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Type I and II interferons (IFNs αβ 
and γ) have opposing effects on 

immune resistance to certain patho-
genic bacteria. While IFNγ generally 
plays a protective role, IFNαβ exac-
erbates Listeria monocytogenes and 
Mycobacterium tuberculosis infections. 
Our findings provided evidence that this 
increased susceptibility reflects a novel 
antagonistic cross talk between IFNαβ 
and IFNγ. Macrophages infected with L. 
monocytogenes strains that induce IFNαβ 
production responded poorly to IFNγ as 
measured by reduced phosphorylation 
of STAT1 and reduced IFNγ-dependent 
gene expression. The impaired respon-
siveness to IFNγ correlated with reduced 
expression of its receptor, IFNGR, by 
both infected and bystander macro-
phages. Downregulation of IFNGR was 
dependent on responsiveness to IFNαβ 
and mimicked by recombinant IFNβ. 
Mice lacking responsiveness to IFNαβ 
(IFNAR1-/-) retained high IFNGR 
expression, developed higher expression 
of MHC-II on macrophages and DCs, 
and were more resistant to systemic L. 
monocytogenes infection—but only in 
the presence of IFNγ. Thus, the ability of 
IFNαβ to downregulate IFNGR provides 
an explanation for its ability to reduce 
responsiveness to IFNγ and to increase 
host susceptibility to bacterial infection. 
It remains to be determined whether and 
how such antagonistic interferon cross-
talk benefits the host.

Recognition of microbial products by 
mammalian Toll like, Nod-like and other 
receptors leads to the rapid synthesis and 
secretion of diverse immune regulatory 
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cytokines and chemokines. Amongst the 
cytokines produced at early times after 
intracellular bacterial infection are the 
type I and II interferons IFNαβ and IFNγ. 
IFNαβ and IFNγ regulate the activation 
of macrophages, DCs, natural killer (NK) 
cells and T cells. The interferons also influ-
ence chemokine production by immune 
and somatic cell types and thus the recruit-
ment of neutrophils and other immune 
and inflammatory cells to sites of infection. 
IFNγ plays a crucial role in immunity to 
a variety of intracellular parasites, which is 
consistent with its known roles in activating 
macrophage anti-bacterial effector mecha-
nisms and promoting DC and Th1-type 
T-cell activation. Mice lacking responsive-
ness to IFNγ fail to contain systemic infec-
tion by numerous pathogens, including the 
intracellular bacteria L. monocytogenes and  
M. tuberculosis.1-4

Cellular responsiveness to IFNγ 
requires the expression of a functional het-
erodimeric cell surface receptor complex, 
IFNGR. The proteins comprising the 
IFNGR complex, IFNGR1 and IFNGR2, 
are products of distinct genes that reside on 
different chromosomes in both mouse and 
man. The dimeric IFNγ cytokine binds 
to the IFNGR1 subunit. Aggregation of 
IFNγ-IFNGR1-IFNGR2 complex trig-
gers the activation of a canonical signaling 
cascade involving Janus kinases (JAKs) 1 
and 2 and the signal transducer and acti-
vator of transcription (STAT) 1 protein 
(Fig. 1A). Since both receptor subunits 
are required for the activation of signaling 
cascades, mice or human cells with defi-
ciency in either subunit are non-responsive 
to IFNγ.1,5-8 Polymorphisms in the ifngr1 
promoter region are also associated with 
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to be dispensible for type I IFN production 
in response to L. monocytogenes infection, 
including TLRs 2 and 4, Nods 1 and 2, 
RIG-I and MAVS/VISA. Activation of 
IFNαβ production by M. tuberculosis was 
also found to be TLR-independent.12,13 
With regards to additional bacterial com-
ponents required for in the triggering of 
IFNαβ production, work with M. tuber-
culosis has implicated the early secreted 
antigen 6 kilodaltons (Esat-6) secretion 
system 1 (ESX-1).13 The ESX1 system 
can disrupt phagosomal membranes and 
is thus thought to allow release of bacte-
rial components into the cytosol where 
they may trigger host receptors to initiate 
IFNαβ production. Similarly, multidrug 

Type I interferon production is regu-
lated at the transcriptional level and tran-
scription is induced during infections by 
a variety of viral and bacterial pathogens. 
Transcription of IFNαβ genes can be 
induced by recognition of microbial prod-
ucts through toll like receptors (TLRs) 
or via other pattern recognition receptors 
(PRRs) present in the host cell cytosol. For 
L. monocytogenes and M. tuberculosis, data 
suggest that the presence of bacteria or 
bacterial products in the host cell cytosol 
is a requirement for IFNαβ production. 
However, until recently, the ligands and 
receptors contributing to the IFNαβ pro-
duction in response to these pathogens has 
remained elusive. Several PRRs were found 

susceptibility or resistance to certain 
infectious and inflammatory diseases, sug-
gesting that the level or pattern of ifngr1 
expression may have important effects on 
the immune response.9-11 IFNαβ bind to 
a distinct receptor, IFNAR, comprised 
of the IFNAR1 and IFNAR2 subunits. 
Signaling through the IFNAR elicits acti-
vation of JAK1 and TYK2, which sub-
sequently activate STAT1 and STAT2. 
In response to both IFNγ and IFNαβ, 
complexes of STAT proteins undergo 
dimerization and post-transcriptional 
modifications that activate their ability 
to enter the cell nucleus, bind specific ele-
ments on DNA and regulate the expres-
sion of target genes.

Figure 1. Antagonistic interferon cross talk and increased susceptibility to bacterial infection. (A) Schematic showing the canonical JAK-STAT signaling 
pathways involved in responses to IFNγ and IFNα/β. IFNγ activates gene expression through gamma activated sequences (GAS). IFNαβ modulates 
gene expression through interferon stimulated regulatory elements (ISRE). (B) IFNα/β produced by Listeria monocytogenes infected cells signals 
through the IFNAR on infected or bystander cells to block transcription of the ifngr1 gene and consequently IFNGR expression by macrophages or 
other antigen presenting cells (APCs). APCs with intact IFNα/β signaling are therefore less responsive to IFNγ when bacterial pathogens induce IFNαβ 
and hence more permissive to bacterial growth and replication.
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suppressed the IFNγ signaling pathway 
at a very early stage. With regards to the 
bacterial requirements for suppression, we 
noted that cytosolic escape of L. mono-
cytogenes was essential for the reduced 
responsiveness to IFNγ. Infection of mac-
rophages with Hly-deficient L. monocyto-
genes mutant strains, which are unable to 
escape the phagosome, failed to dampen 
IFNγ responses.

To learn which upstream host factors 
were affected by cytosolic L. monocyto-
genes infection, we evaluated the expres-
sion of genes known to be involved in 
IFNγ responses using Affymetrix gene 
chips. The array analyses and subsequent 
quantitative PCR revealed that ifngr1 gene 
expression was significantly reduced in wt 
Lm infected cells within a few hours of 
infection. Antibody staining revealed that 
cell surface and total cellular IFNGR1 
protein levels correlated with the gene 
expression data. Furthermore, cell surface 
staining for IFNGR2 was also reduced, 
demonstrating that the entire IFNGR 
complex is downregulated in response to 
infection of cultured macrophages with 
L. monocytogenes. We subsequently con-
firmed these in vitro data using systemic 
L. monocytogenes infection of mice. These 
in vivo studies showed that IFNGR1 sur-
face expression was significantly reduced 
within 1 dpi in macrophages, DCs and 
B cells, but not T cells or NK cells. Since 
downregulation of IFNGR affected the 
entire population of susceptible cells, we 
suspected that infected cells might release 
a soluble factor to mediate downregula-
tion. Indeed, this was shown to be the case 
using a variety of methods. Ultimately, 
we discovered that the responsible factor 
was IFNαβ and that cells or mice lacking 
expression of IFNAR1-/- failed to down-
regulate IFNGR1 expression.

Our in vitro findings suggested that 
failure to downregulate cell surface 
IFNGR expression might contribute to 
the increased resistance of IFNAR-/- mice 
to bacterial infections. To test this, we 
asked whether IFNγ was required for the 
increased resistance of IFNAR1-/- mice to 
systemic L. monocytogenes infection. Using 
antibody depletion of IFNγ, we found that 
the bacterial burdens at 3 dpi in IFNAR1-

/- mice depleted of IFNγ were indistin-
guishable from those seen in IFNAR+ 

the IFNAR1-/- animals. With regards to 
lymphocyte apoptosis, Unanue and col-
leagues later showed that as for IFNAR1-/-  
animals, Rag-/- and IL-10-/- hosts were 
more resistant than wildtype hosts at 
early stages of L. monocytogenes infec-
tion.24 They also showed that IL-10 pro-
duction was increased in the spleens of 
infected wildtype mice when compared 
to IFNAR1-/- or Rag-/- mice. Although this 
increase in IL-10 correlated with increased 
lymphocyte apoptosis, serum IFNγ lev-
els were also higher in the wildtype ani-
mals at days 1–3 post-infection.20,21 Thus, 
it was not clear that the increased IL-10 
seen in the IFNAR1-/- mice was sufficient 
to functionally suppress IFNγ produc-
tion or activity. Nonetheless, the avail-
able data hinted that the ability of IFNαβ 
to promote L. monocytogenes replication 
might be associated with impaired cellular 
immune responses, including macrophage 
activation.

With this previous work in mind, our 
study initially investigated whether infec-
tion with L. monocytogenes suppressed the 
ability of macrophages to respond to IFNγ 
treatment.25 We were curious whether such 
suppression might occur during L. mono-
cytogenes infection, in part because of prior 
work by Ernst, Harding and colleagues 
with M. tuberculosis.26-29 They showed that 
M. tuberculosis infection suppressed mac-
rophage upregulation of IFNγ-inducible 
gene products such as CIITA and class 
II MHC. We also initially investigated 
upregulation of MHC-II expression by 
infected or uninfected bone marrow 
derived macrophages (BMM) in response 
to stimulation with IFNγ. Similar to  
M. tuberculosis, wildtype L. monocytogenes 
infection suppressed MHC-II upregula-
tion. Using stably transfected RAW264.7 
macrophages, we next used luciferase 
reporter constructs to measure transcrip-
tion from IFNγ-inducible the c2ta-p4 
promoter and a GAS reporter construct. 
In both cases, and using multiple inde-
pendent cell lines, infection by wild type 
bacteria suppressed the induction of gene 
expression by IFNγ. Moreover, when we 
investigated earlier events in the signal-
ing pathway, phosphorylated STAT1 
levels following IFNγ treatment were 
diminished in infected cells. These data 
suggested that L. monocytogenes infection 

efflux pumps (MDRs) potentially allow 
cytosolic release of small molecules 
essential for type I interferon induction 
by L. monocytogenes infection.14 What is 
released by these secretion systems has 
remained more elusive. Work by Stetson 
and Medzhitov indicated that transfection 
of L. monocytogenes DNA into the cytosol 
of host cells could trigger IFNαβ produc-
tion independently of TLRs and NODs1 
and 2.15 However, it is not clear to what 
extent bacterial DNA actually accesses the 
cytosol during infection. It is also unclear 
how the host cell senses such cytosolic 
DNA and distinguishes this from cellu-
lar DNA. More recently, McWhirter et 
al. found that cyclic-di-guanosine mono-
phosphate (c-di-GMP), a low molecular 
weight bacterial second messenger, can 
trigger IFNαβ production.16 Woodward 
et al. subsequently showed that cyclic 
diadenosine monophosphate (c-di-AMP) 
also induces IFNαβ.17 Mutant L. mono-
cytogenes strains that overexpress MDRs 
release higher amounts of c-di-AMP. 
Whether the M. tuberculosis ESX1 secre-
tion system also triggers IFNαβ by per-
mitting appropriate release of cGMP or 
cAMP remains to be seen.

In contrast to IFNγ, IFNαβ is not 
required for defense against a growing list 
of bacterial pathogens. IFNAR1-/- mice, 
which lack expression of the receptor for 
IFNαβ, are more resistant to L. monocyto-
genes and M. tuberculosis infections.13,18-22 
The mechanisms by which IFNαβ increase 
host susceptibility to L. monocytogenes,  
M. tuberculosis and other bacterial patho-
gens are not entirely clear. However, several 
correlations have been made. For example, 
during L. monocytogenes infection IFNαβ 
production and responsiveness correlate 
with: (1) increased serum or splenic con-
centrations of IFNγ, MCP-1 and IL-6 
at 1–3 dpi, reduced serum concentra-
tions of IL-12p70 at 2 dpi and a reduced 
proportion of splenic TNFα + CD11b+ 
splenic macrophages at 2 dpi.20,21,23,24 (2) 
increased apoptosis of lymphocytes,19 and 
macrophages.20 Spleens of the infected 
IFNAR1-/- mice were also shown to har-
bor ∼2-fold more splenic macrophages and 
neutrophils and a higher percentage of 
TNFα + CD11b+ cells.20,21 Such increases 
in myeloid cells may reflect reduced apop-
tosis or increased cellular recruitment in 
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mediates downregulation of the IFNGR. 
Our initial studies revealed that IFNαβ 
treatment reduces steady-state amounts 
of ifngr1 transcripts and we have more 
recently found that such reductions are 
due to a very rapid block in transcription 
of ifngr1 rather than to reductions in ifngr1 
mRNA stability (unpublished data). The 
mechanistic basis for this block is a sub-
ject of current investigation. Ultimately, 
such studies may reveal novel approaches 
to treat bacterial infections and inflamma-
tory diseases associated with type I and II 
interferons.
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