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1. Introduction
Iron is a trace metal essential for several life-sustaining functions, while excess iron, by virtue
of its ability to catalyze the formation of reactive oxygen species (ROS), has the potential to
be a causative factor in the age-related mitochondrial deterioration (Kohgo et al.
2008;Duvigneau et al. 2008;Liang et al. 2008). Iron accumulates in senescent cells and most
nonhematopoietic tissues with age (Killilea et al. 2003;Killilea et al. 2004;Dunaief 2006;Hofer
et al. 2008;Jung et al. 2008). Rapidly emerging evidence suggests that iron accumulation and
loss of mitochondrial iron homeostasis may contribute to mitochondrial decay, which
subsequently leads to aging (Table 1) (Bitar and Weiner 1983;Atamna et al. 2001;Atamna et
al. 2002a;Napoli et al. 2006;Doulias et al. 2008;Seo et al. 2008;Xu et al. 2008;Irazusta et al.
2009;Cantu et al. 2009;Veatch et al. 2009;Chen et al. 2009). Although studies in both yeast
and mammalian systems support the conclusion that iron homeostasis may be disrupted with
age (Zacharski et al. 2000;Gau et al. 2001), the mechanisms underlying this phenomenon are
still unclear. Here, we discuss important features of iron dyshomeostasis with a particular
emphasis on its effects on mitochondrial decay and aging.
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2. Iron crisis and mitochondrial decay
2.1. Labile iron in mitochondria

Iron taken up by eukaryotic cells must reach mitochondria, the unique site for heme and iron-
sulfur cluster (ISC) biosynthesis (Dunn et al. 2007;Levi and Rovida 2009). Since mitochondria
are also the major source of intracellular ROS and excess iron has a strong catalytic potential
to enhance ROS generation, it is important that mitochondrial iron concentration is maintained
within a tightly controlled range. In cells and tissues, iron exists in two pools. Ferritin and iron-
containing prosthetic groups in various proteins sequester “non-chelatable” iron that
conventional iron chelators like deferoxamine are unable to chelate. The other iron pool is so-
called “chelatable or labile” iron that represents both free and loosely bound iron. In
hepatocytes, this labile iron is estimated to be about 5 μM (Ma et al. 2006). Most iron transferred
from cytoplasm to mitochondria or delivered from late endosomes and lysosomes to
mitochondria is sequestered efficiently by the iron storage proteins, frataxin and mitochondrial
ferritin (MtF) (Scheme 1) (Kaur and Andersen 2004;Zhang et al. 2005). With aging, a minor
amount of mitochondrial iron, either loosely bound to proteins or escaped from storage sites
becomes redox-active, and may be harmful, particularly in the presence of high concentration
of hydrogen peroxide within the same compartment (Sohal et al. 1999;Kakhlon and Cabantchik
2002;Doulias et al. 2008). Several studies reported iron accumulation with age in mitochondria
in rat substantia nigra (Schipper et al. 1998) and skeletal muscle (Seo et al. 2008) as well as
human subcortical brain tissue (Schipper and Cisse 1995). Given the fact that labile iron has a
strong catalytic potential to generate ROS, iron overload may result in catastrophic cellular
damage via increasing oxidative stress accrual.

Since labile iron is transient and exists in dynamic equilibrium with various cellular
components, early attempts to identify the labile iron pool were based on cell-disruptive
methods, which in turn alter the equilibrium between free and bound iron, as well as the FeII/
FeIII redox state (Rothman et al. 1992;Kozlov et al. 1992;Sohal et al. 1999). Nondisruptive
techniques that rely on the application of fluorescent metalosensors have been developed to
estimate the intracellular chelatable iron (Epsztejn et al. 1997;Kakhlon and Cabantchik
2002). Changes in labile iron in cells and tissues can be visualized by fluorescent probes,
including phen green SK and calcein (Petrat et al. 2001;Petrat et al. 2002a) since ferrous iron
quenches these fluorescence. However, these fluorophores also bind to other divalent cations
like Cu, Ni and Co, which raises an issue of their selectivity (Breuer et al. 1995). The
development of iron-sensitive fluorescent probes specifically targeting mitochondria has
allowed significant advances in the study of labile iron (Petrat et al. 2002b;Rauen et al.
2007). Probes are comprised of a fluorescent group coupled with a high-affinity iron chelator
and must fulfill several requirements. Firstly, probes must be lipophilic and highly membrane-
permeable (Petrat et al. 2001). Secondly, fluorescent groups must possess a net positive charge
and be electophoretically driven into mitochondria due to the inside negative membrane
potential (Dykens and Stout 2001). Thirdly, chelators must possess relatively high affinity for
iron and be able to compete with endogenous ligands (i.e., pyruvate, phosphate, and
polypeptides) (Rauen et al. 2007). In light of previous studies using the iron indicator
rhodamine B 4-[(1,10-phenanthrolin-5-yl)aminocarbonyl]benzyl ester (RPA) to determine
chelatable iron concentration in mitochondria of rat hepatocytes and endothelial cells (Petrat
et al. 2001;Petrat et al. 2002b), Rauen et al. (2007) have developed an additional selective
mitochondrial iron indicator, rhodamine B 4-[(2,2′-bipyridin-4-yl)aminocarbonyl]benzyl ester
(RDA), which detected the same iron concentration (16.0 ± 1.9 μM) in rat hepatocyte
mitochondria as RPA did (17.0 ± 1.0 μM). A recent study by Cantu et al. (2009) employing
an adenoviral construct technique and the iron indicator RPA, has shown that mitochondrial-
aconitase (m-aconitase) releases labile iron under oxidative stress in primary ventral
mesencephalic cells. This event was followed by mitochondrial dysfunction and cell death. In
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addition, the observation in the same study that removing labile iron using an iron chelator
mitigated mitochondrial damage and cell death strongly suggests its role in oxidative damage
and mitochondrial dysfunction during the aging process. A recent study by Ma et al. (2009)
also suggests that iron-sulfur containing proteins are targets of ROS in aging, and that m-
aconitase is a major target of ROS under conditions of cellular stress. Upon exposure to
oxidants, m-aconitase is disassembled and releases labile iron. Moreover, an age-associated
decrease of aconitase expression has been observed in brain, heart, and muscle mitochondria
in rodents, which contributes to the sensitivity of the enzyme to oxidative stress, as well as the
overload of labile iron observed in aging (Dencher et al. 2007;O’Connell et al. 2007;Prokai et
al. 2007). In further support of the role of labile iron, H2O2-induced collapse of mitochondrial
membrane potential was completely prevented by pre-treatment with the lipophilic iron
chelator salicylaldehyde isonicotinoyl hydrazone (SIH) in cultured H9c2 cardiac myoblasts
(Simunek et al. 2005;Kurz et al. 2006). This finding indicates that hydrogen peroxide per se
is not harmful, but it may become highly toxic if labile iron coexists.

2.2. Loss of iron homeostasis with aging
Heme and ISCs are important for the assembly of electron transfer complexes. Alterations in
mitochondrial iron homeostasis cause iron accumulation in this compartment, which may be
responsible for the age-related mitochondrial deterioration. Interestingly, multiple defects in
mitochondrial heme and ISC biosynthesis have been demonstrated with aging, which may
result in bioenergetic crisis and genomic instability (Rouault and Tong 2005;Veatch et al.
2009).

In the early 1980’s, Bitar and Walter (1983) observed that heme biosynthesis declined with
aging. This phenomenon was investigated extensively by the Ames group, leading to important
findings in this area (Atamna et al. 2001;Atamna et al. 2002a;Atamna et al. 2002b). For
instance, heme deficiency in senescent human fibroblasts was found to selectively decrease
the expression and activity of cytochrome c oxidase (complex IV) (Atamna et al. 2001).
Complex IV, the terminal oxidase in mitochondrial electron transfer chain, is responsible for
generating a transmembrane proton gradient across the inner mitochondrial membrane (Saraste
1999;Atamna et al. 2002b). Therefore, age-associated heme deficiency leads to impaired
mitochondrial energy production through depressing complex IV. In a follow-up study, a
decreased activity of complex IV resulting from defective heme biosynthesis was also observed
in human brain cell lines and rat primary hippocampal neurons (Atamna et al. 2002a), further
suggesting an association among age-related heme deficiency, mitochondrial decay and the
aging process.

A recent study in yeast established a link between defects in ISC biogenesis and age-associated
genomic instability (Veatch et al. 2009). Aging yeast cells lose their mitochondrial DNA
(mtDNA) over time, leading to decreased inner mitochondrial membrane potential and
mitochondrial dysfunction. The reduction of mitochondrial membrane potential, in turn,
contributes to the defect in the transport of iron-sulfur proteins into and out of the mitochondria,
which is required for mitochondrial ISC assembly and maturation of cytosolic and nuclear iron-
sulfur proteins (reviewed in Lill et al., 2008). Defects in the mitochondrial ISC machineries
result in an impaired iron homeostasis with increased cellular iron acquisition, iron regulon
activation and iron accumulation in mitochondria. The function of iron-sulfur proteins in both
the mitochondrial compartment and throughout the cell is either reduced or lost, and eventually
cells fail to maintain nuclear genome intergrity.

2.3. Iron manipulation and longevity
The first indication that inhibition of iron absorption could extend life span was provided by
Massie et al. (1993), who studied male Drosophila fed an iron-rich diet and tea extracts. The
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study demonstrated that increased dietary iron reduced longevity and dietary tea prevented the
age-related iron accumulation in Drosophila. Brune et al. (1989) and Rossander-Hulthen et al.
(1996) reported that the galloyl group in tea polyphenols was responsible for the inhibitory
effects, suggesting a unique role of tea polyphenols in iron binding. However, it is possible
that polyphenolic compounds in tea extracts exerted a direct antioxidant effect in addition to
the inhibition of iron absorption as proposed and that both mechanisms contributed to the
reported increase in lifespan. In fact, other studies suggest different mechanisms that may
underlie the life extension effects of tea polyphenolics in Drosophila (Li et al. 2007;Berletch
et al. 2008;Peng et al. 2009). Additional genetic studies in C. elegans and Drosophila have
established a link between frataxin and longevity by demonstrating that frataxin deficiency in
C. elegans led to shorter lifespan (Vazquez-Manrique et al. 2006;Zarse et al. 2007) and that
frataxin overexpression in Drosophila extended life span (Runko et al. 2008). By stressing
Drosophila with paraquat and hydrogen peroxide, Runko et al. (2008) found that transgenic
flies were resistant to oxidative stress and that frataxin overexpression extended the median
and maximum life span as much as 35% and 28%, respectively. However, the observation that
reducing the expression of frataxin by utilizing a bacterial feeding RNAi against the nematode
ortholog frh-1 prolongs life span in nematodes (Ventura et al. 2005) provides evidence that
there is a threshold effect on life extension in nematodes. Activation of compensatory pathways
may allow nematodes with frataxin reduction to exhibit a life-extension phenotype (Rea et al.
2007). These observations also highlight a fundamental difference in frataxin requirements
between mammals and nematodes and suggest that the other findings linking reduced
mitochondrial function and life extension in invertebrates may not apply to mammals. Aside
from the studies in Drosophila (Massie et al. 1993;Runko et al. 2008), little work has been
conducted to investigate the effects of frataxin overexpression and iron restriction on longevity
in rodents. Such investigations are required to determine whether frataxin overexpression and
iron restriction may eventually be employed as a strategy to modulate aging in humans.

2.4. Diseases related to mitochondrial iron overload
Although the precise molecular components regulating the mitochondrial iron pool are still
unknown, frataxin, a 17-KDa mitochondrial protein, is considered central to mitochondrial
iron homeostasis (see Scheme 1). Studies in yeast models showed that frataxin was involved
in heme biosynthesis (Lange et al. 1999;Seguin et al. 2009), ISC assembly (Muhlenhoff et al.
2002), aconitase repair (Bulteau et al. 2004), and iron storage (Gakh et al. 2006;Gakh et al.
2008;Correia et al. 2010). Ablation of frataxin results in mitochondrial iron overload and
Friedreich’s ataxia, a major inheritable neurodegenerative disorder (Pandolfo and Pastore
2009). MtF is another mitochondrial iron storage protein that has been identified so far in testis,
neuronal cells and islets of Langherans, and is thought to play an important role in iron storage
and regulation in mitochondria (Levi and Arosio 2004;Santambrogio et al. 2007). Levels of
MtF are significantly elevated in erythroblasts from patients with sideroblastic anemia,
implying that MtF may be induced by iron overloading to sequester excess iron in mitochondria
(Drysdale et al. 2002). In agreement with its protective role, studies in frataxin-deficient yeast
(Campanella et al. 2004;Campanella et al. 2009) and frataxin-silenced HeLa cells (Zanella et
al. 2008) showed that human MtF expression prevented the accumulation of mitochondrial
iron, maintained mtDNA integrity, and increased the resistance to oxidative stress by rescuing
mitochondrial respiration. Recently, mitochondrial glutaredoxin 5, a thiol-disulfide
oxidoreductase, has been shown to be essential for ISC biogenesis and the maintenance of
normal mitochondrial and cytosolic iron homeostasis in human RD4 and COS cells (Tong and
Rouault 2000). In glutaredoxin 5 deficient HeLa cells, ISC biosynthesis and mitochondrial iron
trafficking were impaired, causing mitochondrial iron overload and concomitant cytosolic iron
depletion (Ye et al. 2010). In agreement with these observations, glutaredoxin 5 deficiency
was associated with sideroblastic anemia in human patients (Camaschella et al. 2007). Besides
importer-mediated iron transport to mitochondria, physical interaction between endosomes and
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mitochondria has also been proposed as a possible mechanism delivering cellular labile iron
into the mitochondrion (Zhang et al. 2005;Sheftel et al. 2007). Sec15l1, a mammalian ortholog
of the yeast SEC15, has been suggested as a component of the docking machinery between the
endosome and the mitochondrion (White et al. 2005). The absence of Sec15l1 causes anemia
in mice due to improper iron trafficking in the erythroid transferrin cycle (Lim et al. 2005).
Unlike iron import pathways, most iron is exported from mitochondria in the form of heme
and ISCs through various transporters (see Scheme 1) (Levi and Rovida 2009). The breast
cancer resistance protein (ABCG2), the feline leukemic virus subgroup C receptor (FLVCR),
and the ABC-mitochondrial erythroid (ABC-me) are necessary for heme export, whereas
ABCB7 is needed for ISCs transport from the mitochondrion to the cytoplasm (Shirihai et al.
2000;Cavadini et al. 2007;Zutz et al. 2009). Defects in these transporters impair mitochondrial
iron homeostasis and lead to cellular degeneration and death (Dunn et al. 2007;Rouault and
Tong 2008).

Taken together, recent studies on mitochondrial iron overload diseases suggest that redox-
active iron accumulation in mitochondria with age may be responsible for increases in cellular
and mitochondrial oxidative stress and mitochondrial function decline. These alterations, in
turn, may be involved in the pathogenesis of age-related neuro-muscular degeneration as well
as in the aging process as a whole.

2.5. Iron accumulation and sarcopenia
The age-related loss of muscle mass and strength, referred to as sarcopenia of aging, is a highly
prevalent condition among older adults and severely impacts functional status, quality of life
and mortality (Marzetti and Leeuwenburgh 2006). Older individuals are also especially
vulnerable to disuse-induced muscle atrophy (Edgerton et al. 2002), the recovery from which
is impaired at old age (Zarzhevsky et al. 2001). The socio-economic burden associated with
sarcopenia and disuse muscle atrophy has instigated an intensive research on the
etiopathogenesis of these conditions, leading to the discovery of several potential contributing
factors (Marzetti et al. 2009b). In particular, recent experimental evidence indicates that
abnormal iron homeostasis may be involved in the pathogenesis of both sarcopenia (Altun et
al. 2007;Hofer et al. 2008;Seo et al. 2008;Jung et al. 2008;Xu et al. 2008) and acute muscle
atrophy in old animals (Kondo et al. 1992;Hofer et al. 2008). Hofer et al. (2008) recently
demonstrated that non-heme iron levels were over 2-fold higher in the gastrocnemius muscle
of old rats compared to younger controls. Acute atrophy induced by hind limb suspension
resulted in a further elevation in muscle non-heme iron content in old, but not young rats.
Notably, histochemical analysis revealed that iron accumulated in atrophied rather than normal
fibers, suggesting a mechanistic link between iron overload and the loss of muscle mass. In
addition, Kondo et al. (1992) demonstrated that the accrual of oxidative damage and the
severity of muscle atrophy in hind limb immobilized rats were significantly attenuated by the
administration of the iron chelator deferoxamine. More recently, Xu et al. (2008) found that
total non-heme iron levels increased progressively over the course of aging in the rat
gastrocnemius muscle and correlated with decreased muscle mass and grip strength.
Importantly, lifelong 40% calorie restriction, an intervention known to mitigate the severity of
sarcopenia in rodents, preserved muscle iron homeostasis into very old age (Marzetti et al.
2009b). This adaptation was paralleled by a reduced decline in muscle mass and strength,
further supporting a role for muscle iron overload in the pathogenesis of sarcopenia.

Since the mitochondrion is one of the most important sites for cellular iron utilization (Levi
and Rovida 2009), Seo et al. (2008) investigated whether mitochondrial iron homeostasis was
altered in the aged muscle. Advanced age was associated with increased mitochondrial non-
heme iron levels in the rat quadriceps muscle, which correlated with levels of mitochondrial
RNA (mtRNA) oxidation and susceptibility to mPTP opening. This finding is of particular
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relevance, since mPTP opening is considered a central event in the induction of apoptosis,
which in turn is thought to be involved in the pathogenesis of sarcopenia and acute muscle
atrophy (Marzetti et al. 2009a). Further research is warranted to unveil the mechanisms
underlying muscle iron dyshomeostasis during aging as well as in other atrophying conditions.
This knowledge will likely allow the development of new therapeutic tools for the prevention
and treatment of sarcopenia and disuse muscle atrophy.

2.6. Iron accumulation and brain aging
During aging a progressive structural derangement of biomolecules and cellular compartments
takes places in the brain, causing a decline in motor plasticity and cognitive performance
(Moos and Morgan 2004;Droge and Schipper 2007;Stankiewicz and Brass 2009). The
mechanisms responsible for brain aging are complex and not yet completely understood;
however, growing evidence indicates that the aging process partly stems from the accumulation
of damage to macromolecules and cell components caused by distorted cellular redox balance
and aberrant metal homeostasis (Levenson 2005;Lee and Andersen 2010). In fact, oxidant-
mediated damages of macromolecules disturb redox-sensitive signaling (Altamura and
Muckenthaler 2009) and cause mitochondrial dysfunction (Lin and Beal 2006) as well as brain
cell death (Mattson 2006). Additionally, accumulation of metal ions, especially iron, has been
observed in the aged central nervous system in humans (Aquino et al. 2009) and animal models
(Hahn et al. 2009) as well as in disorders such as Alzheimer’s disease (Honda et al.
2005;Altamura and Muckenthaler 2009), Huntington’s disease (Simmons et al. 2007;Bartzokis
et al. 2007), Parkinson’s disease (Lee and Andersen 2010) and Friedreich’s ataxia (Pandolfo
and Pastore 2009).

In the 1950s, Hallgren and Sourander (1958) reported non-heme iron accumulation in several
regions of the aged human brain such as putamen, motor cortex, prefrontal cortex, sensory
cortex and thalamus (Hallgren and Sourander 1958). In addition to these observations, studies
in post-mortem brains showed an age-dependent accumulation of ferritin, indicative of
increased storage iron, in different brain regions (Thomas et al. 1993;Connor et al. 1995;Zecca
et al. 2001). Recent studies using high-field magnetic resonance imaging revealed an increase
in iron levels in various regions of the aged brain (Pfefferbaum et al. 2009;Aquino et al.
2009;Peran et al. 2009;Cherubini et al. 2009). Excessive iron content in the aged brain may
generate cellular toxic stress, which partly explains the age-related decline in cognitive
performance and other neurodegenerative disorders (Polla et al. 2003;Zecca et al. 2004;Sen et
al. 2007;Hahn et al. 2009).

Neurodegenerative diseases associated with iron accumulation in the brain, especially in the
basal ganglia, are caused by specific gene mutations (Gregory et al. 2009). For instance, a
defect in the PANK2 gene encoding pantothenate kinase 2 causes pantothenate kinase-
associated neurodegeneration, in which pathologic accumulation of iron in the brain is
observed (Zhou et al. 2001;Gregory and Hayflick 2005). Patients lacking circulating serum
ceruloplasmin and ferritin light polypeptide bear mutations in the CP and FTL genes,
respectively (Curtis et al. 2001;Texel et al. 2008). About half of cases of infantile neuroaxonal
dystrophy and atypical neuroaxonal dystrophy exhibit iron deposition in the brain, which is
associated with mutations in the gene PLA2G6. Much research effort is directed at exploration
of noninvasive therapeutics to combat these neurodegenerative diseases associated with brain
iron accumulation (Miyajima et al. 1997;Gregory et al. 2009).

3. Future research
If indeed iron accumulation and alterations in labile iron are significant factors in the aging
process, iron scavenging and removal might therefore prevent cellular and mitochondrial
oxidative damage and attenuate age-related mitochondrial decay. This goal could be achieved
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through phlebotomy, iron chelation, overexpression of iron storage proteins or limitation of
dietary iron (Polla et al. 2003;Saito et al. 2003;Sullivan 2009). Several studies have shown that
iron chelation may be beneficial in the treatment of iron overload diseases, such as Alzheimer’s
disease (Weinberg and Miklossy 2008;Liu et al. 2010), Parkinson’s disease (Kaur and
Andersen 2004;Ghosh et al. 2010), Friedreich’s ataxia (Whitnall et al. 2008;Goncalves et al.
2008) and retinal disease (Dunaief 2006;Lukinova et al. 2009). An important issue associated
with iron chelation therapy is that compounds available to date do not possess enough
selectivity for organs or macromolecular structures, and once penetrated in tissues chelate iron
indiscriminately. This may dramatically limit the use of iron chelators in elderly people, in
whom iron-deficient anemia is highly prevalent (Darnton-Hill et al. 2005). Therefore, we need
safer therapeutic interventions with a high selectivity to reduce labile iron levels while
maintaining the bioavailable iron pool.

Calorie restriction, the only non-genetic intervention extending life and health span in all
organisms studied to date, has been shown to be effective in alleviating the age-associated iron
accumulation in rat muscle, liver, brain and kidney (Cook and Yu 1998;Xu et al. 2008).
However, one major issue associated with calorie restriction involves feasibility and
tolerability, especially for the old frail elderly. Tea polyphenolics, on the other hand, show
promise in terms of feasibility and may provide a valid alternative to calorie restriction to
reduce iron absorption, but this intervention has not been fully tested. Thus, a major research
challenge will be the development of novel, safe and feasible interventions to preserve iron
homeostasis into old age.
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Scheme 1. Schematic illustration of mitochondrial iron dyshomeostasis with aging
Iron is transported into the mitochondrial matrix by iron importers (e.g. mitoferrin) where it
can be directed to different pathways, including storage in frataxin, iron-sulfur cluster (ISC)
biosynthesis, heme metabolism, mitochondrial ferritin (MtF) or other currently unknown
pathways. The ISCs can be exported to the cytoplasma by ABCB7. Heme is thought to be
exported from the mitochondrion by several pathways, including ABCG2, the feline leukemia
virus subgroup-C receptor (FLVCR) and ABC-me. Defects in these transporters or defective
biosynthesis of heme and ISCs with age impair mitochondrial iron homeostasis and lead to
cellular degeneration. Increased labile iron with age, especially in mitochondria, has a strong
potential to catalyze the generation of reactive oxygen species (ROS), resulting in cellular
damage.
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