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Abstract
The application of “omics” technologies to biological samples generates hundreds to thousands of
biomarker candidates; however, a discouragingly small number make it through the pipeline to
clinical use. This is in large part due to the incredible mismatch between the large numbers of
biomarker candidates and the paucity of reliable assays and methods for validation studies. We
desperately need a pipeline that relieves this bottleneck between biomarker discovery and validation.
This paper reviews the requirements for technologies to adequately credential biomarker candidates
for costly clinical validation and proposes methods and systems to verify biomarker candidates.
Models involving pooling of clinical samples, where appropriate, are discussed. We conclude that
current proteomic technologies are on the cusp of significantly affecting translation of molecular
diagnostics into the clinic.
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1 Introduction
Biomarkers are a cornerstone of medical care. In the acute care setting (e.g., emergency rooms),
blood biomarker measurements are routinely used to differentiate causes of patient symptoms
such as chest pain (troponins for heart attack) or abdominal pain (transaminases for hepatitis,
alkaline phosphatase for biliary problems, and human chorionic gonadotropin (β-hCG) for
pregnancy). Biomarkers also have a proven track record in other clinical applications such as
risk stratifying patients for preventive interventions [1], screening populations for early disease
detection [2], subtyping disease to facilitate molecularly tailored therapy [3], and monitoring
response to treatment [4]. Additionally, biomarkers spur the development of new generations
of therapeutics by providing accepted surrogates that reduce the cost of screening drugs in
humans (e.g., LDL cholesterol for risk of stroke or heart attack, viral load for HIV).

Given the tremendous track record of biomarkers for impacting patient care and the medical
community’s growing interest in personalized medicine, there is considerable activity toward
the development of more and better biomarkers. With the recent application of genomics and
proteomics technologies, hundreds-to-thousands of biomarker candidates are routinely
identified in biomarker discovery experiments, spawning great hope that a new onslaught of
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clinically useful biomarkers is imminent. However, enigmatically, diminishingly few new
protein biomarkers are achieving FDA approval [5], leading to a community that is disgruntled
and questioning the value of proteomic technologies to biomarker discovery [6–10].

In this article, we will focus on the development of novel biomarkers that can be measured
relatively noninvasively in plasma. We will review the current status of the biomarker
development pipeline, with a focus on biomarker verification, the stage of the pipeline where
our opportunities for improvement using emerging proteomic technologies are greatest. We
will argue that clinical proteomics in the post-genomics era is in its infancy, and despite having
produced no novel biomarkers to date, is poised to impact the clogged biomarker pipeline now
more than at any other time in history. We will propose one possible path forward to apply
emerging proteomic technologies in novel ways to improve flux through and overall success
of the biomarker pipeline.

2 Current status of the biomarker development pipeline
2.1 Overview

A schematic of the biomarker pipeline is shown in Fig. 1. The major stages in the pipeline are
shown including biomarker candidate identification, prioritization, verification, and clinical
validation. Additionally, typical numbers of candidate biomarkers making it through each stage
are shown, highlighting the aforementioned enigma wherein despite our ability to generate
long lists of candidates, a mere 0–2 per year are achieving FDA approval (across all diseases).

Low flux through the biomarker pipeline has been compared to that of the drug discovery
pipeline, for which a high failure rate [11,12] is responsible for the rising cost of bringing a
new drug to market, which is now approaching $1 billion [13,14]. Although the emergence of
molecularly targeted therapies will likely change the situation, diagnostics have historically
been perceived as being of lesser value than drugs [15]. Hence, diagnostics are reimbursed at
significantly lower levels than therapeutics, and inadequate reimbursement is a profound
impediment to development of new diagnostics [15]. Until this situation changes, we must
minimize the cost of developing new diagnostics if we are to succeed in bringing new tests
into clinical use.

In this article, we will discuss each stage of the protein biomarker pipeline, maintaining a focus
on how each stage impacts the overall success rate of the pipeline. This will naturally lead us
to a discussion of what can be done to improve our success rates (and reduce costs), especially
in the verification stage, the “tar pit” of the pipeline wherein the largest bottleneck is
encountered.

2.2 The high bar of clinical validation
Although it is the last step of the pipeline, we will begin our discussion with clinical validation
since it sets the context for all of the upstream steps. Validation is expensive and time
consuming, and the bar for success is daunting. It is not sufficient that a protein’s mean
abundance differs between populations of cases and controls and that a clinical-grade assay is
available; the successful protein biomarker must also perform responsibly and economically
in a given clinical scenario.

Each clinical scenario will have different requirements for success. For example, a biomarker
to be used for population screening for early cancer detection must meet very high standards;
millions of healthy people are screened, and the overall disease incidence is low leading to a
low pretest probability and high risk for false positives. Hence, to be beneficial, the test must
have extraordinarily high specificity (or it must have a more specific follow-up test), and there
must be a clinical intervention that will improve the quality of or prolong life.
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Let’s take prostate-specific antigen (PSA) as an example. PSA is a protein secreted by normal
and cancerous prostate epithelial cells. Currently PSA is the only serum- or plasma-based
population screening tool we have for any cancer. Blood PSA levels are used to screen men
over 50 years old for early diagnosis of prostate cancer. However, the specificity of this test is
low; only 25–30% of men with a PSA elevated at 7.0 ng/mL will actually have prostate cancer
on biopsy [16]. Hence, this low specificity screening marker (PSA) is coupled to a more specific
follow-up test (biopsy) for definitive diagnosis. The end result is that the poor specificity of
PSA leads to an annual cost of $750 million in unnecessary medical follow up [17]. There are
other issues with PSA screening. For example, ideally we would diagnose only disease that
will become clinically significant, otherwise intervention may cause more harm than good (this
is called “overdiagnosis”). For example, since PSA screening has achieved widespread use, a
man’s lifetime risk of being diagnosed with prostate cancer has increased to ~17%, yet his
lifetime risk of dying from prostate cancer is only ~3% [18,19]. So most men die “with” and
not “of” their prostate cancer, and overdiagnosis in this population has been a major problem
associated with significant treatment-related cost and morbidity.

In contrast to biomarkers for screening millions of mostly healthy individuals to detect
asymptomatic disease, a biomarker intended to diagnose patients who have presented with a
specific symptom must meet different minimum performance standards. For example, a patient
with chest pain has an elevated prior probability that he is having a heart attack compared to
the general population; because far fewer patients will be screened (only those with chest pain)
and the prior probability of a heart attack is elevated over the general population, the number
of false positive results requiring follow up will be much lower. These tailored clinical
requirements, coupled to the need to validate markers in thousands of individuals with clinical
follow-up information, create a situation wherein trials for validating biomarkers are lengthy,
multimillion dollar endeavors. Hence, it is absolutely essential that we give priority to investing
in clinical validation studies for only the most highly credentialed candidate biomarkers. In
other words, each step in the biomarker pipeline must be designed with the clinical application
in mind, rather than proceeding in a vacuum.

2.3 Biomarker candidate discovery
During the discovery of candidate biomarkers, a candidate database is populated via de novo
discovery using genomic and/or proteomic technologies and/or through the curation of
candidates from the scientific literature. Discovery efforts produce candidates (hypotheses),
not biomarkers [20], and these efforts are inherently error-prone for multiple reasons. First,
conventional technologies are not currently capable of globally interrogating biological
proteomes, resulting in low sensitivity for directly detecting putative protein biomarkers. This
is especially true for low concentration biomarkers or biomarkers resulting from disease-
associated mutations, aberrant PTMs, or alternative splicing. Second, although genomics
technologies are more comprehensive (and quantitative) than proteomics for discovering
candidates, the correlation between DNA or mRNA copy number and protein abundance is
imperfect [21–25], and thus many candidates discovered based on gene or mRNA copy number
will not be elevated at the protein level. Third, proteomic-based discovery of biomarkers
directly in plasma is challenging due to a small number of overwhelmingly high abundance
proteins [5]. Thus, increasingly, discovery efforts are focusing first on tissues or proximal fluids
for discovery, only moving to plasma once candidates have been identified. However, we have
no good rules for predicting tissue proteins likely to be successful as plasma biomarkers, and
the error rate is high. Fourth, discovery efforts are often poorly designed without clear
understanding of the nuances of interpreting high dimensional datasets, often leading to biases
[26] and high false discovery rates (FDR). Finally, discovery efforts rarely use pertinent clinical
information to prioritize markers that will ultimately have the highest likelihood of success in
the desired clinical setting. As a result, discovery efforts create large lists of candidate
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biomarkers, many of which may discriminate two classes of interest but are unlikely to meet
the high bar of clinical validation, as discussed above.

Certainly, we can stack the deck in favor of success during the discovery process by using
appropriate study designs that avoid bias, carefully estimating and controlling the FDR of our
discovery technologies, and integrating clinical information early in the discovery or
prioritization process. However, despite our earnest efforts to implement these measures, the
success rate for translating biomarker candidates into biomarkers capable of meeting the high
bar of clinical validation will still be disturbingly low. Our best hope for success is to relieve
the bottleneck of candidate verification (Fig. 1) and allow the maximum number of candidate
biomarkers to be tested, improving our odds of finding clinically useful markers. Strategies for
achieving this goal are discussed in detail below.

2.4 Biomarker candidate prioritization
Because discovery efforts generate more candidates (100s–1000s) than there are available
resources for follow up, an ill-defined prioritization step ensues. Often, candidates that show
the most significant differences between cases and controls in discovery datasets are
prioritized, without any information as to whether these may be the most useful analytes for
clinical decision making. For example, many such candidates are a part of a generalized
inflammatory response, and as individual clinical markers these are of very little diagnostic
use due to their lack of specificity [27].

Proteins discovered in diseased tissues and predicted to be secreted or on the cell surface (based
on the presence of a signal sequence, or N-linked glycosylation site) are often given priority
based on the assumption that they might have greater access to plasma [28]. A better
understanding of the biology of plasma biomarkers would help us develop meaningful criteria
for prioritizing candidates. For example, what are the predominant modes by which cellular
proteins from diseased tissues access the plasma? Should we be focused on proteins predicted
to be secreted, based on the abundance of secreted proteins amongst the known plasma
proteome [29], or does this rule not apply for proteins not in plasma by design, but rather leaked
or shed from diseased tissue? Alternatively, an additional targeted proteomics step such as
dynamic inclusion [30,31] or multiple reaction monitoring (MRM) MS [32] can be used as an
empirical prioritization step to test selected biomarker candidates to determine if they can be
detected in plasma.

Other times prioritization is done based on a biological hypothesis. For example, proteins acting
in cellular pathways known or hypothesized to be deregulated in the diseased state are targeted
for testing. Although there are examples of success using this approach [33], our biological
knowledge base is far too incomplete to rely entirely on this method for prioritizing candidates.
In this sense it will likely be of use to use gene expression and protein interaction network
analyses based on genomics data to refine candidate lists [34,35] by selecting candidates from
neighborhoods of interest within the network.

2.5 Biomarker candidate verification: The tar pit
To improve our success rate of moving candidate biomarkers successfully into clinical use, we
must accommodate the harsh reality described above wherein even if our discovery efforts are
honed to perfection, many candidates (perhaps the majority) will still not meet the high bar of
clinical validation. In other words, despite our best efforts, it is highly likely that the majority
of protein biomarker candidates will ultimately fail as useful clinical biomarkers. Hence, to
succeed, we must develop a staged pipeline that incorporates a verification step that allows us
to test (in pilot studies) the maximal number of candidates with highest possible throughput
and lowest possible cost to ensure even a few successes [36].
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Verification has a singular goal: to determine if there is sufficient evidence for potential clinical
utility of a given candidate plasma biomarker to warrant further investment in that candidate
for clinical validation studies. Because of the high cost (in terms of time, money, and
consumption of clinical samples) of follow-up clinical validation studies, these “pilot”
verification data are essential for credentialing a candidate to be moved forward.

In the current pipeline, the same assays are used for verification and clinical validation of
biomarkers. In an ideal world this is advantageous since measurement of biomarkers can vary
across different assays. One current assay often employed is the ELISA, which is
understandable since a well-functioning ELISA can be relatively high throughput and has
extraordinary sensitivity for quantifying the target analyte. Unfortunately, ELISA development
is costly ($100 000–$2 million per biomarker candidate) and associated with a long
development lead time (>1 year) and a high failure rate [37,38], making it impractical to
develop an ELISA for all putative biomarkers. As a result, even in the best-funded efforts, only
a few percent of total candidate biomarkers for any given disease are actually tested (Fig. 1),
not surprisingly leading to a high failure rate and an abysmal return on investment. Even if the
immunoassay is to remain the gold standard for ultimate clinical application of validated
biomarkers, we desperately need affordable bridging technologies to facilitate testing of a large
number of potential candidates [37] if we are to identify the few that are likely to be of clinical
use. To succeed, we must aim to increase our capacity in the verification stage by a 100-fold
or more (Fig. 1).

The remainder of this article will focus on: (i) an exploration of the technological capabilities
required for efficient verification of large numbers of candidates, (ii) a discussion of how
current and emerging proteomic technologies measure up to these requirements, and (iii) a
proposal for a staged approach to credentialing biomarkers in the most cost-effective manner.

3 Defining the platform requirements for verification studies
Let’s assume that a rigorously determined list of 1000 candidate plasma protein biomarkers
for detecting prostate cancer has been produced, and that the discovery process was well
orchestrated using a study design that avoided bias, used well-characterized technologies with
low FDRs, and that information on the likelihood of clinical relevance was also included in
the prioritization or discovery of these candidates (e.g., markers were generated that correlate
with clinical outcome). We lack sufficient resources to build ELISAs for all of these 1000
candidates, yet we would like to perform verification studies for as many of the candidates as
possible to maximize our chances to find the subset of the most clinically promising candidates
for validation studies. So we desperately need a novel experimental approach, and potentially
a new assay method, to measure 1000 candidates to accommodate our conundrum.

Let’s use known information about the PSA biomarker to define the boundaries of performance
that will be required of our new approach to candidate verification. As discussed above, despite
its widespread use, the performance of the PSA marker is marginal at best. Hence, we will use
its performance characteristics to set the minimum standard that we will accept in our ongoing
search for new markers for the detection of prostate cancer. In other words, we do not want to
aim to discover markers that perform worse than PSA; we will only aim to discover markers
that perform as well as or better than PSA.

Using the empirical distribution of PSA levels described from a previous population study
[16], we will simulate different experimental scenarios for verification studies. We will
consider two levels of candidate credentialing as part of the verification stage (Fig. 1):

i. Level one credentialing: demonstrating that the mean plasma levels of a given
candidate are significantly different between a population of cases and a population
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of controls. Once the mean levels have been determined in the two populations, a
statistical test (e.g., t-test) can be applied to assess the significance of any difference
between cases and controls. (For the PSA example, the average level in the cancer
group (7.63 ng/mL) is about 3.8-fold higher than the average level in the normal group
(2.01 ng/mL; see Table 1 for statistical power).

ii. Level two credentialing: pilot measurement of the performance characteristics (i.e.,
sensitivity and specificity) of the candidate marker in the desired clinical setting to
estimate its likelihood of success in a subsequent larger clinical validation study.

As we will demonstrate, it is useful to divide verification into these two levels of credentialing
because the technology requirements (sample throughput, assay precision, assay multiplexing)
differ between them. For example, we will argue that although biomarker candidates must be
measured in individual patient samples for level two credentialing, a pooling strategy is
possible for level one credentialing. Pooling is potentially advantageous since pooling plasma
samples from multiple individuals provides an opportunity to reduce sample numbers (and
hence throughput requirements), reduce the sample volumes required from individual clinical
samples, and reduce the cost of verification. Reduced throughput requirements are a major
advantage early on in verification, since this allows us to accommodate workflows that are too
cumbersome and imprecise for validation studies, but that may provide a fast and relatively
cheap way to screen a large number of candidates (see below).

Table 1A–C show the results of simulating different experimental scenarios for level one and
level two credentialing, respectively. The statistical power for detecting PSA as a potential
biomarker in plasma is calculated for various assay precisions (coefficient of variation, CV),
numbers of samples (N), and numbers of replicate assays performed. Here statistical power is
defined as our probability of detecting a biomarker with our assay given that the marker is
differentially expressed between case and control; ideally, our experimental design should be
associated with as high of a statistical power as possible (to avoid false negatives), minimally
>90%. For level one credentialing, two study designs are considered: one using pooled plasma
from multiple individuals (Table 1A.1, 1B.1) and another using individual plasma samples
(i.e., not pooled; Table 1A.2, 1B.2). Several important conclusions can be drawn regarding the
performance requirements of our ultimate verification workflow.

For level one credentialing, if we want ≥90% power to detect PSA as a potential biomarker
worthy of further study (i.e., mean plasma levels significantly differ between case and control
populations), we find that:

i. We can achieve our goal using either pooled samples or by analyzing individual
samples.

ii. Pooling is advantageous whenever the sample size is limited since the impact of
sample size is much less for pooled samples than for individual analyses.

iii. Pooling is also advantageous wherever the cost and/or throughput of each experiment
are limiting. For example, if we fix the CV = 0.5 and N = 10, the pooled strategy
would require 20 experimental runs (ten replicates each of one case pool and one
control pool) to achieve 96.8% power to detect PSA as a potentially useful marker.
In contrast, the individual analyses strategy would require 60 experimental runs (three
replicates each of ten cases and ten controls) to achieve comparable power (94.2%).

iv. If adequate numbers of clinical samples are available, and if the cost and throughput
of experiments is not a concern, then an individual sample design should be chosen
for two reasons: (a) Analyses of individual samples will ultimately be required for
clinical validation of candidate markers, so that operating characteristics (e.g.,
sensitivity and specificity) can be determined (Table 1C); (b) a drawback to pooling
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lies in the reduction of bimodal populations to a single, more homogenous population.
If there is heterogeneity in the disease population (e.g., molecular subtypes of cancer
such as hormone-responsive vs. hormone-resistant cancer) resulting in the target
biomarker’s being elevated in only a subpopulation (S), this marker could be lost by
pooling, depending on the size of the subpopulation. This is demonstrated in Tables
1B.1–B.3 where we repeat the simulation assuming two disease subtypes within the
cases with or without prior knowledge of these subtypes. If we have no prior
knowledge regarding the presence of disease subtypes in our case population and if
sample numbers are small (<200 cases), a pooling strategy works best even if there
are two subtypes of disease in the case population. For example, if a given biomarker
is elevated in only 20% of the case population and we fix the assay CV = 0.2 and N
= 50, a pooling strategy would give us a 75.6% chance of detecting the marker in the
subpopulation (assuming five replicate measurements per pool = 10 measurements
total; Table 1B.1), whereas an individual strategy would only give us a 37.7% chance
of detecting the marker in the subpopulation (assuming one measurement per sample
= 100 assays total; Table 1B.2), Although this is initially counterintuitive, the enlarged
variation in the case population (due to the presence of two subtypes) makes the
individual strategy less favorable until sample size becomes larger (N>200). It is also
noteworthy that at sample sizes <200, pooling not only provides greater statistical
power but also lower-throughput requirements, as in the example just discussed (10
vs. 100 assays required). If we do have prior knowledge about the two subtypes of
cases in our study population (i.e., the clinical samples are annotated to allow us to
identify the two subpopulations), then the individual strategy is clearly most
advantageous (Table 1B.3).

v. It is apparent from Table 1 that precision (CV) has a major impact on our statistical
power. Hence, to maximize our capacity to test candidates, it is imperative that we
optimize our verification assay workflows to ensure the highest precision possible
and institute Standard Operating Procedures (SOP) to ensure that we consistently
achieve high precision. For example, in the individual sample analyses of a
homogeneous disease population (Table 1A.2) where N = 10 and CV = 0.2, 20 sample
analyses (one replicate for each of ten cases + ten controls) must be performed to
achieve power = 93%; in contrast 60 sample analyses (three replicates for each of ten
cases + ten controls) would be required to achieve comparable power (92.2%) using
a platform with CV = 0.8. Thus, a platform with CV = 0.2 has 3×greater capacity to
test candidates than a platform with CV = 0.8.

Based on the above considerations, in order to achieve level one credentialing (for a candidate
typified by PSA and a homogeneous disease population), we will need plasma samples from
20 cases and 20 well-matched controls. Additionally, we need to devise an assay technology
with the following characteristics

i. Capacity to test 1000 candidate biomarker proteins over a several month period;

ii. sensitivity ≤nanogram per milliliter in plasma;

iii. assay CV≤0.5;

iv. throughput to run up to ten replicate measurements per candidate.

If the target biomarker is elevated in only a subset (S) of the case population of which we have
no prior knowledge, our requirements are more stringent. In this scenario, we will need >100
samples (depending on the prevalence of the disease subtype in which the biomarker is present;
Table 1B) and assay CV ≤ 0.2 to detect a marker elevated in at least 20% of the case population.
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For level two credentialing, our goal is to identify the subset of candidate markers most likely
to meet the minimally acceptable sensitivity and specificity in a given clinical setting. Hence,
we must perform a pilot study to characterize the distribution of the marker in the population,
allowing us to estimate its sensitivity and specificity. The success of this step relies on how
accurately the sensitivity and specificity can be measured; therefore, assay precision (CV)
again plays an important role. As we can see from Table 1C, a large CV will result in
underestimation of sensitivity and specificity. For example, for PSA the actual sample
sensitivity is 73.9% and sample specificity is 88% [16]. In our simulation, when CV = 0.5 the
estimated sensitivity is about 65%, which is 8.9% lower than the true sensitivity of PSA based
on the population study [16]. In addition to using a precise assay, a larger number (100s–1000s)
of individual patient samples (Table 1C) will be needed compared with level one credentialing.
For example, for the estimation of sensitivity (Table 1C.1), around 1000 cases and 1000
controls would be needed to get a 90% confidence interval (CI) spanning less than 5% (i.e.,
CI = (x − 2.5%, x + 2.5%)); or more than 5000 cases and 5000 controls will be needed to get
a CI spanning less than 2% (i.e., (x − 1%, x + 1%)). These requirements can also be viewed
from another angle. In order to have 90% power to identify PSA as a good candidate marker
worthy of follow up (i.e., 70% sample sensitivity and 85% sample specificity), we would need
500 cases and 500 controls with a CV = 0.15. By comparison, this would require a couple of
thousand cases and controls with a CV = 0.25.

Based on the above considerations, in order to achieve level two credentialing for a marker
similar to PSA, we will need plasma samples from a minimum of 500 cases and 500 well-
matched controls. Additionally, we need to devise an assay technology with the following
characteristics:

i. Capacity to test 100s candidate biomarker proteins over a few month period;

ii. sensitivity ≤ nanogram per milliliter in plasma;

iii. assay CV≤0.2;

iv. throughput to run up to 1000 measurements per candidate biomarker.

Note that level two credentialing is still just a pilot study using limited throughput assays to
determine if a candidate is trending toward utility and therefore worthy of making a better high-
throughput clinical-grade assay. True clinical validation, however, will require an even larger-
scale case-control or cohort study in order to carefully examine the impact of other covariates
on the proposed marker test, to determine the positive predictive values and false referral
probabilities in real practice, and to compare or combine the new test with existing clinical
tests. Although candidates showing promise in pilot level two credentialing studies may still
not pass the test of ultimate clinical validation, level two credentialing is important because it
allows us to advance only the most promising of candidates forward to clinical validation trials,
thereby saving time, money, and clinical specimens and helping to maximize our return on
investment.

It should be noted that the power calculations described in Table 1 are based on known
distributions of PSA levels in the cancer and the normal populations. Hence, these results can
be generalized to other biomarkers showing similar population distributions, but markers with
vastly different distributions would require that new calculations be performed based on the
specific behavior of that marker. In the absence of knowing the population variation for markers
yet to be discovered, it is useful to look at a well-studied example such as PSA to provide
general guidance in planning verification studies.
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4 Proposed staged approach to biomarker verification and validation
The further along in the biomarker pipeline that a candidate moves, the more time and resources
become invested in that candidate. Hence, it is prudent for us to advance candidates through
sequential, economical stages, each stage requiring additional credentialing for a given
candidate to be advanced (Fig. 1). Based on the above statistical considerations (Table 1), one
possible staged workflow for biomarker candidate verification and validation is described
below.

4.1 Level one credentialing ($)
The goal is to determine if the mean levels of each of ~1000 candidate protein biomarkers
differ between case and control populations to allow selection of a subset of most promising
markers for further investment in assay development. Table 2 summarizes the reagents cost,
lead time, sensitivity, throughput (working assay), and sample consumption for several existing
and emerging technologies for measuring protein levels. If resources were unlimited, we would
generate antibodies/immunoassays for each candidate so that we could achieve the highest
possible sensitivity for detecting the candidates in plasma. Unfortunately, for the vast majority
of protein biomarker candidates there will be no commercially available antibody, and
generating antibodies to all of our 1000 candidates is cost- and time-prohibitive (estimated cost
>$2 million; lead time 9–12 months).

One emerging alternative to the immunoassay is to use MRM-MS/MS to verify candidate
biomarkers. This targeted mode of MS is well entrenched in clinical chemistry laboratories
where it is used to measure “small” molecules such as drug metabolites [39,40]. MRM differs
from the typical shotgun MS/MS-based approaches used in discovering biomarker candidates
in that MRM is a targeted technique directed to measure proteotypic peptides with known
fragmentation properties. In MRM, a specific precursor ion (corresponding to a proteotypic
peptide) and a specific fragment ion are selected by the MS1 and MS2 modes of the mass
spectrometer, respectively. The instrument cycles through a number of precursor/fragment ion
pairs (dubbed “transitions”) sequentially, and records the signal over time (the
chromatographic elution of the analyte) [41]. The combination of precursor/fragment ion
masses and retention times of multiple transitions from the same peptide result in high
specificity for the targeted peptide. In addition, the instrument is only analyzing a subset of
ions present in a complex mixture (reducing the overall chemical background) resulting in a
substantial increase in sensitivity. The MRM experiment is ideally suited to triple quadrupole
instruments [41,42]. Recently, LC-MRM-MS/MS has been coupled to stable isotope dilution
methods to measure concentrations of proteotypic peptides as surrogates for quantification of
biomarker candidates in complex biological matrices such as tissue lysates and plasma [32,
43–50]. Assay linear ranges in plasma typically span four to five orders of magnitude with CVs
<20%.

The capability of multiplexing many peptides into a single run is an important advantage in
using MRM-MS/MS. A triple quadrupole operated in MRM mode is capable of monitoring
100 peptides or more in a single run, depending on the number of time segments [45]. Recent
improvements in acquisition software allows for scheduling MRM transitions at specific time
points in a chromatographic separation [51], increasing the number of transitions that can be
monitored in a run to around 1000, drastically improving the multiplexability. Recent work
demonstrating quantitative MRM using a MALDI source also has the potential to dramatically
improve sample throughput [52].

The primary limitation for applying LC-MRM-MS/MS directly to plasma samples for
biomarker verification studies is sensitivity. Typical LOQ are in the range of 100–1000 ng/mL
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of target protein in plasma [32,45,48]. Most novel and specific biomarkers are expected to
occur at ≤ nanogram per milliliter levels.

Recently, it has been shown that coupling MRM-MS/MS with minimal fractionation of plasma
dramatically improves the sensitivity, raising hope for measuring candidates directly in plasma
[46,51]. In these approaches, plasma is subjected to minimal fractionation using N-
glycopeptide enrichment [51] or abundant protein depletion and strong cation exchange
chromatography at the peptide level [46] prior to LC-MRM-MS/MS. For example, coupled
with stable isotope dilution, using abundant protein depletion and SCX is multiplexable and
able to achieve LOQ in the 1–10 ng/mL range without immunoaffinity enrichment of either
proteins or peptides. However, this workflow is somewhat laborious, and its many steps will
likely introduce experimental variation from run-to-run. In addition, the analysis timeframe is
lengthened by the number of fractions analyzed by LC-MRM-MS/MS, limiting the sample
throughput. Also, although the coefficients of variation for the MRM step range from 3 to 15%,
reproducibility of fractionation and/or enrichment steps, such as abundant protein depletion
and strong cation exchange chromatography, has not been assessed and will almost certainly
introduce additional noise. Nonetheless, as discussed above (Table 1A.1), although a workflow
that is limited in sample throughput and is associated with a CV≤0.5 would not be sufficient
for level two credentialing or clinical validation, it would be perfectly acceptable for level one
credentialing, where pooled samples and higher CVs can be tolerated.

In applying this approach to our hypothetical biomarker candidates, purchasing stable isotope
standard (SIS) peptides for each of the 1000 candidate proteins would be cost-prohibitive.
Hence, we propose that before investing in costly SIS peptides, LC-MRM-MS/MS can be
performed semi-quantitatively by normalizing the amount of total peptides loaded on column
across samples, or by using MRM transitions from nonchanging proteins in the sample to
normalize the candidate response. As has been demonstrated [32], this semiquantitative look
at candidates successfully allows triage of only those showing initial promise for further
resource investment, and allows us to test literally hundreds-to-thousands of candidates with
a minimum of upfront investment. Ideally (depending on resources), all markers meeting
significance (using a statistical test such as the t-test) in level one credentialing will enter the
level two credentialing. (For our specific PSA example, markers with ≥4×change would have
approximately 90% chance of being truly different between the groups (Table 1)).

Even with limited fractionation, sensitivity remains a major limitation in this stage of the
pipeline. For example, some candidates may be present in plasma at too low of abundance for
detection in this workflow, yet be useful biomarkers that could be detected with higher
sensitivity (affinity based) assays. We have no way of identifying these candidates without
investing in high sensitivity assays, so we will still potentially have a high false negative rate
for this class of candidates.

4.2 Level two credentialing ($$)
The goal is to estimate each marker’s sensitivity and specificity to determine if the marker
shows sufficient promise to warrant a full clinical validation trial. This will require quantitative
measurement of the candidate markers in many hundreds of individual patient samples with a
CV≤0.2 (Table 1C.3), and hence will require a different workflow than that proposed above
for level one credentialing.

Specifically, for level two credentialing an affinity reagent will need to be generated to enrich
each candidate in a onestep, highly precise, preferably automatable process. A technique has
recently been described that achieves these goals [37,38,53]. In this technique, Stable Isotope
Standards and Capture by Antipeptide Antibodies (SISCAPA), immobilized affinity-purified
antipeptide polyclonal antibodies are used to capture specific peptides of interest [37]. Captured

Paulovich et al. Page 10

Proteomics Clin Appl. Author manuscript; available in PMC 2010 October 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



peptides are subsequently eluted and detected by MRM-MS/MS. Quantitative results can be
obtained by spiking in SIS peptides at known concentrations prior to immunoaffinity capture.
The concentrations of the measured peptides are then used as surrogates for the concentrations
of the biomarker protein candidates. This technique, using affinity-purified polyclonal
antibodies, has been shown to achieve LOQ in the nanogram per milliliter range in plasma
[32,38]. Furthermore, selection of very high-affinity mAb is expected to further improve the
sensitivity of the SISCAPA method.

The need for an antibody as well as a SIS peptide significantly raises the cost of level two
credentialing over that for level one credentialing; reagents alone will cost ~$3000 per
candidate tested (Table 2). Hence, we will likely be limited to testing 100s of candidates.

4.3 Validation ($$$)
Promising candidate biomarkers identified during level two credentialing will then be validated
in real clinical practice, where the impact of other clinical covariates on the proposed test will
be investigated. Positive predictive values and false referral probabilities at the population level
will be determined. Additionally, panels of markers or perhaps the predictive value of changes
in marker levels over time within an individual will need to be assessed. These complexities
require a clinical-grade assay capable of high throughput and accurate measurements; hence
the assay reagents must be well characterized and renewable, requiring that a mAb be
generated. This further increases the cost and time investment in each candidate compared to
level two credentialing (Table 2), and it is likely that resources will limit the numbers of
candidates that can be tested to 10s.

As discussed above, the immunoassay is the conventional protein concentration assay format
in the clinical setting; the ELISA is a well-known example. Despite its widespread use and
favorable characteristics (quantitative, sensitive, high throughput), the ELISA does have some
disadvantages [54,55]. First, the creation of a sandwich immunoassay requires generating two
different antibodies that both recognize the native protein and are free from steric interference
with one another. Second, interfering autoantibodies can mask the surface features recognized
by reagent antibodies [56,57], a rarely appreciated problem in the clinical laboratory. Third,
endogenous, nonspecific heterophilic antireagent antibodies can cause falsely elevated protein
concentrations in as many as 3% of human samples [56,58–60]. While it has less significance
in the verification of potential biomarkers, a fourth disadvantage that plagues immunoassays
in clinical settings is a lack of standardization. It is extremely uncommon for the clinical
community to have access to truly useful standard materials that permit comparisons between
the assays that were used to validate biomarkers and the many assays that might be used
clinically at different centers [61].

The SISCAPA technology described above is one potential alternative to the ELISA.
Advantages of SISCAPA are that (i) it only requires one antibody and so is cheaper; (ii) the
antibody need not recognize the native protein, only a proteotypic peptide, so is easier to
generate; (iii) the mass spectrometer essentially acts as the secondary antibody, so specificity
is absolute; (iv) it is highly multiplexable and consumes small volumes (microliters) of clinical
plasma specimens; (v) it directly detects antigen-derived peptide normalized to a stable isotope-
labeled internal standard peptide, which could be easily standardized across laboratories. A
disadvantage of SISCAPA is that the use of quantitative targeted MS methods requires that a
proteotypic peptide be an accurate surrogate for measuring protein biomarker abundance. The
validity of this assumption is threatened by the imperfect nature of trypsin digestion, for which
no current standards exist. To avoid this source of error, some recent work has demonstrated
the use of stable isotope-labeled proteins as standards in immunoaffinity-enrichment coupled
to quantitative MS [62]. The verdict is still out as to whether, after further development, the
SIS-CAPA-MRM technology will ultimately replace (or complement) the ELISA as a gold
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standard for clinical diagnostics, or whether it will “simply” provide a desperately needed
bridging technology between verification and validation studies [36,37].

5 Unmet needs
Given conventional capabilities, it is imperative that we develop a practical biomarker pipeline
allowing pilot testing (verification) of thousands of protein candidates in hundreds of patient
samples in a reasonable timeframe (<1 year) so that only the most promising candidates are
triaged for lengthy and costly clinical validation studies. There are many unmet needs that
could dramatically impact our success in assembling such a pipeline.

For example, the poor availability and often unacceptable quality of commercially available
antibodies necessitates expensive and time-consuming de novo reagent generation for most
candidates. As is being addressed
(http://proteomics.cancer.gov/programs/reagents_resource/), there is a tremendous
opportunity to partner with industry as well as academic efforts [63]
(http://www.proteinatlas.org/) to generate well-characterized affinity reagents to the human
proteome. If the immunogens were properly designed to support MS applications, these
reagents would be invaluable for the biomarker pipeline described herein.

Additionally, ongoing efforts to clone, tag, and purify human proteins [64,65] have the potential
to greatly facilitate MRM-based biomarker candidate verification. The choice of the
proteotypic peptide for monitoring is critical in constructing a successful assay. Small-scale
purification of biomarker candidate proteins would allow LC-MS/MS analysis of the candidate
proteins and thereby facilitate empirical selection of high-performing proteotypic peptides and
transitions for targeted MS/MS analyses in complex human specimens. Without the ability to
generate these empirical data, one must rely on mining of large proteomic databases (e.g.,
PeptideAtlas [66], Global Proteome Machine Database [67], PRIDE [68]) for peptides seen
frequently or at relatively high intensity. Unfortunately, not all proteins of interest are
represented in the databases and the extent of variability in manufacturer/instrument platforms
for choosing proteotypic peptides remains to be determined. Recent attempts have been
described to computationally predict proteotypic peptides, but the generality of this approach
remains untested [69].

Technological improvements that increase the sensitivity of targeted LC-MS-based proteomic
measurements of candidate proteins [70,71] will also greatly improve our success rate by
decreasing our false negative rate during level one credentialing. It is also conceivable that if
the sensitivity of the instrument platforms can be improved ≥104, we may no longer rely on
the generation of antibodies. This would tremendously decrease the cost and lead time for
testing candidates and allow the number of candidates that can be tested in validation studies
to be increased ≥100-fold. In the meantime, the generation of high-throughput, affordable,
highly reproducible depletion, or fractionation technologies that further improve our sensitivity
for measuring low abundance analytes will further improve the pipeline’s success.

On a biological front, the acute phase (aka host or inflammatory) response has been extensively
slandered in the biomarker world, since the predominantly abundant proteins whose levels
change as part of this response are not altered in a disease-specific pattern. Hence, due to their
low specificity, they are considered to be diagnostically of little or no value. However, little is
known about this host response, except for a handful of proteins. An organized effort to
systematically characterize this response on a more global level would aid the biomarker field
either by allowing us to eliminate these proteins from further consideration or alternatively by
revealing that when they are considered more comprehensively they may actually have
diagnostic value in some clinical settings.
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As targeted proteomic platforms become more sensitive and as high-quality reagents become
available for all human proteins, it will someday become possible to build sensitive, targeted
assays for the entire proteome, merging the discovery and verification stages of the biomarker
pipeline and allowing us to truly comprehensively test for protein biomarkers. Until this time,
we will be dependent on a hypothesis-driven approach to selecting biomarker candidates for
testing. Genomic technologies provide excellent sources of biomarker candidates via gene
expression profiling and DNA copy number measurements. Sequencing and tiling arrays
provide the opportunity to discover disease-associated mutations, novel fusion proteins, or
splice variants that may show high specificity as biomarkers. Additionally, for many diseases,
well-characterized disruptions in normal physiology or cell biology may provide a source of
hypothesis-driven candidate selection such as angiogenesis in cancer.

Finally, the daunting, costly, complex, interdisciplinary effort required to move a candidate
through from discovery to validation creates a situation where there is no feedback loop because
those doing the actual discovery are often unaware of the outcome of the downstream follow
up. Oftentimes, proteomic core facilities are paid (or collaborate) to generate biomarker
discovery datasets for investigators studying a particular disease of interest. Lists of identified
protein candidates, with some estimate of their relative abundances in cases versus controls,
are then passed back to the primary investigators for follow-up studies that largely involve a
painfully uninformed prioritization of candidates followed by costly and lengthy assay
generation. Not surprisingly, the success rate of this approach is abysmal. These failures should
not be misinterpreted as evidence that proteomics is not a worthwhile endeavor; rather, they
are evidence that we need better integration. Currently, there is a disconnect between the
discovery, verification, and clinical validation stages, making it impossible for paradigms to
emerge that will iteratively improve performance. The recent application of LC-MRM-MS/
MS methods to candidate verification provides us a new and exciting opportunity to keep
proteomic centers engaged in the biomarker pipeline beyond basic discovery, and will thereby
provide them with a valuable feedback loop about the unique issues of biomarker discovery
proteomics compared to the more familiar protein-cataloging proteomics, and thereby facilitate
iterative changes to improve overall success rates.
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Figure 1.
Current and desired flux of candidates through the biomarker discovery pipeline. Note that
despite our ability to generate long lists of candidate biomarkers using omics approaches, a
mere 0–2 per year are achieving FDA approval (across all diseases). Our immediate goal is to
improve this process 100-fold, which may be possible using a staged approach with sequential,
cost-effective credentialing of candidate biomarkers. If conventional proteomics is to meet its
promise for delivering molecular diagnostics, we must hone our ability to credential candidates
in the most cost-effective manner. One approach is to stage candidate credentialing such that
a small amount of resources are invested in early testing of a very large number of candidates,
whereas greater resources are invested for assay development in only the subset of candidates
showing greatest promise for clinical utility.
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Table 1

Power calculations for case-control studies using PSA as an examplea)

(A) Level 1 credentialing (verification) in a homogeneous disease populationb)

CV Replicates N = 5 N = 10 N = 20

A.1 For the pooling of N case samples and N controls samples in a homogeneous disease population

0.8 3 30.0 30.5 30.6

5 50.4 51.1 51.6

10 78.0 79.7 81.2

15 88.2 91.7 93.7

20 91.8 95.6 96.9

0.5 3 51.0 52.3 52.4

5 79.0 81.7 83.5

10 93.1 96.8 98.3

15 96.0 98.8 99.8

20 97.2 99.3 99.9

0.2 3 93.0 96.0 97.0

5 97.4 99.6 100

10 98.5 99.8 100

15 98.7 99.8 100

20 98.7 99.9 100

A.2 For comparing N individual case samples and N individual controls samples in a homogeneous disease population

0.8 1 30.0 60.7 88.3

3 63.7 92.2 99.5

0.5 1 47.4 83.1 97.8

3 67.6 94.2 99.7

0.2 1 66.0 93.0 99.7

3 68.6 95.0 99.8

0.1 1 67.0 99.8 100

3 70.8 100 100
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