinct categories. Due to the 

wide activity of the Mariner transposon, Tn-seq has the potential to contribute to the exploration 

of complex pathways across many different species.

Introduction

Genes (and their protein products) are organized in complex networks. Genetic interaction 

analysis on a genome-wide scale has the potential to connect genes and to increase 

understanding of such networks. Interactions between genes have been explored in 

Saccharomyces cerevisiae by systematically knocking out all possible pairwise 

combinations of genes, leading to identification of networks in important pathways such as 

DNA integrity1 and phosphorylation2. Such comprehensive genetic interaction screens are 

rare in microorganisms due to lack of genome-wide tools with wide applicability. Thus the 

development of a high-throughput tool for gene disruption and interaction discovery in 

microorganisms has great potential for improving the lagging functional annotation of 

microbial genomes and for resolving complex biological pathways.
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Three approaches have been developed to identify genetic interactions in S. 

cerevisiae3,4,5,6. Each makes use of an arrayed collection of single-gene deletion strains 

and robotic automation to construct double mutants by mating. Meiotic assortment is not 

applicable to bacteria; however, two analogous methods have been developed for 

Escherichia coli; GIANT coli and eSGA7,8. These methods use conjugation of a genome-

wide arrayed collection of single gene mutants to construct all double mutants. However, the 

applicability of these methods to a wide range of microorganisms is problematic because 

there are only arrayed collections of single gene knockouts for a handful of species.

A more generally applicable method to identify genetic interactions in bacteria is TraSH9, as 

well as related transposon-based genetic footprinting methods10. TraSH is based on the 

construction of a transposon library, the generation of probes from outward-oriented T7 

promoters located in the transposon ends and the subsequent detection of the probes by 

microarray. However, the accuracy of this and the related methods is somewhat limited 

because the precise location of an insertion cannot be directly determined, fitness cannot be 

determined for each insertion and can only be depicted as a relative fluorescence intensity 

ratio, and the need for a microarray restricts its use to strains for which microarrays have 

been developed.

Here we present Tn-seq, a robust and sensitive method for the discovery of quantitative 

genetic interactions in microorganisms through massively parallel sequencing. The approach 

does not depend on a pre-existing array of mutants but is instead based on the assembly of a 

saturated transposon insertion library. After growth of the library under a test condition, the 

change in frequency of each insertion mutant is determined by sequencing the transposon 

flanking regions en masse. The change in frequency reflects the effect of the insertion on 

fitness. Fitness of every insertion in a genome can be determined in this way and is a 

quantitative measure of the growth rate. We applied Tn-seq to S. pneumoniae, determining 

fitness for each gene and identifying those likely to be essential for basal growth. Finally, a 

genome-wide screen for genetic interactions of five query genes involved in transcriptional 

regulation and carbohydrate transport identified 97 high confidence interactions.

Results

Library selection, sequencing and fitness calculations

A genome-wide disruption library was established in S. pneumoniae with the Mariner 

Himar1 mini-transposon derivative magellan6. Magellan6 inserts randomly in the genome, 

requiring only a TA dinucleotide at the insertion site11. Following transposition in vitro, 

naturally competent S. pneumoniae were transformed with the transposed DNA resulting in 

a library in which each bacterium carries a single transposon insertion (Fig. 1). The library 

was grown in standard broth medium during which detrimental insertions decrease in 

frequency while advantageous ones increase. The change in frequency over time for each 

mutant was determined by en masse sequencing of the regions flanking the transposon 

insertions, such that a change in fitness translates into a change in the number of reads. This 

change is then used to calculate fitness for each insertion mutant (see Methods Online for 

details).
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Single gene fitness

To screen for genetic interactions it is necessary to measure the fitness effects of double 

gene mutations. First we need to measure fitness for each single gene disruption. For this, 

six libraries of ~25,000 insertions each were constructed in the wild type S. pneumoniae 

TIGR4. The libraries were grown in standard broth for ~7 generations after which DNA was 

isolated and the transposon junctions were sequenced. There was no insertional bias between 

coding and non-coding genomic regions, and there were 36 regions that had a ≥2-fold higher 

or lower number of insertions (Supplementary Table 1). Figure 2A illustrates how different 

transposon insertions distributed over a specific genomic region affect fitness. By averaging 

over all insertions in a specific gene we obtain a single fitness value for each gene 

(Supplementary Table 2). Genes were divided into four categories; neutral (fitness = 0.96–

1.04), advantageous (fitness > 1.04) disadvantageous (fitness < 0.96) and possibly essential 

(fitness = 0). Genes in the latter category correspond to those in which transposon insertions 

were absent in the sequenced library. Mutations in these genes either prevented or 

substantially slowed bacterial replication during outgrowth of the transposon insertion 

strains (also see below). Categorization was based on a one sample t-test with Bonferroni 

correction for multiple testing (also see Methods Online) (Figure 2B). We confirmed 68% of 

genes that were previously suggested to be essential in another serotype strain, R6 

(Supplementary Table 2). The 32% of unconfirmed genes may be due to strain differences.

The program GSEA12 was used to test for the enrichment of genes with a common 

biological function and a similar fitness effect. Eleven gene sets were negatively enriched, 

suggesting that they are advantageous for growth in this environment, and two were 

positively enriched (FDR<25%, nominal P value < 0.01), suggesting that they are 

deleterious for growth in this environment (Supplementary Table 3).

Validation of the method

To validate the reproducibility of Tn-seq, technical and biological replicates were 

performed. Technical replicates compared the same libraries that were split after DNA 

isolation. Reproducibility was very high with a Pearson correlation coefficient of 0.97 (Fig. 

3a). Biological replicates, which were done for all (six) experiments in this study, compared 

two or more independently established and selected-on libraries. Reproducibility between 

biological replicates was always high with a Pearson correlation coefficient between 0.70–

0.90 (Fig. 3b), and increasing correlations were found with increased experience. These data 

show that Tn-seq is highly reproducible both within and between independent experiments.

We failed to identify genes with fitness <0.53 but >0 (Fig. 3b and Supplementary Table 2). 

Since the generation time of such mutants is at least twice that of wild type (shown below), 

it is likely that such strains are rapidly outcompeted during construction and initial 

expansion of the library to the point that they fall below the threshold of detection by 

sequencing. Hence, the “possibly essential” genes listed in Supplementary Table 2 includes 

both essential genes and genes that are highly deleterious when disrupted.

It is possible that fitness determined using Tn-seq differs from fitness determined using the 

classical 1×1 competition. For instance, frequency dependent selection, an evolutionary 
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process where fitness of a genotype is dependent on its frequency relative to other genotypes 

in the population, may play a role. To address this possibility we measured fitness using 1×1 

competition for 30 mutants that were randomly picked from the library. No significant 

differences in fitness between the two methods were observed in a student’s t-test (all P 

values » 0.05, n > 5) (Fig. 3c).

Depending on the site of insertion within a gene, a transposon can affect fitness in a 

position-dependent manner13. For example, insertions close to the 5’ or 3’ end may not 

disrupt the gene due to alternate start sites or truncated but still functional gene products, 

respectively, and could give a false indication of fitness. However, in Tn-seq, fitness is 

determined by averaging over multiple independent insertions within the same gene (Fig. 

2a), minimizing the influence that positional effects have on fitness determination. To test 

for positional effects we re-analyzed the complete dataset by removing all insertions in the 

first or last 10% of each gene. Removing insertions in the first 10% of each gene did not 

change fitness, while removing insertions in the last 10% changed fitness marginally for 

only four genes (Supplementary Table 2). This confirms that positional effects are rare.

Transposon insertions within an operon may exert a polar effect on downstream genes 

leading to incorrect fitness assignments. Typically, such polar effects result from decreased 

expression of downstream gene(s). However, magellan6 lacks transcriptional terminators 

therefore allowing for read-through transcription and thus such polar effects should be 

minimized. Although it was not possible to screen for the presence of polar effects, we could 

screen for their absence. The absence of polarity is most apparent when a downstream gene 

in an operon has a severe fitness effect or is essential while the upstream gene has no fitness 

effect. We screened the genome for operons with an essential downstream gene and 

identified 37 such instances. Of those 37 operons, none contained an insertion in an 

upstream gene with a (severe) fitness defect, suggesting that polar effects are not a major 

confounder in our data [AU: OK as edited?] (Supplementary Table 2).

To confirm that Tn-seq accurately predicts fitness and also that a complete removal of a 

gene gives the same effect as averaging over multiple independent transposon insertions into 

the gene, we replaced the entire coding sequence of 16 genes with a drug marker. Of these, 

six had a Tn-seq-determined fitness between 0.95–1.05, five had a disadvantageous fitness 

of ≤0.8 and five had an advantageous fitness of ≥1.11. Fitness was compared between Tn-

seq and the conventional 1×1 competition method and no significant differences between the 

two methods were found in a student’s t-test (all P values » 0.05, n > 5) (Fig. 3c).

Because the expansion factor of the population over time was incorporated into the 

calculation of fitness, the resulting fitness value represents the change in frequency of a 

mutant within a population over a single generation. Thus fitness should correlate with the 

growth rate of the mutant strain. For instance, a 50% decrease in fitness (W = 0.5) should 

result in a 2-fold increase in doubling time. Confirming this, the doubling times for ten 

deletion mutants with reduced fitness were determined and were found to directly correlate 

with fitness (Table 1 and Fig. 3d). For instance, given the wild-type doubling time of 38 

minutes, mutant SP_1697 should have a doubling time of ~31 minutes ([1/1.22]*38), we 
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measured 31 minutes, and mutant SP_0841 should have a doubling time of ~54 minutes 

([1/0.71]*38), we measured 57 minutes.

Screening for genetic interactions

To assess the utility of Tn-seq in mapping genetic interactions we performed a genome-wide 

screen on five ‘query’ genes. Three of these are transcriptional regulators (ccpA, regR and 

malR) and two are ABC transporters involved in carbohydrate uptake (SP_1683 and malX). 

The former are all members of the LacI/GalR family of metabolic regulators.

In Bacillus subtilis, CcpA (catabolite control protein A) is a master regulator of genes 

involved in complex carbohydrate metabolism and controls gene expression by binding to 

catabolite response DNA elements (cre). Depending on where a cre-site is located, either 

upstream or downstream of the transcription start site, CcpA can respectively activate or 

repress transcription14. In S. pneumoniae inactivation of ccpA results in decreased in vitro 

fitness (0.84±0.04 s.e.m.) and decreased virulence in mouse models of colonization and 

infection15,16.

Loss of regR has a less dramatic phenotype than ccpA: although it has no in vitro growth 

defect it is involved in competence induction and virulence17. The third regulator MalR has 

so far only been implicated in the regulation of maltose uptake and metabolism18. The 

hierarchy among these three regulators led us to predict that we would find the most genetic 

interactions for ccpA, followed by regR and then malR. We also hypothesized that the 

dedicated ABC transporters (SP_1683 and malX) would have still fewer interactions. In 

addition, since malR regulates malX we expected to find overlap in the interactions of both 

genes.

Each of the five query genes was replaced with a drug marker and the fitness of each of the 

mutant strains was measured in 1×1 competition experiments and confirmed by Tn-seq. 

Three independent transposon libraries consisting of 10,000–25,000 insertions were then 

established in the background of each query gene knockout. Alleviating and aggravating 

genetic interactions were scored as a deviation from the multiplicative model and were 

divided into seven categories based on a student’s t-test with Bonferroni correction for 

multiple testing (Fig. 4, Supplementary Table 4 and see Methods). Relationships among 

genes were ordered in a single network (Fig. 4) and were supplemented with 41 additional 

interactions from the STRING19 database.

Most interactions were scored for ccpA (64) followed by regR (17) and malR (8), while the 

two transporters, SP_1683 and malX, have five and three interactions respectively (Fig. 4 

and Supplementary Tables 4 and 5), the latter sharing two of its three interactions with 

malR. Considerable overlap in interactions can also be observed between SP_1683 and malX 

(2 of 3), between SP_1683 and malR (4 of 5) and between SP_1683 and regR (3 of 5). The 

overlapping profiles suggest that all four query genes are involved in overlapping metabolic 

pathways, which was expected for malR and malX and possibly SP_1683 (since like malX it 

is also involved in carbohydrate uptake) but not for regR.
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The genetic interaction screen confirms two expected interactions for regR; the STRING 

database interaction with the mannose phosphotransferase system (SP_0325) and, by means 

of comF (SP_2207) and SP_2208, the connection between regR and competence. Other 

regR-interacting genes suggest its involvement in various metabolic pathways as well as in 

other processes.

Of the five query genes, ccpA had the most genetic interactions detected, consistent with its 

role as a regulator of many different processes in S. pneumoniae. To determine whether 

there is a link between genes interacting with ccpA and the presence of a cre sequence we 

screened the S. pneumoniae TIGR4 sequence for matches to the B. subtilis consensus cre 

sequence ‘WTGNAANCGNWWNCA’14. We found 275 out of 2087 genes (13%) with 

putative cre sequences (Supplementary Table 2). Out of the 90 genes present in the network, 

cre sequences were predicted for 27, of which 24 interact with ccpA (Supplementary Table 

4). Thus ccpA, with 38% (24/64) of its interaction partners carrying a cre sequence, interacts 

with three times more cre sequence-containing genes than would be expected from chance 

alone.

Half of the genes that interact with ccpA are involved in carbohydrate uptake and 

metabolism (32). Other large categories include uncharacterized genes (13) and 

transcriptional regulators (6). Three of the latter are part of the two component systems 

(TCS) TCS07 (SP_0156), TCS11 (SP_2001) and CiaR/H (TCS05; SP_0799). TCSs mediate 

communication between the environment and the cell interior. There is little known about 

TCS07 and TCS11 but CiaR/H has been found to regulate transcription of maltose 

utilization genes20. CiaR/H is also needed for S. pneumoniae to colonize the nasopharynx 

and is important for lung and systemic infections in mice21,22. We found an antagonistic 

interaction between ciaH and ccpA (fitness 0.46±0.04 s.e.m.) and suppressive interactions 

between ccpA and the maltose utilization genes malX/SP_2108 (fitness 0.78±0.02 s.e.m.) 

and malA/SP_2111 (fitness 0.71±0.03 s.e.m.). We interpret these interactions to indicate that 

ciaR/H and ccpA have overlapping profiles. Indeed, ciaR has a predicted cre sequence, 

suggesting it is subject to CcpA regulation.

Validation of genetic interactions

To validate the genetic interactions identified by Tn-Seq we deleted seven genes by 

replacement with a drug marker both in the wild type and ccpA backgrounds. Fitness values 

for all 14 mutant strains were confirmed by 1×1 competitions based on a student’s t-test with 

Bonferroni correction for multiple testing (Fig. 5a). Specifically, alleviating interactions 

were confirmed for SP_2001 (TCS05), ABC transporters SP_1957 and SP_0720 and 

metabolism gene SP_1123, and an antagonistic interaction was confirmed for amino acid 

metabolism gene SP_1029 (Fig. 5b). In addition, two interactions were confirmed between 

ccpA and the PTS genes SP_0476 (lacF-1) and SP_1185 (lacE-2), which are part of a small 

sub-network including four PTS genes, the hydrolase bgaA (SP_0648) and an 

uncharacterized gene SP_0475 (Fig. 5c).
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Discussion

Tn-seq can be used to determine the fitness conferred by single genes and to map genetic 

interactions in microorganisms. Unlike existing methods, Tn-seq does not depend on a 

preexisting genomic microarray or an array of gene knockouts, and its use of massively 

parallel sequencing makes it highly reproducible, sensitive and robust. Due to our method of 

library construction we were most successful in identifying nonessential genes with fitness 

above 0.53 and possibly essential genes with fitness equal to zero. Some of the genes listed 

as possibly essential may have a fitness between 0.53 and 0. Adjustments in library 

assembly should increase the dynamic range of the method (see Methods Online).

We recorded 97 high-confidence genetic interactions for five query genes in S. pneumoniae, 

with ccpA emerging as a so-called ‘hub’ gene. Similar to its role in B. subtilis, CcpA thus 

appears to be a master regulator in S. pneumoniae. Because of the sensitivity of Tn-seq we 

were able to determine different types of both aggravating and alleviating interactions. 

Specific genetic interactions can reveal direction of information flow in molecular 

pathways23,24. Here it is tempting to hypothesize that genes with an alleviating ccpA 

interaction represent deleterious genes that are repressed by CcpA in the growth condition 

we tested. In this scenario, knocking out ccpA results in derepression of the deleterious gene 

and a reduction in fitness. Subsequently knocking out the derepressed gene restores fitness.

We identified a sub-network containing interactions between ccpA, four PTS genes, the β-

galactosidase bgaA and the uncharacterized gene SP_0475. In other bacterial species, 

cytoplasmic β-galactosidases play an important role in lactose metabolism. However, in S. 

pneumoniae bgaA has a cell surface localization, and has so far only been associated with 

virulence25. From both the Tn-seq data and its interaction with ccpA we can determine that 

bgaA is important in basal growth, and through its association in the sub-network with two 

lactose PTS genes, that it may be involved in lactose metabolism. In addition, the occurrence 

of the uncharacterized gene SP_0475 in the same sub-network suggests that it too may be 

involved in PTS-regulated carbohydrate uptake and metabolism. We expect that expanding 

the number of query genes and environmental conditions will contribute substantially to the 

understanding of the general architecture of S. pneumoniae biological networks and will be 

very helpful in annotating the 30% of unknown genes.

The Tn-seq data presented here illustrates the potential of the developed method; each 

gene’s fitness can be rapidly determined in a specific environment without the need of first 

constructing a full genome knockout array. Since S. pneumoniae consists of >90 different 

serotypes and a gene’s specific role may be strain-dependent this is an important advantage. 

Moreover, Tn-seq can be easily applied to different environments (e.g. different growth 

media, chemical or physical stresses, or infection models). Finally, the Himar1 Mariner 

transposon can be used in many other microorganisms including E. coli26, Staphylococcus 

aureus27, Haemophillus influenza28 and Mycobacterium tuberculosis29. We thus expect 

that our method will open up the possibility to screen for genetic interactions across many 

different environments, strains and species.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic depiction of Tn-seq. (a) A gene disruption library is constructed by first 

transposing the mini-transposon magellan6 into bacterial genomic DNA in vitro and 

subsequently transforming a bacterial population with the transposed DNA. The result is a 

bacterial pool where each bacterium contains a single transposon insertion in its genome. (b) 

DNA is isolated from a portion of the bacterial pool (t1), another portion is used to seed a 

culture on which selection is performed, then DNA is isolated again from recovered bacteria 

(t2). (c) DNA from both time points is digested with Mme I; the Mme I restriction site was 
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introduced into the transposon’s inverted repeats. (d) A PCR amplification is performed to 

obtain a 160 bp sequence with 20 bp of bacterial specific DNA flanked by Illumina specific 

sequences, which enable sequencing. After sequencing, different samples are identified 

based on barcode sequence, the 20 bp reads are mapped to the genome and are counted for 

each insertion, thus allowing fitness to be calculated.
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Figure 2. 
Fitness determination and classification. (a) Independent insertions and their fitness effects 

in the genomic region from gene SP_0022 to SP_0025 are plotted. The black jagged line 

depicts the average fitness for each gene. (b) A pie chart categorizing every gene’s fitness in 

the S. pneumoniae genome into four categories.
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Figure 3. 
Validation of Tn-seq fitness measurements. (a) A technical replicate of the same library 

comparing the effect of sample preparation and sequencing. Pearson correlation coefficient 

= 0.97. (b) A biological replicate comparing two independently generated, selected upon and 

sequenced libraries. Pearson correlation coefficients between biological replicates ranged 

between 0.70 – 0.90. A representative example is shown. (c) Comparison of fitness (± 

s.e.m.) obtained with Tn-seq (yellow) and the classical 1×1 competition method (blue) for 

30 random transposon insertions and 16 marked gene deletions (*). Numbers underneath the 
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graph refer to Streptococcus pneumoniae TIGR4 gene numbers (SP_number). (d) Three 

representative growth curves; the wild type strain, a strain with an advantageous deletion 

(SP_1697, W=1.22) and a strain with a disadvantageous deletion (SP_0841, W=0.71).
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Figure 4. 
Genetic interaction network of five query genes. Interactions between two genes (i and j) are 

depicted as a line (edge) between two genes (nodes) and were determined by Tn-seq and 

supplemented with interactions from the STRING19 database (confidence >0.5; only edges 

were added and no nodes). Genetic interactions are divided into seven categories depicted 

underneath the network. Wi, fitness of mutant in gene i; Wj, fitness of mutant in gene j; Wij, 

fitness of double mutant. In the top section, genes i and j confer different fitness; in the 

bottom section, genes i and j have an equal fitness effect. This scheme results in seven color 

coded genetic interaction categories: synergistic (Wi=Wj<Wij), partial masking (Wi<Wj<Wij), 

masking (Wi<Wj=Wij), partial suppression (Wi<Wij<Wj), suppression (Wi=Wij<Wj), 

antagonistic (Wij<Wi≤Wj) and co-equal (Wi=Wj=Wij) (see Methods for further details). 

Arrows depict the hypothesized direction of the interaction. Nodes are color coded 
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according to their involvement in a biological process or molecular function. Numbers in 

nodes refer to Streptococcus pneumoniae TIGR4 gene numbers (SP_number).
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Figure 5. 
Validation of genetic interactions. (a) Fitness (± s.e.m.) of seven genes either knocked out 

singly or in combination with ccpA are compared between the 1×1 method (blue) and Tn-

seq (yellow). The expected multiplicative fitness for each double gene knockout is depicted 

in green (expected fitness was determined by multiplying ccpA fitness [0.84±0.04 s.e.m.] 

with fitness measured for the other gene). Numbers underneath the graph refer to 

Streptococcus pneumoniae TIGR4 gene numbers (SP_number). (b) A detail of the genetic 

interaction network showing five of the validated genetic interactions and their specific 
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interactions. (c) A sub-network from the larger genetic interaction network showing four 

PTS genes including two of the validated genetic interactions (SP_0476 and SP_1185), β-

galactosidase (SP_0648) and a gene with unknown function (SP_0475). Interaction colors, 

node colors and numbers are as in Figure 4.
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Table 1

Doubling time and fitness for wild type and ten marked deletions.

Strain
Tn-seq doubling time

fitness ± s.e.m. minutes ± s.e.m.

wild type 1 38.3 ± 1.0

SP_1697 1.22 ± 0.031 31.2 ± 1.6

SP_1464 1.13 ± 0.013 33.0 ± 0.9

SP_1463 1.16 ± 0.009 34.1 ± 0.8

SP_1421 1.20 ± 0.049 31.6 ± 0.8

SP_0593 1.11 ± 0.019 33.6 ± 0.8

SP_1360 0.73 ± 0.024 58.8 ± 3.0

SP_1026 0.80 ± 0.032 49.3 ± 1.4

SP_0927 0.73 ± 0.015 55.6 ± 3.5

SP_0841 0.71 ± 0.048 57.0 ± 2.8

SP_0623 0.79 ± 0.020 48.2 ± 1.6
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