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The pregnane X receptor (PXR, also known as 
NR1I2, SXR, or PAR) is a nuclear hormone 
receptor (NHR) that regulates the transcrip-
tion of genes involved in xenobiotic metabo-
lism and excretion. PXR agonists include a 
wide range of structurally diverse endogenous 
and exogenous compounds such as bile acids, 
steroid hormones, dietary fat-soluble vita-
mins, prescription medications, and herbal 
drugs, as well as environmental chemicals 
such as pesticides, estrogens, and antiestrogens 
(Mnif et al. 2007). PXR agonists can mediate 
clinically significant drug–drug interactions 
(Ekins et al. 2007, 2008a; Mani et al. 2009). 
Furthermore, PXR action in various patho
physiological states indicates that PXR agonists 
could variably affect human and animal health. 
For example PXR agonists can impact cho-
lesterol metabolism and the endocrine system 
(Wada et al. 2009; Zhai et al. 2007) as well as 
potentiate the toxicity of other environmental 
contaminants, as reviewed recently (Biswas 
et al. 2009). Animal models may not reliably 
predict human PXR (hPXR)-related problems 
because of the diversity of PXRs across species 
(Ekins et al. 2008b; Moore et al. 2002), result-
ing in differences in ligand selectivity (Tirona 

et al. 2004). Therefore, the identification and 
characterization of hPXR agonists is important 
to human pharmacokinetics and toxicology of 
environmental chemicals.

Five hPXR crystal structures (1M13, 
1NRL, 1SKX, 2O9I, and 2QNV) are available 
in the Protein Data Bank (PDB) (Chrencik 
et al. 2005; Teotico et al. 2008; Watkins et al. 
2003a, 2003b; Xue et al. 2007a), with another 
structure to be deposited (Xue et al. 2007b). 
These structures have enabled characteriza-
tion of the ligand-binding domain (LBD) and 
PXR–ligand interactions. The cocrystallized 
ligands tend to be hydrophobic, with a wide 
range in shape, size, and chemical composi-
tion that can be accommodated in the LBD 
(Ekins et al. 2009). The hPXR ligand-binding 
pocket (LBP) is lined with 28 amino acid resi-
dues: 20 hydrophobic, 4 polar, and 4 charged. 
Because of the large size and flexibility of the 
LBP, molecules can bind in multiple locations. 
This creates a challenge for in silico methods 
for predicting hPXR agonists, but many 
approaches have been evaluated nonetheless 
(Ekins et al. 2009). An added complexity to 
predicting whether a compound binds to PXR 
is the recent discovery that some molecules can 

also bind outside the LBD on the PXR surface 
and act as allosteric antagonists (Ekins et al. 
2007, 2008a). It is also difficult to computa-
tionally identify antagonists that would com-
pete with agonist binding in the LBD (Xue 
et al. 2007a).

Several previous studies have constructed 
ligand-based computational models for 
hPXR agonists employing pharmacophores 
(Bachmann et al. 2004; Ekins and Erickson 
2002; Ekins et al. 2007; Schuster and Langer 
2005), quantitative structure–activity relation-
ships (QSARs), and machine learning methods 
(Ekins et al. 2006, 2009; Jacobs 2004; Ung 
et al. 2007; Yasuda et al. 2008). hPXR agonist 
pharmacophore models have been shown to 
possess hydrophobic, hydrogen bond accep-
tor, and hydrogen bond donor features, a 
finding consistent with the crystallographic 
structures of hPXR ligand-receptor complexes 
(Bachmann et al. 2004; Ekins et al. 2007; 
Ekins and Erickson 2002; Schuster and Langer 
2005). These pharmacophore features may 
also relate closely to a recent analysis in which 
Ngan et al. (2009) used docking of small probe 
molecules into the LBD to identify five hot 
spots. As part of an ongoing analysis of NHRs 
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Background: The pregnane X receptor (PXR) is a key transcriptional regulator of many genes 
[e.g., cytochrome P450s (CYP2C9, CYP3A4, CYP2B6), MDR1] involved in xenobiotic metabolism  
and excretion.

Objectives: As part of an evaluation of different approaches to predict compound affinity for nuclear 
hormone receptors, we used the molecular docking program GOLD and a hybrid scoring scheme 
based on similarity weighted GoldScores to predict potential PXR agonists in the ToxCast database 
of pesticides and other industrial chemicals. We present some of the limitations of different in vitro 
systems, as well as docking and ligand-based computational models. 

Methods: Each ToxCast compound was docked into the five published crystallographic structures 
of human PXR (hPXR), and 15 compounds were selected based on their consensus docking scores 
for testing. In addition, we used a Bayesian model to classify the ToxCast compounds into PXR 
agonists and nonagonists. hPXR activation was determined by luciferase-based reporter assays in 
the HepG2 and DPX-2 human liver cell lines.

Results: We tested 11 compounds, of which 6 were strong agonists and 2 had weak agonist activity. 
Docking results of additional compounds were compared with data reported in the literature. The 
prediction sensitivity of PXR agonists in our sample ToxCast data set (n = 28) using docking and the 
GoldScore was higher than with the hybrid score at 66.7%. The prediction sensitivity for PXR ago-
nists using GoldScore for the entire ToxCast data set (n = 308) compared with data from the NIH 
(National Institutes of Health) Chemical Genomics Center data was 73.8%.

Conclusions: Docking and the GoldScore may be useful for prioritizing large data sets prior to 
in vitro testing with good sensitivity across the sample and entire ToxCast data set for hPXR agonists.
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(Ekins et al. 2008b; Reschly and Krasowski 
2006; Reschly et al. 2007, 2008a, 2008b), we 
recently generated a large volume of experi-
mental data for classes of steroidal compounds 
(Ekins et al. 2008b) and used it to evaluate 
various modeling approaches such as Bayesian 
classification modeling with 2-dimensional 
(2D) fingerprints, various QSAR approaches, 
and molecular docking into the available hPXR 
crystal structures (Ekins et al. 2009). Docking 
coupled with hybrid scoring 5D-QSAR meth-
ods performed significantly better than other 
QSAR methods in identifying agonists among 
these steroidal ligands (Ekins et al. 2009). With 
a promiscuous protein such as PXR, it is prob-
ably important to have global models or meth-
ods that can make predictions for a structurally 
diverse array of molecules rather than for a nar-
row structural series.

In previous studies we used structure-
based docking, employing FlexX (BioSolveIT 
GmbH, Sankt Augustin, Germany) com-
bined with logistic regression (Khandelwal 
et  al. 2008), and GoldScore (Cambridge 
Crystallographic Data Centre, Cambridge, 
UK) combined with other descriptors as a 
weighting factor (Kortagere et al. 2009). Both 
FlexX and GOLD had mixed success in pre-
dicting a large set of structurally diverse hPXR 
agonists (Khandelwal et al. 2008; Kortagere 
et al. 2009), possibly because of the size and 
flexibility of the LBP, as described above 
(Ekins et al. 2009).

ToxCast  represents  a  major U.S. 
Environmental Protection Agency (U.S. EPA) 
initiative for prioritizing the timely toxicity 
testing of large numbers of pesticides and other 
industrial chemicals (Dix et al. 2007; Houck 
et al. 2009; Judson et al. 2009, 2010; Knight 
et al. 2009) that may indicate various toxic-
ity end points. In this study we initially used 
docking and scoring approaches to classify 
the hPXR agonist activity of these ToxCast 
compounds and prioritized them for in vitro 
screening prior to release of U.S. EPA experi-
mental data. Our aim was to select a small sub-
set of the compounds for testing to show that 
we could readily identify PXR agonists and 
PXR nonagonists without the need for screen-
ing all the compounds in vitro. We have also 
used the ToxCast data set to further evaluate 
whether docking coupled with a hybrid scor-
ing scheme was useful as a predictive method 
for PXR, especially when screening large data 
sets of molecules. Although most ToxCast 
compounds are pesticides or other industrial 
chemicals, in this case there may be some over-
lap with the chemical space of pharmaceuti-
cals, making this data set of interest for general 
PXR-agonist prediction. In addition, for com-
parison and to illustrate the difficulties of using 
local ligand-based models, we used a recently 
generated Bayesian model with 115 steroidal 
PXR agonists and nonagonists (Ekins et al. 

2009) to classify the ToxCast compounds. 
While the present study was in progress, the 
ToxCast initiative generated data on all the 
compounds from the NIH (National Institutes 
of Health) Chemical Genomics Center 
(NCGC) (Judson et al. 2010). Therefore, we 
evaluated all available ToxCast hPXR in vitro 
data for these compounds using these compu-
tational methods to make predictions.

Materials and Methods
Materials. We purchased the DPX-2 cell line 
and the corresponding dosing and culturing 
medium from Puracyp Inc. (Carlsbad, CA). 
The creation of a HepG2 (human liver) cell line 
stably expressing the human Na+-taurocholate 
cotransporter (NTCP) has been previously 
reported and described in detail (Krasowski 
et al. 2005b). For tissue culture, we obtained 
BD Falcon Petri dishes from BD Biosciences 
(San Jose, CA); opaque treated sterile white 
96‑well assay plates with lids, and flat-bottom 
treated sterile (white with clear bottom) assay 
plates from Corning Inc. (Corning, NY). 
Disposable sterile pipette tips (low-adhesion 
tips) were purchased from BioTek (Winooski, 
VT), and the CellTiter-Fluor and Bright Glow 
assay system from Promega (Madison, WI). 
We used the Synergy Mx monochromator- 
based multimode microplate reader, EL406 
Combination Washer Dispenser, and Precision 
XS microplate sample processor (BioTeK) for 
cell plating, drug dilution and plating, and 
reagent addition.

Docking and scoring. We obtained chemi
cal structures of the ToxCast molecules 
from the U.S. EPA Distributed Structure-
Searchable Toxicity Database Network 
web site (U.S. EPA 2009); these structures 
were docked into the five crystal structures 
of hPXR (1M13, 1NRL, 1SKX, 2O9I, and 
2QNV) using the docking program GOLD 
(version 4) as described by Jones et al. (1997). 
GOLD uses a genetic algorithm to explore 
the various conformations of ligands and flex-
ible receptor side chains in the LBP. We per-
formed 20 independent docking runs for each 
ligand, and the complexes were scored using 
GoldScore. In all cases before now, the crystal 
structure ligand was removed, and hydro-
gen atoms were added to the amino acids. All 
amino acids within 6 Å of the cocrystallized 
ligand were identified as the binding site.

From the entire set of ToxCast molecules 
that were docked to all five crystal structures, 
we chose 13 high-scoring and 2 low-scoring 
compounds to form the sample set. In addi-
tion, 13  compounds reported by Lemaire 
et al. (2006)—that docked to the five crystal 
structures and were scored using GoldScore—
were added to our sample set. For all 28 com-
pounds in the sample data set, we performed 
the GoldScore-based classification by choosing 
80% of the GoldScore of the corresponding 
cocrystal ligand as a cutoff for whether a com-
pound was an agonist (Table 1). The com-
plexes were also scored using a hybrid scoring 
scheme, which was designed as GoldScore 
weighted with similarity scores (Kortagere 
et al. 2009). The similarity scores were based 
on 2D similarity (Sheridan et al. 2004; Willett 
2003) encoded in MDL (Molecular Design 
Limited) fingerprint keys calculated using 
Discovery Studio 2.1 (Accelrys, San Diego, 
CA). The Tanimoto coefficient was used as 
the metric to compare the resulting molecular 
fingerprints. The coefficients varied between 
0 (dissimilar) and 1 (similar) and were com-
puted for all 28 compounds, with reference to 
the five cocrystal structure ligands (HYF, SRL, 
RFP, 444, and CDZ). Further, the weighted 
docking score of an active compound i with j 
conformations can be computed by

	 Si,j = wisij,	 [1]

where sij is the original GoldScore for the 
compound i in its jth conformation and wi 
is the similarity score for compound i with 
respect to the cocrystal structure ligand. For 
each of the 28 compounds, we calculated the 
average weighted score across all five crys-
tal structures [see Supplemental Material, 
Table 1 (doi:10.1289/ehp.1001930)], and 
this score (average Sij ~ 15) was used as a 
cutoff for the classification. The GoldScores 
of the compounds and their similarity and 
weighted scores and classification are listed 
in Supplemental Material, Table 1. The con-
sensus classification prediction was based on 
the majority vote across the five structures 
for each molecule. We classified complexes 
of all compounds from the ToxCast data-
base with the five crystal structures using the 
GoldScore and hybrid score as described for 
the sample data set. We computed an average 

Table 1. GoldScores for the PXR cocrystallized ligands and their corresponding cutoff scores used 
for classification of a sample data set and all ToxCast compounds using GoldScore and 2D similarity-
weighted hybrid score.

PXR structure 
(PDB code)

Cocrystallized ligand Cutoff score for sample data set Cutoff score for ToxCast data set
PDB code GoldScore GoldScore Hybrid score GoldScore Hybrid score

1M13 HYF 82.06 66 15 51 13
1NRL SRL 48.31 39 15 46 14
1SKX RFP 65.44 52 15 48 15
2O9I 444 48.69 39 15 46 13
2QNV CDZ 55.19 44 15 44 11
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docking score and an average hybrid score for 
each crystal structure and used these as cutoff 
scores for the GoldScore- and hybrid score–
based classifications, respectively (Table 1).

Predictions based on different docking 
methods were assessed using a standard set 
of statistical indicators to evaluate different 
ligand and docking classification approaches: 
sensitivity, specificity, overall prediction accu-
racy, and Matthews correlation coefficient 
(Kortagere et al. 2009). We generated 2D 
schematic representations of the ligands in the 
binding site using the LIGX option in MOE 
(Chemical Computing Group, Montreal, 
Quebec, Canada).

Machine learning with 2D descrip­
tors. We generated a Bayesian classification 
model using Discovery Studio 2.1 with the 
Laplacian-corrected Bayesian classifier and 
molecular descriptors, as previously described 
for 115  steroidal compounds (namely, 
androstanes, estratrienes, pregnanes, and bile 
salts), with hPXR activation determined by 
a luciferase-based reporter assay (Ekins et al. 
2009). Compounds with Bayesian scores 
above –5.792 were classed as PXR agonists 
(Ekins et al. 2009).

Reporter gene assay with HepG2 cells. The 
13 top-scoring compounds and 2 low-scoring  
compounds predicted as nonagonists by 
GoldScore were selected for in vitro testing in 
the HepG2 human liver cell line. We deter-
mined hPXR activation in HepG2 cells using 
a luciferase-based reporter assay, as previously 
described (Ekins et al. 2008b; Krasowski et al. 
2005a). Ligands that activated hPXR were 
classified as strong [median effective concen-
tration (EC50) < 10 µM], medium (EC50 = 
11–50 µM), or weak (EC50 > 50 µM, but 
still able to activate with at least 10% of the 
efficacy of 10 µM rifampicin) agonists (Ekins 
et al. 2008b).

Reporter gene assay with DPX-2 cells. The 
tissue culture protocols were performed in a 
sterile laminar flow hood, and all incubations 
were carried out at 37°C and 5% CO2. When 
DPX-2 cells were approximately 50–70% 
confluent, medium was aspirated and cells 
rinsed with 5 mL phosphate-buffered saline 
(PBS). The PBS was replaced with 2  mL 
trypsin/EDTA and incubated for 5  min. 
Two milliliters medium was added, and the 
entire mixture was transferred to a centrifuge 
tube. Cells were centrifuged at 900 rpm for 
3 min and resuspended in 5 mL culturing 
medium; 100 µL cell suspension (correspond-
ing to 25,000 cells) was added to each well of a 
96‑well plate, using an eight-channel Precision 
XS microplate sample processor, and incu-
bated overnight. Drug stock solutions (50 mM 
for each compound) were prepared in DMSO 
and diluted to 11-point 1:3 compound titra-
tions (50–0 µM) using the Precision XS to 
serially transfer 75 µL of diluted compounds 

into 150 µL Puracyp dosing media. The final 
DMSO concentration was maintained at 
0.1% in all dilutions. Medium from DPX-2 
cells in 96-well plates was aspirated using an 
EL406 liquid handler (BioTek); plates were 
then placed in the Precision XS, and 100 µL 
dosing medium containing the appropriate 
concentration of agonist/antagonist was trans-
ferred. Each condition was repeated in qua-
druplicate. After 24 hr, the cell medium was 
aspirated and cells were redosed as described 
above. After 48 hr, the cell viability (CellTiter-
Fluor) and reporter assay (Bright-Glo) was 
carried out according to the protocol provided 
by Promega (Madison, WI).

Log-normalized drug concentrations were 
fitted to dose–response curves for each com-
pound tested [relative luminescence units 
(RLU)], normalized to control (DMSO-
treated) cells (agonist mode) and as a percent-
age of RLU observed with 10 µM rifampicin 
(antagonist mode). Curves were fitted using 
a nonlinear regression model [variable slope 
(four parameters) equation] (GraphPad Prism, 
version 4.0a; GraphPad Software Inc., La 
Jolla, CA). In this assay, the standard agonist 
compound rifampicin had a mean EC50 of 
1.99 µM.

Results
Sampling ToxCast compounds as potential 
PXR agonists using docking. In the present 
study we used molecular docking coupled with 
hybrid scoring strategies to select compounds 
for in vitro testing based on predicted hPXR 
activity. Our initial selection of 15 ToxCast 
compounds was supplemented with 13 com-
pounds from a previous study (Lemaire et al. 
2006) that were also included in the ToxCast 
data set (Table 2). Using the docking con-
sensus classification, we correctly classified 
15 of 28 (55.6%) molecules from this sample 
ToxCast data set. Of these 28 compounds, 
12 were classified as agonists and 16 as non
agonists, based on the actual ToxCast data. 
Docking-based classification using GoldScore 
correctly predicted 8 of 12 agonists and 7 of 
16 nonagonists. Using the hybrid scoring 
scheme, we correctly predicted 7 of 12 ago-
nists and 8 of 16 nonagonists. Mancozeb 
was classified as a nonagonist in all docking 
models and was found to be a nonagonist in 
experimental studies, whereas butafenacil, per-
methrin, and β‑cyfluthrin were all classified as 
agonists in both the docking and experimental 
methods based on our HepG2 data and the 
NCGC ToxCast data (Judson et al. 2010) 
[Table 2 and Supplemental Material, Figure 1 
(doi:10.1289/ehp.1001930)]. Foramsulfuron 
and bensulfuron methyl were both weak ago-
nists in our hPXR luciferase assay in HepG2 
cells but were classed as nonagonists based on 
the U.S. EPA NCGC data generated using 
the DPX-2 cell line (Judson et al. 2010), a 

derivative of HepG2. These compounds 
may be hPXR agonists but have only weak 
activity at high concentrations. With high 
concentrations of compounds, hPXR activa-
tion may not be detected in some cell lines 
because of cellular toxicity or limited solubil-
ity of the compound(s). Similarly, using the 
hPXR DPX-2 agonist assay, we found gener-
ally good agreement with the hPXR HepG2 
data, although Z,E‑fenpyroximate appeared 
to be a weak hPXR agonist; the cell viability 
of this compound suggests it is also cytotoxic 
[median inhibitory concentration (IC50), 0.04; 
Table 2].

The standard agonist compound rifampi-
cin had a mean EC50 of 1.99 µM in DPX-2 
cells, which is lower than reported previously 
(Ekins et al. 2007) and closer to those reported 
in other cell assay systems in HepG2 [EC50, 
400 nM (Hurst and Waxman 2004)] and 
CV‑1 cells [EC50, 700–852 nM (Chrencik 
et  al. 2005); EC50, 710 nM (Moore et  al. 
2000)]. The NCGC data (Judson et al. 2010) 
were from DPX-2 cells, which we would 
expect to yield results similar to our own using 
DPX-2 cells, but not to our data using HepG2 
cells. For example, fenarimol was classified 
as a nonagonist based on the docking and 
hybrid scores, whereas it is an agonist accord-
ing to the NCGC data (Judson et al. 2010) 
and our Bayesian classification. In the pres-
ent study, the docking scores for this com-
pound were very close to the cutoff scores and 
hence could not be effectively predicted. This 
is a limitation of classifying compounds based 
on docking scores. Hybrid scores, which are 
designed based on similarity-weighted dock-
ing scores, can resolve these limitations only 
when the test compound has high similarity 
to the cocrystallized ligand. Compounds such 
as fenbuconazole and difenzoquat metilsulfate 
were classified as agonists based on the high 
GoldScores but were classified as nonagonists 
in the hybrid scoring scheme because of their 
low similarity to their respective cocrystalized 
ligands. NCGC experimental data classified 
both these compounds as nonagonists (Judson 
et al. 2010).

Comparing NCGC and docking data for 
all ToxCast compounds. Our results with the 
sample data set suggest that computational 
docking methods can be used as an effective 
strategy in prioritizing future ToxCast com-
pounds for in vitro testing as PXR agonists 
before actual testing. To test this hypothe-
sis, we docked all the compounds from the 
ToxCast database to all five hPXR crystal 
structures and scored the complexes using 
GoldScore and hybrid scoring functions. 
Based on the in vitro NCGC ToxCast data 
(Judson et  al. 2010), 65 compounds have 
been classified as agonists of hPXR and 246 
as nonagonists (U.S. EPA 2010). In the pres-
ent study, GoldScore-based classification 
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correctly predicted 48 agonists and 120 non
agonists, whereas the hybrid scoring scheme 
correctly predicted 45 agonists and 137 non
agonists [Supplemental Material, Table 2 
(doi:10.1289/ehp.1001930)]. The rest of the 
compounds were either false positives or false 
negatives. The sensitivity of scoring schemes 
for correctly predicting hPXR agonists with 
the NCGC data (Judson et  al. 2010) was 
73.8% and 69.2% for GoldScore and hybrid 
score classification schemes, respectively.

Predictions using the steroidal Bayesian 
hPXR model. The hPXR agonist predictions 
using the Bayesian model based on steroidal 
compounds (Ekins et al. 2009) classified all 
compounds other than mancozeb as agonists, 
based on the specified activity cutoff (Table 2).

Testing for hPXR antagonists and allo­
steric antagonists. We evaluated whether some 
of the molecules selected from ToxCast by 
docking (mesosulfuron-methyl, bensulfuron 
methyl, esfenvalerate, Z,E-fenpyroximate, 
α-cypermethrin, β-cyfluthrin, and permethrin) 
were also potential PXR antagonists or allos-
teric antagonists (Ekins et al. 2007, 2008a) 
in the presence of rifampicin. Our results for 
these compounds tested with the DPX-2 cell 
assay suggest that they were not antagonists or 
allosteric antagonists (data not shown).

Discussion
Recent studies have showed the complexity and 
challenges of producing predictive computa-
tional models for hPXR (Ekins et al. 2009). In 
the present study we used docking to analyze 
the ToxCast compounds and select molecules 
to validate the approach of identifying com-
pounds of interest from large data sets without 
experimentally screening the whole data set. 
Subsequently, the release of the NCGC data 
in which the whole data set was experimen-
tally screened provided additional data to com-
pare with our own laboratory hPXR activation 
data and our computational predictions in five 
crystal structures. An advantage of using these 
different cell systems is that some are more 
sensitive than others and thus may identify 
additional compounds as agonists compared 
with using a single cell type (Table 2). For 
example, diethylhexyl phthalate, esfenvalerate, 
α-cypermethrin, β-cyfluthrin, and permethrin 
were more active in HepG2 cells compared 
with NCGC DPX-2 cells (Table 2). Fenarinol, 
imazalil, alachlor, and fipronil were classed 
as active in NCGC DPX-2 cells but not in 
HeLa cells [as reported previously by Lemaire 
et al. (2006)], whereas fenbuconazole, and pro
chloraz were more active in HeLa cells than 
DPX‑2 cells (Table 2) (Lemaire et al. 2006).

Possible reasons for these differences 
include non–liver-type cells possibly lacking 
transporters (or expressing different ones) 
that can influence drug entry/efflux or may 
show differential toxicity. This is a problem 
with conjugated steroids and bile salts. We 
are not sure if this is the case for the pesticides 
and industrial chemicals studied here. HeLa 
cells [used by Lemaire et al. (2006)], HepG2 
cells, and hepatocytes are markedly different 
in terms of their cells of origin (HeLa and 
HepG2 are essentially cancer cell lines). The 
HeLa cell line may have different levels of 
corepressors and coactivators that affect the 
function of PXR differently than in liver cell 
lines. The transactivation of reporters varies 
in both cell lines to a degree. For example, 
HNF4α-mediated effects on PXR are greater 
in HeLa cells than in HepG2 cells, suggest-
ing weaker PXR transactivation profiles in 
HeLa versus hepatic-derived cell lines (Tirona 
et al. 2003). One could perhaps use primary 
human hepatocytes for such studies, but they 
have the limitations of cost, limited supply, 
and variability. It is also possible that cell lines 
differentially metabolize the test compounds, 
which could also affect PXR activation results. 
In the pressent study (and for the NCGC 
data), the metabolism of the compound in 

Table 2. Summary of predicted and experimental data for sample ToxCast data set compounds. 

Compound
Docking 

classificationa
Bayesian score 
(classification)

U.S. EPA ToxCast (NCGC) 
hPXR DPX-2 classification 

[EC50 (µM)]b
HepG2 hPXR 
EC50 (µM)c 

Efficacy relative 
to 10 µM 

rifampicinc 
Cell viability 

IC50 (µM)c 
DPX-2 hPXR 
EC50 (µM)c

Mancozeb N –7.253 (N) N X
Mesosulfuron-methyl A –1.589 (A) N X X X
Diethylhexyl phthalate A 1.943 (A) A (20.75) 1.8 (S) 0.63
Methyl hydrogen phthalate N 1.868 (A) N
Bensulide A –1.165 (A) A (1.57)
Foramsulfuron A –1.653 (A) N > 50 (W)
Bensulfuron methyl A 0.601 (A) N 89.4 (W) 0.18 X X
Esfenvalerate A 5.796 (A) A (26.98) 1.5 (S) 0.64 X 8.94 (S)
Z,E-fenpyroximate A 2.613 (A) N X 0.04 32.74 (M)
Butafenacil A 3.317 (A) N 6 (S) 0.53
α-Cypermethrin A 5.346 (A) A (18.3) 1.6 (S) 0.54 X 0.88 (S)
Triflusulfuron methyl A –1.998 (A) N –
β-Cyfluthrin A 5.346 (A) A (19.7) 2.5 (S) 0.54 > 100 18.2 (M)
Permethrin A 4.83 (A) A (20.26) 5.4 (S) 0.53 X 29.09 (M)
Oxasulfuron A –1.942 (A) N
Fenarimold N 4.791 (A) A (20.29)
Propiconazoled A 3.475 (A) A (36.81)
Fenbuconazoled A 5.390 (A) N
Prochlorazd A 2.705 (A) N
Imazalild N 3.466 (A) A (36.54)
Oxadiazond A 4.663 (A) A (5.49)
Alachlord N 7.842 (A) A (15.35)
2,4-Dd N –0.563 (A) N
Diurond N 4.357 (A) N
Atrazined N –2.825 (A) N
Fipronild N –0.033 (A) A (12.55)
Thiabendazoled N 2.879 (A) N
Carbaryld N 1.265 (A) N

Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; A, agonist; M, medium agonist; N, nonagonist; S, strong agonist; W, weak agonist; X, no activity measurable. Values with 
Bayesian scores greater than –5.792 were classed as PXR agonists based on the model output (Ekins et al. 2009). Docking classification was performed using GoldScore, with cutoff 
values listed in Table 1. Agonists were classified based on the following criteria used in a previous study (Ekins et al. 2008b): S, EC50 < 10 µM; M, EC50 11–50 µM; W, EC50 > 50 µM (but 
with activation at least 10% that of 10 µM rifampicin).
aBased on data provided in Supplemental Material, Table 1 (doi:10.1289/ehp.1001930). bFor NCGC data (Judson et al. 2010), the cutoff for activity was 200 µM. cAssays performed in the 
present study. dComponds with previously published data generated in HeLa cells (Lemaire et al. (2006). 
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the in vitro assay was not analyzed. Because 
radioligand binding is not a viable option for 
high-throughput screening for PXR and addi-
tionally would probably not give information 
on actual overall activity, there may be differ-
ences between docking and functional assays, 
a situation likely not unique to PXR.

All compounds from the ToxCast data set 
were docked to the five hPXR crystal struc-
tures and scored using GoldScore and hybrid 
scoring schemes. When molecular docking 
is used as a tool for classification studies, the 
question arises as to what docking scores 
should be considered as a cutoff. Because there 
are no standard rules governing the choice 
of cutoff scores, in the past we have designed 
hybrid scoring schemes that used similar-
ity scores derived from molecular shapes as 
a weighting factor (Kortagere et al. 2009). 
The goal of the hybrid scoring schemes is to 
increase the gap between hPXR agonists and 
hPXR nonagonists and thus ease classification 
of compounds. In this study we derived cutoff 
scores either by using the docking scores of the 
cocrystal structure ligands or by averaging the 
docking or weighted scores of all the ligands 
binding to the five crystal structures (Table 1). 
Predictions from the complete ToxCast data 
set performed marginally better than the sam-
ple data set, thereby emphasizing the utility of 
the approach to classify large data sets prior to 
in vitro testing. The hybrid scoring scheme 
had a sensitivity of approximately 69%, speci-
ficity of approximately 56%, overall predic-
tion accuracy of approximately 59%, and a 
Matthews correlation coefficient of 0.2 for 
classifying all ToxCast compounds based on 
the NCGC data (Judson et al. 2010), whereas 
the GoldScore-based scheme provided the best 
sensitivity of approximately 74% (Table 3). 
Classification studies also benefit from the 
availability of multiple crystal structures 
of the protein in complex with a variety of 
ligands. Although all the cocrystallized ligands 
bind to the same binding site and the crystal 
structures superimpose within approximately 
1 Å root mean squared deviation, the size, 
nature, and chemical composition of these 
ligands are very different (Ekins et al. 2009). 
In addition, the availability of multiple crystal 
structures of promiscuous proteins such as 
PXR helps improve sampling of the docking 
mode of these compounds. This is evident 

in the range of docking scores we obtained 
for each compound across each of the five 
crystal structures [see Supplemental Material, 
Table 2 (doi:10.1289/ehp.1001930)], which 
also emphasizes that averaging methods to 
get a single score should not be used in these 
cases. Instead, we classified each docked com-
plex using the cutoff scores listed in Table 1 
and then used a majority vote (3 of 5) method 
for consensus classification for both GoldScore 
and hybrid scoring schemes.

The ToxCast data set also consists of com-
pounds that have diverse structure, size, and 
chemical composition, albeit with similar 
functionality important for interactions with 
PXR [see Supplemental Material, Figure 1 
(doi:10.1289/ehp.1001930)]. Thus, classify-
ing this diverse data set by similarity-weighted 
scoring schemes with approximately 69% sen-
sitivity for predicting agonists is encouraging 
(considering the promiscuity of the receptor), 
and the statistics are comparable with or better 
than our previous data from studies using the 
GoldScore and hybrid scoring schemes (Ekins 
et al. 2009; Kortagere et al. 2009). These data 
should improve in the future as docking tools 
develop; however, the current approaches may 
be more accurate with other less-promiscuous  
nuclear receptors such as the estrogen and 
androgen receptors. The hybrid scoring scheme 
performed better for the ToxCast data (sen-
sitivity and Matthews correlation coefficient 
were consistently higher; Table 3) compared 
with a series of 119 steroidal molecules we pre-
viously used with average sensitivity of 52%, 
specificity of 50.34%, accuracy of 50.76%, 
and Matthews correlation coefficient of 0.02% 
(Kortagere et al. 2009). This suggests that there 
may be differences in docking utility depend-
ing on compound class and therefore value in 
evaluating molecules beyond drugs to gain a 
broader insight into potential PXR agonists 
among industrial chemicals, pollutants, natural 
products, and so on.

We also compared docking with a ligand-
based QSAR method based on steroidal com-
pounds to provide a further benchmark, and 
in this case its performance was poor, pos-
sibly for several reasons. First, many groups 
have illustrated the importance of chemical 
space coverage and the applicability domain of 
ligand-based models (Chekmarev et al. 2008, 
2009; Dimitrov et al. 2005; Ekins et al. 2006; 
Kortagere et al. 2008, 2009; Sheridan et al. 
2004; Tetko et al. 2006, 2008). When we 
analyzed the molecular space covered by the 
steroids in the ligand-based Bayesian model 
compared with the ToxCast compounds, we 
found that they can be clearly separated [see 
Supplemental Material, Figure 2 (doi:10.1289/
ehp.1001930)], which is indicative of little 
overlap. This would suggest it may be difficult 
for this local hPXR model to reliably predict 
compounds that are not steroidal. Thus, it 

may be important in future work to develop 
a separate Bayesian model with the ToxCast 
compounds to predict hPXR agonists added 
to later versions of the database. Our ligand-
based data also confirm that to predict diverse 
compounds with likely hPXR agonist activity, 
methods that are more generic or global in 
nature are required that can capture some of 
the flexibility of the ligand-binding domain 
(Ekins et al. 2009). Although ToxCast is a 
major U.S. EPA initiative for prioritizing 
toxicity testing of large numbers of pesticides 
and other chemicals (Dix et al. 2007; Houck 
et al. 2009; Judson et al. 2009, 2010; Knight 
et al. 2009), we suggest that it also represents a 
unique opportunity to evaluate various predic-
tive computational approaches used for toxi-
cology end points prospectively in addition 
to the many ways to mine the data retrospec-
tively. In the present study we have addressed 
only a tiny fraction of the data produced to 
date and perhaps raised the question that 
focusing on one cell line for a single nuclear 
receptor, such as hPXR, may be too simplistic.

We still can learn a great deal from the 
efficient combination of in vitro and in silico 
approaches, such that multiple iterations of 
prediction may yield a more cost-effective 
route to selecting compounds for testing from 
a large database. The ToxCast data set there-
fore represents an important and evolving basis 
for evaluating computational methods used 
in toxicological assessments of compounds 
important for environmental and health 
applications. Although we did not identify 
any PXR antagonists or allosteric antagonists, 
based on the few samples tested, the com-
plete ToxCast data set could be more exhaus-
tively studied with both computational and 
in vitro methods in the future (Ekins et al. 
2008a). Current opinion suggests that classi-
cal competitive antagonists for PXR that bind 
in the ligand-binding pocket may be difficult 
to identify (Xue et al. 2007a) compared with 
allosteric antagonists that bind elsewhere on 
the protein surface (Ekins et al. 2007, 2008a). 
It is therefore important to evaluate whether a 
compound may be a more selective allosteric 
antagonist, because this could outweigh any 
potential PXR agonist activity in vivo.
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