
Perturbing the Ubiquitin Pathway Reveals How Mitosis Is
Hijacked to Denucleate and Regulate Cell Proliferation
and Differentiation In Vivo
Andrea Caceres1., Fu Shang1., Eric Wawrousek2, Qing Liu1, Orna Avidan1, Ales Cvekl3, Ying Yang3,

Aydin Haririnia4, Andrew Storaska4, David Fushman4, Jer Kuszak5, Edward Dudek1, Donald Smith1,

Allen Taylor1*

1 Laboratory for Nutrition and Vision Research, U.S. Department of Agriculture Human Nutrition Research Center on Aging (USDA HNRCA), Tufts University, Boston,

Massachusetts, United States of America, 2 Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Department of Health and

Human Services, Bethesda, Maryland, United States of America, 3 The Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine,

Bronx, New York, United States of America, 4 Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College

Park, Maryland, United States of America, 5 Departments of Ophthalmology and Pathology, Rush University Medical Center, Chicago, Illinois, United States of America

Abstract

Background: The eye lens presents a unique opportunity to explore roles for specific molecules in cell proliferation,
differentiation and development because cells remain in place throughout life and, like red blood cells and keratinocytes,
they go through the most extreme differentiation, including removal of nuclei and cessation of protein synthesis.
Ubiquitination controls many critical cellular processes, most of which require specific lysines on ubiquitin (Ub). Of the 7
lysines (K) least is known about effects of modification of K6.

Methodology and Principal Findings: We replaced K6 with tryptophan (W) because K6 is the most readily modified K and
W is the most structurally similar residue to biotin. The backbone of K6W-Ub is indistinguishable from that of Wt-Ub. K6W-
Ub is effectively conjugated and deconjugated but the conjugates are not degraded via the ubiquitin proteasome pathways
(UPP). Expression of K6W-ubiquitin in the lens and lens cells results in accumulation of intracellular aggregates and also
slows cell proliferation and the differentiation program, including expression of lens specific proteins, differentiation of
epithelial cells into fibers, achieving proper fiber cell morphology, and removal of nuclei. The latter is critical for
transparency, but the mechanism by which cell nuclei are removed has remained an age old enigma. This was also solved
by expressing K6W-Ub. p27kip, a UPP substrate accumulates in lenses which express K6W-Ub. This precludes
phosphorylation of nuclear lamin by the mitotic kinase, a prerequisite for disassembly of the nuclear membrane. Thus
the nucleus remains intact and DNAseIIb neither gains entry to the nucleus nor degrades the DNA. These results could not
be obtained using chemical proteasome inhibitors that cannot be directed to specific tissues.

Conclusions and Significance: K6W-Ub provides a novel, genetic means to study functions of the UPP because it can be
targeted to specific cells and tissues. A fully functional UPP is required to execute most stages of lens differentiation,
specifically removal of cell nuclei. In the absence of a functional UPP, small aggregate prone, cataractous lenses are formed.
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Introduction

Eye lens organogenesis begins with proliferation of surface

ectoderm into lens epithelial cells [1,2]. This is followed by synthesis

of major lens gene products, the crystallins. Continued differenti-

ation of epithelial cells into fibers, including packing of the fibers and

intracellular removal of their nuclei results in the clear lens[3]. Red

blood cells and keratinocytes also loose their nuclei [4,5]. Whereas

mechanisms for removal of cell nuclei are known for blood cells and

keratinocytes, the mechanism of lens cell denucleation has remained

elusive for over a century. Because cell turnover is almost non

existent and expression of target genes can be directed to the lens

without damage to other critical organs, this tissue presents unique

opportunities to explore roles for specific molecules in cell

proliferation, differentiation and development. Further, the cells

and their structural molecules remain in place, in order of the

sequence in which they were formed, throughout life. Because of

this spatial alignment, abnormalities in developmental processes or

in clearance of damaged, particularly insoluble proteins, are often

observed in vivo as localized opacities or cataracts.
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Proper cellular function is dependent upon balancing and

maintenance of the proteome. Such proteostasis often engages the

ubiquitin proteasome pathway (UPP) [6–12]. In the UPP,

ubiquitin (Ub), an 8 kDa protein with 7 lysines, is linked or

conjugated to substrates. Roles for most lysines on Ub have been

defined. K63 is utilized during DNA repair processes, protein

trafficking and inflammation [13]. K48 is required to form

polyubiquitin chains and high mass species which are recognized

by the 26S proteasome for degradation. K33 and K27 function in

stress responses [14]. K29 on Ub aids in ubiquitin fusion

degradation [14,15] and K11 is employed in degradation of

APC/C substrates [13] or eliciting ERAD responses [16–18].

Surprisingly, although K6 is the most readily chemically modified

lysine in the Ub molecule [19], knowledge about biological

requirements for K6 is very limited [20].

In this work we established for the first time that K6W-Ub has an

indistinguishable structure from Wt-Ub. Expression of K6W-Ub

provides an unequivocal genetic opportunity to explore roles for

ubiquitination and UPP-dependent proteolysis in a biological

context. In order to determine roles for ubiquitination in lens

development, we expressed K6W-Ub starting at embryonic day 10.5

using a lens specific promoter. This is shortly after formation of the

lens vesicle, before most of the epithelial cells have been produced and

well before the formation of lens fibers. Under these conditions

normal Ub remains available. We monitored incorporation of k6W-

Ub into Ub-protein conjugates, deubiquitination, protein aggrega-

tion, cell proliferation, and differentiation, including lens-specific-

crystallin expression, proper fiber formation, denucleation and lens

clarity. Expressing K6W-Ub at higher levels, without silencing the

other multiple Ub genes, delays cell proliferation. Novelly, differen-

tiation is also delayed as indicated by delayed synthesis of the lens

specific crystallins. Additional evidence of delayed differentiation is

failure to: form full length lens fiber cells, reverse fiber cell alignment,

lengthen the cell nucleus and remove lens fiber cell nuclei. These are

required to form a clear lens. Lenses in which K6W-Ub was

expressed at high levels were smaller and cataractous.

The present data allow the first unified hypothesis for lens cell

removal of nuclei [21,22]. The removal sequence starts with events

that are common to mitosis and involve regulation by the UPP. First

we observe degradation and/or dilution of the Cdk inhibitor p27Kip,

a UPP degradation substrate. The Cdk1/cycB complex is activated

allowing for phosphorylation of lamin. This results in disassembly of

the nuclear lamin on the nuclear envelope and allows entry of

DNAse IIb into the nucleus to degrade DNA, at least in part.

Expression of higher levels of K6W-Ub prevents degradation of p27
Kip, and thus arrests this pathway. Lamin remains intact and DNAse

IIb remains at the periphery of the nucleus.

Similar to aged lens tissue, we also found accumulation of Ub-

containing moieties, particularly in insoluble fractions, in lenses in

which K6W-Ub was expressed at higher levels [8]. The

accumulation of proteins indicates that their rate of production

exceeds the rates of removal. Together the impaired protein

surveillance and aberrant development that are induced by K6W-

Ub-related compromise to the UPP elucidate why the lenses

become opaque, and they inform about critical functions of

adequate proteolytic capacity to maintain lens function.

Results

Effects of K6W-mutation on structure and functions of
ubiquitin

We expressed and purified Ub in which K6 was replaced with W.

In terms of structure and charge, this modification is analogous to

biotinylation. All other lysine sites are available. Nuclear magnetic

resonance (NMR) spectroscopy indicates that the overall structure

of K6W-Ub is essentially indistinguishable from that of Wt-Ub, with

resonances for the majority of backbone amides remaining

unperturbed in the mutant Ub (Figure 1A, Supplementary Figure

S1A). K6 is in a beta strand adjacent to the hydrophobic patch

(formed by L8, I44, H68, V70) on Ub’s surface that is recognized by

various Ub-receptors. In covalently linked (i.e. K48-linked)

polymers K6 is found at the junction of the hydrophobic surface

in polyubiquitin chains that signal a proteolytic fate for the substrate

protein (Figure 1B). K6 is observed in E2-Ub interfaces [23]. The

similar structure of K6W-Ub to Wt-Ub is corroborated by its facile

incorporation into high mass Ub conjugates when it is expressed in

human cells (Figure 1C) and mouse tissues (Figure 1D, E). Despite

these biophysical similarities with Wt-Ub and the facile incorpora-

tion of K6W-Ub into conjugates in cell free assays, these conjugates

are not degraded effectively in vitro and in vivo [19].

Roles for K6W-Ub were pursued in human lens epithelial cells

(HLEC) in culture and in vivo. Overexpression of Wt-Ub in HLEC

results in 4-fold and 1.2 fold enhanced levels of high mass conjugates

in the soluble and insoluble fractions, respectively, indicating that

HLEC, like many other types of cells in culture, are limited with

respect to supplies of free Ub (Figure 1C) [19] [24],[25,26]. In

comparison, expression of K6W-Ub results in .16-fold and .1.2-

fold greater accumulation of conjugates in the soluble and insoluble

fractions, respectively, including significant levels of moieties which

are large enough to remain in the stacking gel (Figure 1C). The

extensive accumulation of high mass conjugates in lenses in which

K6W-Ub is expressed (Figure 1D, E) corroborates in an in vivo

setting that K6W-Ub is conjugation competent but conjugates

which incorporate this variant are proteolytically resistant [19].

Importantly, the accumulation of K6W-Ub-containing conjugates

is not due to differences in rates of deubiquitination (Figure 1F) since

conjugates formed with K6W-Ub are dismantled as readily as

conjugates formed with Wt-Ub (Figure 1F, Supplementary Figure

S1E). Taken together, these data imply that K6W-Ub is an effective

competitive inhibitor for the UPP the expression of which can be

targeted to desired cells and tissues.

Effects of K6W-Ub-induced UPP inhibition on lens cell
proliferation, differentiation, lens formation and clarity,
and proteostasis

It is not possible to target proteasome inhibitors to the lens

without affecting most other organs. To overcome this barrier

multiple transgenic K6W-Ub lines were generated in which the

Ub variant was expressed at high and low levels in the lens. The

lens was chosen because a) metabolism in lens epithelia is

comparable to that of cells in many other tissues, b) to avoid

embryonic lethal effects that might affect critical organs, c)

aberrations in the proteome might lead to readily observed

opacity, and d) because patterns of cell proliferation and

differentiation are well documented and readily observed. Mice

which expressed higher levels of K6W-Ub showed severe opacities

or cataract and had higher levels of high mass Ub conjugates

(Figure 2B, E, I), whereas lenses from animals which expressed

lower levels of K6W-Ub (Figure 2C, F) or overexpressed Wt-Ub

were clear (Supplementary Figure S1B) comparable to non-

transgenic animals (Figure 2A, D). They also accumulated lower

levels of high mass conjugates (Figure 2I).

In some cells insolubilization may be conceived as a means to

limit toxicity of abnormal proteins. However, in the lens such

precipitation results in opacification, hence tissue dysfunction.

Interestingly, lenses with high levels of K6W-Ub show higher

levels of oligomerized proteins (green) which colocalize with K6W-

Ub (red), corroborating the formation of conjugates and deposition

Ubiquitin Directs Denucleation

PLoS ONE | www.plosone.org 2 October 2010 | Volume 5 | Issue 10 | e13331



of K6W-Ub in function-compromising protein aggregates

(Figure 1G). Similar results, as well as enhanced actin aggregation,

were observed in cell culture models (Supplementary Figure S1C,

D). This indicates that like neurodegeneration diseases [10–12],

cataracts are also etiologically related to accumulation of soluble

and insoluble Ub conjugates [8], and a functional UPP with Ub

intact is required to elicit proper protein clearance. These data are

consistent with prior observations that cells in which K6W-Ub is

expressed at high levels are stress-sensitive [19,24].

Critical to successful organogenesis is proper initiation and

regulation of cell proliferation. E18.5 lenses which expressed high

levels of K6W-Ub showed limited proliferation in the epithelial

layer (Figure 2J, I vs. K, M). In Wt lenses proliferation, as

indicated by the S-phase indicator BrdU, is observed throughout

the epithelial layer (Figure 2J, pink). In contrast, far lower numbers

of S-phase cells were found in the anterior epithelial layer of K6W-

Ub-expressing lenses (Figure 2K). Instead, BrdU incorporation

was present in the anterior fiber mass area, where it is usually not

observed. Thus, although they begin to transform to fibers, some

K6W-Ub expressing fiber cells have not completed withdrawal

from the cell cycle, and the normal differentiation program is

delayed. The proliferation data was corroborated by examining

phosphorylated histone H3 (p-H3), an indicator of G2/M phase.

Whereas, Wt lenses show anterior epithelial cells positive for p-H3

(Figure 2L, green) this was not observed in K6W-Ub-expressing

lenses (Figure 2M). Instead, some fiber cells in K6W-Ub lenses are

positive for p-H3 (Figure 2M) demonstrating once more that these

cells are in cycle and not yet fully differentiated.

Corroborating the limited proliferation and delayed differenti-

ation in lenses in which K6W-Ub is expressed, such lenses were

about 2/3 the weight and approximately 75% the volume of Wt

lenses or lenses in which the K6W-Ub was expressed at lower

levels (Figure 2D–F). In addition, lenses that expressed K6W-Ub

are relatively flat across the anterior surface and more rounded at

the posterior, while for Wt it is the opposite (Figure 2G, H).

Also required to facilitate transparency is proper intracellular

protein organization and intercellular interdigitation. Epithelial

cells line the anterior surface of the normal lens. Vacuoles which

interrupt the close packing of the protein-dense epithelial or fiber

cells result in discontinuities in the index of refraction, resulting in

opacification. In the Wt-Ub lens the single layer of cuboidal

epithelial cells which is normally found at the anterior equator

withdraw from cell cycle. Here, these cells begin to differentiate.

This is coupled with the massive expression of crystallin proteins,

transforming the cuboidal equatorial cells to elongated fibers at the

bow, (Figure 2G, Figure 3C). The continuous addition of new fiber

Figure 1. Effects of K6W-mutation on structure and functions of ubiquitin. (A) Overlay of 1H-15N HSQC spectra of Wt-Ub (black) and K6W
(red). Residues showing the biggest differences are indicated. (B) Ribbon diagram of the three-dimensional structure of Wt-Ub with residues showing
the largest chemical shift differences between Wt and K6W colored orange (CSP 0.1–0.2 ppm) and red (CSP .0.2 ppm). The side chain of K6 is shown
in stick representation. (C) Expression of K6W-Ub in HLEC results in accumulation of high mass conjugates, especially in the insoluble fraction. Wt and
K6W-Ub were expressed in HLEC via adenoviral vectors, and levels of total Ub conjugates in the cells were determined by western blotting using
ubiquitin antibody. (D, E) Expression of K6W-Ub in mouse lenses in vivo using the crystallin DCR1 with 1.9 kB Cryaa promoter results in elevated levels
of total Ub conjugates (D) and MRGS(His)6K6W-Ub conjugates as well as some free MRGS(His)6K6W-Ub only in transgenic lenses (E). (n = 10). Lenses
from Wt and transgenic animals were lysed and endogenous levels of Ub and expression of transgene were determined by western blotting using
anti-Ub or anti-RGS(His)4 respectively. (F) Deubiquitination assay. Conjugates formed with K6W-Ub are dismantled as readily as conjugates formed
with Wt-Ub. Wt and K6W-Ub were labeled with 125I, and Ub conjugates were formed in proteasome-free fraction II of rabbit reticulocyte.
Deubiquitination by isopeptidases of the 125I-labeled ubiquitin conjugates was determined in the presence of a 20-fold excess of unlabeled Wt-Ub
conjugates. As a control, ubiquitin aldehyde (Ubal) was added to inhibit isopeptidases. (G) Immunofluorescence micrographs of P2 K6W-Ub lenses
show accumulation of protein aggregates (green) that sometimes colocalize (yellow) with K6W-Ub (red). Immunohistochemistry was used to detect
K6W-Ub and protein aggregates, anti-RGS(His)4 and anti-oligomer antibodies respectively. DAPI was used to stain nuclei.
doi:10.1371/journal.pone.0013331.g001
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cells at the lens periphery leads to a gradual inward movement and

compression of older cells toward the center of the lens where

intracellular organelles are lost forming an organelle-free zone

(OFZ, Figure 4A, C, Supplementary Figure S3A). This highly

regulated process persists throughout lifetime. In the outer

elongating fibers, nuclei become oval-shaped (Fig 3B, inserts).

Eventually the nuclei are degraded as fibers move toward the

interior of the lens which forms the visual axis (Figure 4A, 4C, 4D

and Supplementary Figure S4A). Another early indicator of the

differentiation process is the realignment of the fibers. Whereas at

the equator the elongating fibers in the bow have a concave

curvature (Figure 3C), they develop convex curvature as they

elongate further and meet up with equivalent fibers from the

opposing side of the lens and form sutures at the anterior and

posterior tips (Figure 2G, 3C). These processes do not proceed as

scheduled in the K6W-Ub-expressing lens. Instead, the epithelium

is composed of multiple disorganized layers and appears thicker

(compare Figure 3B vs. 3A, Supplementary Figure S2B, D vs.

A,C). To corroborate the origin of these disorganized cells,

connexin 43, an specific epithelial cell marker, was localized. In

K6W-Ub expressing lenses the thick layer of disorganized cells is

positive for connexin 43 indicating that these cells are epithelial an

not degenerating fibers (Supplementary Fig S2A, 2B). Just

posterior to these layers of epithelial cells, cellular debris

accumulates and vacuoles form (Figure 2H asterisk, 3B asterisk,

Supplementary Figure S2F vs. E). The fibers cells neither elongate

fully, precluding adapting the convex shape, nor do they

interdigitate with the opposing fiber partners. Fibers in the

K6W-Ub-expressing lens begin to differentiate more anteriorly

resulting in an incompletely formed and anterior bow (Figure 2H

Figure 2. K6 on Ub is essential for proper lens formation and clarity. Slit-lamp photographs of P90 mouse lenses. Lenses expressing high
levels of K6W-Ub (A) show severe cataracts whereas lenses from animals expressing low levels of K6W-Ub (C) are clear, comparable to wild type (B).
(D, E, F) Head-on photographs of P30 lenses. Lenses expressing high levels of K6W-Ub are cloudy and opaque. Note that the print behind the lens in
panel E cannot be seen as it is in panels D and F. Lens from animals expressing low levels of K6W-Ub are clear comparable to Wt. (G, H) Light
micrographs from E18.5 days Wt and K6W-Ub lenses. Lenses expressing high levels of K6W-Ub were ,2/3 the size of Wt lenses. (I) P30 lenses from
high or low K6W-Ub-expressing animals show different levels of K6W-Ub-containing conjugates. Lenses from Wt and transgenic animals were lysed
and expression of transgene was determined by western blotting using anti-RGS(His)4. (J–M) Fluorescent micrographs of E18.5 K6W-Ub-expressing
lens show attenuated proliferation compared to Wt. (J, K) BrdU (red) incorporation assay was used to detect S-phase cells in mouse lenses. K6W-Ub-
expressing lenses show limited incorporation of BrdU compared to Wt. (L, M) Phospho-H3 (green), also shows that K6W-Ub-expressing lenses have
decreased proliferation compared to Wt lenses. Immunohistochemistry was used to detect incorporation of BrdU and expression of phospho-H3,
using anti-BrdU and anti-phospho-H3 antibodies respectively. DAPI was used to stain nuclei.
doi:10.1371/journal.pone.0013331.g002
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vs. G, Figure 3D vs. C). These fibers appear to be less tightly

packed than in the lenses of the Wt littermates (Supplementary

Figure S2F vs. E). Furthermore, nuclei remain round at the bow

(compare Figure 3D vs. 3B, insets). By P2, when fibers in Wt lenses

begin to denucleate, nuclei are retained in the core of the lens

which express higher levels of K6W-Ub (Supplementary Fig S4A,

Figure 4C). Additional indicators of K6W-Ub-induced altered

differentiation are retention of ER and mitochondria as well as

accumulation of aggregates and debris (Supplementary Figure

S3A–D). Retained organelles and debris prohibit the formation of

the clear optic fiber that is required for passage of light.

Comparison of protein expression corroborates the anatomic

indications of K6W-Ub-induced problems in the differentiation

program. In lens a-, b- and c-crystallins are synthesized

sequentially [27]. Synthesis of these proteins is observed in the

protein profiles shown in Figure 3E–G. In comparison, there is

delayed expression of some b, and most of the c-crystallins in the

K6W-Ub lens (Figure 3E–G). For example, it is clear that at E18.5

and P1 synthesis of crystallins (c-B, c-C c-D, c-E, c-A, c-S,) and

several b-crystallins (b-B1, b-A3, b-B3, b-A1, b-A2) is markedly

delayed in the lenses which express the K6W-Ub. These

differences are particularly readily observed in the c-crystallins

Figure 3. K6 on Ub is required to direct lens proliferation and differentiation and denucleation. (A–D) Light micrographs of epithelium
(epi), bow region and nuclei from E18.5 days Wt and K6W-Ub-expressing lenses. The epithelium of lenses expressing K6W-Ub (B) is profoundly altered
compared to the single layered epithelium of Wt lens (A). The transgenic lens epithelium shows multiple layers of cells and accumulation of cellular
debris and vacuoles interposed between the anterior tips of the fibers and the epithelium (asterisk). Compared to Wt lenses, fibers (fib) of K6W-Ub
transgenic lenses do not fully elongate or meet the anterior epithelium (arrow) (D). In addition, the concave to convex curvature found in Wt lenses
(black lines) (C) is not apparent in K6W-Ub-expressing lenses. Nuclei at the bow region do not elongate in lenses expressing K6W-Ub (boxes). (C vs. D,
upper boxes). (E) Gel profiles demonstrate that the complement of crystallin proteins in which K6W-Ub was expressed are different from the proteins
in the Wt animal from E18.5 to P3. By P6 the protein profiles are more similar. Lenses of E18.5, P1, P3, P6 and P45 were lysed and proteins were
separated by SDS gel electrophoresis. Gels were stained with Coomassie blue. (F) 2D electrophoresis of P1 Wt and K6W-Ub-expressing lenses. K6W-
Ub transgenic lenses show lower expression of crystallin proteins when compared to wildtype. Lenses of P1 animals were lysed and proteins were
separated by isoelectric focusing then SDS gel electrophoresis. Gels were stained with silver. Note the absence of several b- and most c- crystallins
from the transgenic lens. (G) Western blot of b- and c- crystallins in E18.5 and P15 lenses. Levels of b- and c- crystallins in transgenic lenses at E18.5
and P15 are lower as compared to wildtype lenses. Lenses from wildtype and transgenic animals were lysed and expression of crystallins was
determined by western blotting using anti-b- and c- crystallins antibodies. Equal loads are shown by western blotting using anti-GAPDH antibody.
doi:10.1371/journal.pone.0013331.g003
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Figure 4. K6 on Ub is required to direct lens denucleation. (A) Fluorescent micrographs of E18.5 K6W-Ub-expressing (panel 2, 4, 6, 8) and Wt
(panel 1,3, 5, 7) lenses show distribution of p27 (red) and lamin A/C (green). In Wt lenses p27 is localized at the bow region of the lens and is
concentrated in nuclei, but is also present in the cytoplasmic compartments of lens fiber cells. There is a gradual decrease in p27 expression from the
bow region to the OFZ. Transgenic lenses (panel 2) show greater retention of p27 (note elevated red staining) in nuclei and the fiber mass as
compared to Wt (panel 1). Intact nuclear membranes in the core of the lens are only seen in transgenic lenses (panel 8). While in Wt, no nuclear
membranes are apparent and only DNA fragments are observed in the core of the lens (panel 7). (B) P1 K6W-Ub transgenic lenses show stabilization
of p27 protein. Lenses were lysed and levels of endogenous p27 were determined by western blotting using anti-p27 antibody. Equal loads are
shown by western blotting using anti-aA crystallin antibody. (C) Fluorescent micrographs of E18.5 K6W-Ub-expressing (panel 4) and Wt (panel 3)
lenses show distribution of p27 (red) and phosphorylated lamin A/C (green) (panels 6 and 5). Localization of p27 is the same as in (A, panel 1 and 2).
Asterisks show non-specific staining (panel 4). In addition, lenses that express K6W-Ub (panel 6) show decreased levels of phosphorylated lamin A/C

Ubiquitin Directs Denucleation
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region of the 2D gels shown in Figure 3F. The difference appears

to be sustained even at P15 (Figure 3G).

Several differences from prior indications of sequences of

crystallin synthesis were also indicated. Ueda et al. indicates that

a-B and cS-crystallins increases upon early postnatal lens

development. We see that, in equally loaded samples, cS-crystallin

is present at P1 in Wt lenses as expected and it is less obvious in the

K6W-Ub lens. (Figure 3F, 3G). However, in contrast with their

prediction a-B is a more prominent protein in the K6W-Ub

expressing lens. The data are consistent with expression of K6W-

Ub resulting in abnormal differentiation after the onset of a-

crystallins and prior to onset of c-crystallin expression. The

absence of a significant effect on a-crystallin expression is expected

because of the construct we used to express the transgene. Earlier

expression is not possible at present in this context. The delay in

population of the fibers with c-crystallins provides another clear

indication that expression of the transgene impairs timely lens cell

differentiation and also explains the difference in weights of the

lenses. This difference diminishes with time such that after

,P30 Wt and K6W-Ub-expressing animals have more similar

protein profiles (Figure 3E). Thus, the effect of K6W-Ub is

observed at early stages of lens development, when the lens

continues to add most of its fiber mass. Notably, at early ages, i.e.

E18.5, P1, and P3 the proportion of K6W-Ub to other proteins is

higher than at P45 (Supplementary Figure S4B). The relative

levels of the transgene decreased dramatically, due to dilution by

elevated levels of crystallins and massive expansion of cell volume

(Supplementary Figure S4B). This data was corroborated by

measuring the expression levels of the transgene. By real time PCR

expression of K6W-Ub relative to GAPDH does not change with

age (Supplementary Figure S4C). This corroborates our hypoth-

esis that K6W-Ub protein levels are diluted by the massive

production of crystallins in the lens fibers. This reduction in the

relative levels of K6W-Ub may explain the amelioration of the

phenotype in K6W-Ub-expressing lenses in regions of the lens that

are produced at older ages (Supplementary Figure S4A).

Collectively, the data indicate that expression of K6W-Ub results

in retardation and alterations in the normal lens cell proliferation

and differentiation programs, thus, emphasizing that a Ub with

K6 intact, is required for proper and timely progress of

differentiation which results in a clear, functional lens.

Expression of K6W-Ub reveals a pathway by which lens
cells disassemble their nuclei

Nuclei must be removed to allow for unimpeded passage of light

through the lens fibers. The retention of nuclei, together with

observations of G2/M arrest in cells in which K6W-Ub is

expressed [24], and similarly arrest in fibers in the K6W-Ub

expressing lens (Figure 2M), as well as concepts that removal of

nuclei might exploit mechanisms that are normally employed to

dismantle cell nuclei during mitosis [21] allowed critical new

insights into how fiber cells denucleate [21]. Specific to this work,

we tested the novel hypothesis that a properly functional UPP,

including adequate concentrations of Ub with K6 intact, is

required to elicit a chain of events that results in destruction of

nuclei (and other organelles), leaving an optically clear OFZ the

Wt [28–32].

In support of this hypothesis we observe in Wt lens a spatially and

developmentally coordinated dilution (due to rapid synthesis of

crystallins) or/and destruction of p27 in the cytoplasmic and nuclear

compartments of the lens fibers in the OFZ (Fig 4A, panels 1, 3, 5

and Figure 4B,C) as compared with epithelial or the bow regions. In

the Wt lens, there is also a concerted activation of Cdk1/cyclinB

[21], as indicated by phosphorylation of nuclear lamin A/C at

serine 392 (same phosphorylation site as in mitosis) (Fig. 4C, panels

5, 7). In the Wt lens, phosphorylated lamin is dismantled allowing

for permeabilization of the nuclear membrane. In the lens core cell

nuclear membranes are no longer obvious (Figure 4A, panel 7) and

DNAse IIb, a lysosomal enzyme, can gain entry to the nucleus

(Fig. 4D, note dark brown nuclear staining in the cells which will

soon lose their nuclei, right panels, vs cells that have not entered the

terminal differentiation process, left panel) [33,34]. This leaves low

levels of remnant DNA fragments (Figure 4A panel 7 vs. panel 8),

thus, establishing the OFZ. In contrast, in the smaller, K6W-Ub-

expressing lens there is delayed synthesis of crystallins (Figure 3E–

G), higher concentrations of nuclear and cytoplasmic p27 (Figure 4A

panels 2 and 6; Figure 4C panels 4 and 8; Figure 4B), and limited

phosphorylation of lamin (Figure 4C, panel 6). Failure to

phosphorylate lamin is associated with retention of intact nuclear

membranes and nuclei as well as exclusion of DNAse IIb from the

fiber cell nucleus, leaving intact DNA (Figure 4A panel 8). The

colocalization of p27 and lamin A/C, where nuclear membranes

are intact in Wt and K6W-Ub expressing lenses is consistent with

our hypothesis that Cdk-dependent phosphorylation of p27 is a

prerequisite for its degradation, activation of the kinase, lamin

phosphorylation and eventually for denucleation. Also note the

clear phosphorylation of lamin in the proliferating epithelia of the

control lens whereas this is far less obvious in the K6W-Ub

expressing lens in this zone suggesting that nuclear membrane

breakdown during lens denucleation is the same as in mitosis. Taken

together these data identify functional Ub as essential for

denucleation during terminal differentiation and to avoid catar-

actogenesis at early stages of organogenesis. They also imply a new

function for the UPP in directing lens cell proliferation and multiple

stages of differentiation.

Mitotic models were used to corroborate and extend the above

results. p27 is seen to accumulate both at its native mass and as

high mass conjugates in cells synchronized in the G2/M phase of

the cell cycle when K6W-Ub is overexpressed, but not when cells

are infected with control virus (Figure 5A). In vitro tests showed that

p27 indeed inhibits the Cdk1/cyclinB complex and that its

inhibition is dose dependent (Figure 5B). We then observed that

for synchronized cells there are significantly higher levels of

phosphorylated lamin in control-infected as compared with K6W-

Ub-expressing cells (Figure 5C green, Figure 5D). This corrobo-

rates the hypothesis that to promote nuclear disassembly it is

necessary at early mitosis to enhance levels of phosphorylated

lamin and that that requires diminished concentrations of p27 to

allow for activation of the kinase complex. Prior observation of

p27-induced inhibition of Cdk1/cyclin B activity and arrest of cells

at the G2/M transition are consistent with our data [35],

(green) toward the lens core as compared to Wt (panel 5). Immunohistochemistry was done to detect levels of p27, phosphorylated lamin A/C, lamin
A/C using anti-p27, anti-lamin A/C (phospho Ser 392) and anti-lamin A/C, respectively. DAPI was used to stain nuclei. Note that phosphor-lamin is
detected more in the dividing epithelia of Wt lenses rather than transgenic lenses. (D) Light micrographs of P2 mice Wt and K6W-Ub transgenic lenses
show the distribution of DNAse IIb (dark brown). Comparable sections from the bow region to the edge of the OFZ of the lens. K6W-Ub-expressing
lenses show accumulation of DNAse IIb around the nuclear envelope for all regions. Going from the bow towards the OFZ, more DNAse IIb enters the
nucleus and less accumulates at the nuclear envelope. Immunohistochemistry was done to detect distribution of DNAse IIb using anti-DNAse IIb
antibody.
doi:10.1371/journal.pone.0013331.g004
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suggesting that, as in other cells, in lens inhibition of Cdk1/cyclin

B is a direct consequence of the accumulation of p27 (or other Cdk

inhibitors) and that expression of K6W-Ub enhances this

phenomenon. Thus, the data define a novel pathway by which

nuclei can be removed during lens cell differentiation.

Discussion

K6W-Ub has a structure that is indistinguishable from the Wt

molecule and readily supports ubiquitination, but incorporation of

Ub with mutations at K6 results in perturbed UPP function and

profound abnormalities in proteostasis, differentiation, and

developmental as well as in age-related protein precipitation

disease phenotypes. Cataract is clearly among these. In this work

we made no effort to silence the multiple endogenous Wt-Ub

genes. Thus, the effects due to expressing the K6W-Ub variant are

probably minimized. The data establish new roles for Wt-Ub and

the UPP to execute these critical developmental functions and they

allowed us to elucidate how denucleation is regulated. They also

demonstrate the utility of the K6W-Ub variant to unequivocally

explore roles for ubiquitination and the UPP in multiple

physiologic settings.

Novelly, we propose that a specific program for destruction of

the lens fiber cell nucleus is adapted from normal early mitotic

events. This involves diminishing levels of p27, activating Cdk1/

cyclin B, phosphorylating lamin and disassembly of the nuclear

envelope. In the lens, denucleation is completed by entry of

DNAse IIb and degradation of DNA. A corollary is that having

adequate concentrations of Wt-Ub is crucial for these processes to

proceed. It will be fascinating to elucidate how the full mitotic

program is diverted in lens cells to allow denucleation but not

mitosis.

Interestingly, Ubs linked at K6 are predicted to have a closed

conformation similar to that of K48-linked polyubiquitin chains

that do direct protein substrates for proteolysis [36] and substrates

conjugated with K6W-Ub are readily deubiquitinated. Moreover,

it is clear that inter ubiquitin linkages which involve lysines other

than those built upon K6 must be formed ([37]; [16]. Nevertheless,

substrates which include ubiquitin in which tryptophan replaces

lysine at position 6 are not bound effectively by Ub-recognition

motifs at the 26S proteasome and, they retard degradation. Since

with intact Ub accumulation of soluble and insoluble aggregates is

avoided, the appearance of K6W-Ub along with protein

precipitates indicates that having K6 intact on Ub is required

for the timely degradation of proteins in this in vivo mammalian

tissue setting. Aggregation and precipitation of proteins is

particularly problematic in the lens which must remain free of

insoluble aggregates to remain clear to pass light. These data are

corroborated by prior demonstrations that ubiquitinated moieties

accumulate in cataractous precipitates in older stressed lenses [8]

and by recent data showing age- and disease- related accumulation

of damaged proteins, including Ub, and dysfunction in the brain of

animals in which the proteasome is mutated [38]. Furthermore,

they suggest that the present results are generalizable, i.e. that

having Ub with K6 intact is required for formation and function of

many other tissues.

The availability of adequate amounts of Ub with K6 intact is

required for proper transit through the cell cycle and to initiate the

developmental processes that precede denucleation in the lens.

These include elaboration of lens specific proteins, the many

changes in cell structure as lens cells become fibers, the realignment

of the fibers, evolved changes of nuclear shape and finally removal

of the nuclei. The eventual formation of lens fibers that appear

normal at the periphery of the affected lens in high expressing

K6W-Ub lenses is consistent with altered expression of proteins-

even in elongating epithelial cells- as the animals mature and age.

Finally, in addition to providing a new way to unequivocally

establish roles for ubiquitination in physiologic processes, the data

indicate that modification of Ub or discovery of molecules that

result in altered Ub metabolism may be useful to alter cell

proliferation such as encountered in cancer and secondary

cataract. The animal model may also be adapted to test anti-

cataract or anti-aging drugs.

Materials and Methods

Ethics Statement
All animals were generated and maintained at the National

Institute of Health or at the Jean Mayer USDA Human Nutrition

Research Center on Aging at Tufts University under specific

pathogen-free conditions in accordance with institutional guide-

lines. This study was carried out and approved under the Jean

Mayer USDA Human Nutrition Research Center on Aging at

Tufts University IACUC protocols TA-66 and TA-67 and in

accordance with the Animal Welfare Act provisions and all other

animal welfare guidelines such as the NIH/Guide for the Care

and Use of Laboratory Animals.

Structural properties of polyubiquitin chains in solution
[39]

All NMR studies were performed on a cryoprobe-equipped

Bruker 600 MHz spectrometer at 23uC. NMR samples of WT and

K6W-ubiquitin (concentrations 0.5–1.0 mM) were prepared in a

buffer containing 20 mM sodium phosphate at pH 6.8, 7% D2O,

and 0.02% (w/v) NaN3. Recombinant proteins were obtained using

E.coli expression and purified as described [40]. NMR signal

assignment for K6W-ubiquitin was obtained using homonuclear 2D

TOCSY and NOESY experiments combined with 2D 1H-15N

HSQC and 3D 15N-edited TOCSY and NOESY. NMR signal

assignments for Wt-ubiquitin were used as a starting point.

Perturbations in amide resonances resulting from the mutation

were quantified using chemical shift perturbations (CSPs) calculated

as CSP = [(DdH)2+(DdN/5)2]1/2, where DdH and DdN are the

observed chemical shift changes for 1H and 15N, respectively.

Gene Preparation
Ubiquitin octamer DNA constructs of both MRGS(His)6-Wt-

Ub and MRGS(His)6-K6W-Ub were cloned into pCDNA3 vector

Figure 5. K6 on Ub is required to degrade p27. (A) HLEC expressing K6W-Ub show stabilization of p27 in G2/M synchronized cells. Cells were
synchronized in early mitosis phase using nocodazole. K6W-ubiquitin was expressed in HLEC via an adenoviral vector and levels of endogenous p27
were determined by western blotting. (B) Cdk/cyclin B activity is blocked in a dose-dependent manner by the addition of p27 recombinant protein in
vitro. Cdk1/cyclin B activity was determined in vitro by the quantification of phosphorylated-Rb by ELISA. (C) HLEC expressing K6W-Ub show
decreased phosphorylation of lamin A/C in early and late G2/M phase. Cells were synchronized at G1 phase with hydroxyurea. After release of
hydroxyurea, cells were allowed to grow for 4, 12 and 16 hrs to synchronize at S, early and late G2/M phase respectively. Immunohistochemistry was
done to detect levels of phosphorylated lamin A/C using anti-lamin A/C (phospho Ser 392). (D) HLEC in which K6W-Ub was expressed show
significantly lower amounts of phosphorylated lamin A/C at early and late G2/M phase. Cells positive for phosphorylated lamin A/C were counted
from 10 different fields from fluorescent micrographs in panel C. Positive cells were averaged and statistics were performed at p,0.05.
doi:10.1371/journal.pone.0013331.g005
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(Invitrogen) and the sequences were verified. All eight ubiquitin

sequences in each octamer have an MRGS(His)6 tag at the amino

terminus. Both octamer constructs were subcloned into modified

pEGFP-1 vector which comprise an EcoRI/EcoRV DCR1

promoter sequence insertion as described previously [41].

Generation of transgenic animals
Transgenic mice were generated and maintained in FVB/N

background. In these animals, expression of MRGS(His)6-Wt-Ub

and MRGS(His)6-K6W-Ub is under the control of the aA-

crystallin promoter. The mini genes that contain the promoter;

encoding sequences and poly-adenylation sequence DNA were

injected into FVB/N fertilized oocytes in AECOM Transgenic

and Gene Targeting Facility and NEI Genetic Engineering

Facility. The transgenic mice were identified by PCR-based

genotype. Multiple lines of animals were created [42,43].

Deubiquitination Assay
Wt or K6W-ubiquitin was labeled with 125I, and ubiquitin

conjugates were formed in proteasome-free fraction II of rabbit

reticulocyte. Deubiquitination assay was performed as described

previously [19].

Cell Culture and Synchronization
HLEC were grown as described previously [19]. HLEC were

synchronized at G0/G1 and G2/M in the presence of hydroxyurea

and nocodazole, respectively. The G0/G1 arrested cells resumed

cell cycle upon removal of the hydroxyurea. Cells were then

collected or fixed after hydroxyurea release for cell extract

preparation or immunohistochemistry analysis. Cells synchronized

at G2/M were used to prepare lysates. Analysis of cell cycle by

flow cytometry was performed as described previously [19].

Generation of recombinant adenoviruses and infection
with adenoviral vector

Adenoviruses expressing GFP along with (His)6-Ub or K6W-Ub

or without GFP were generated as described previously [19,24].

HLEC were arrested in G0/G1 and G2/M by hydroxyurea and

nocodazole, respectively, and infected with K6W-ubiquitin or

empty adenovirus for 24 h.

Cell and lens extract preparation
Extracts from HLEC were prepared as described previously

[8,19]. Lenses from K6W and Wt animals were homogenized

directly in SDS-PAGE loading buffer. Protein concentrations for

cell extracts were determined by the Coomassie Plus Protein Assay

(Pierce, Rockford, IL) and protein concentration from lens lysates

was adjusted by densitometric analysis using Coomassie blue

stained SDS-gels.

Western blot analysis
Standard protocols were used for western blotting as described

previously [24]. b-actin and aA-crystallin were used for normal-

izing the protein load. Comparisons of relative levels of specific

antigens were done by quantitative densitometry using Image J

Software.

Histology and Immunohistochemistry
Lenses were dissected from K6W and Wt mice. They were

embedded in OCT, frozen and subsequently sectioned. Lens

cryosections or cells growing on coverslips were fixed with 4%

parafomaldehyde, permeabilized, blocked and incubated with

antibodies using standard protocols. To assess proliferation in

embryonic mouse lens sections wildtype and transgenic pregnant

female mice were intraperitoneally injected with BrdU 2 h before

euthanization.

Antibodies
Antibodies to Ub were produced in this laboratory [44].

Antibodies to lamin A/C, Brdu, phosphor-H3, lamin A/C

(phospho 392) and PDI were purchased from Abcam (Cambridge,

MA). Antibodies to actin and p27KIP were purchased from Santa

Cruz Biotechnology (Santa Cruz, CA). The antibodies to

RGS(His)4 and oligomer were purchased from Qiagen (Valencia,

CA) and Invitrogen (Carlsbad, CA), respectively. Antibodies to

DNAse IIb and aA-crystallin were kind gifts from S. Nagata

(Kyoto University, Yoshida, Sakyo-ku, Kyoto) and Nicolette

Lubsen (University of Nijmegen, Netherlands), respectively.

Secondary anti-mouse horseradish peroxidase and Texas Red-

conjugated and anti-rabbit HRP and FITC-conjugated antibodies

were from Jackson ImmunoResearch Laboratories (West Grove,

PA).

CDK1/Cyclin B Activity Assay
The CDK1/cyclin B in vitro kinase assay was performed using

an HTScan CDK1/CycB Kinase Assay Kit (Cell Signaling), as

per manufacturer’s instructions. To assess inhibition of Cdk1

activity by recombinant p27kip1 protein (purified in this laborato-

ry), p27kip1 was added at different concentrations to assay mixture.

2 Dimensional Electrophoresis
Lens proteins were analyzed by two-dimensional electrophoresis

as described previously [45]. Spots of interest were identified by

mass spectrometry-based protein sequencing [27].

Supporting Information

Figure S1 Characterization of K6W-Ub using NMR, biochem-

ical and cell expression. (A) Amide chemical shift perturbations

(CSP), K6W versus WT ubiquitin, as a function of residue

number. Residue 6 is indicated by an asterisk. The horizontal bars

on the top indicate elements of the secondary structure in

ubiquitin. (B) Head-on photograph of 1-month old mouse lens.

Lens from animals expressing Wt-Ub are clear comparable to wild

type. (C) Fluorescent micrographs show that HLE cells that

express K6W-Ub accumulate protein aggregates (green) that

colocalize with ubiquitin (red). (D) Fluorescent micrographs show

that HLE cells that express K6W-Ub accumulate perinuclear actin

aggregates (red). Immunohistochemistry was used to localize

protein aggregates, ubiquitin and actin using anti-oligomer, anti-

ubiquitin and anti-beta actin antibodies respectively. DAPI was

used to stain nuclei. (E) Densitometric quantification of the

deubiquitination assay shows that conjugates formed by K6W-Ub

are as readily dismantled as those formed with Wt-Ub.

Found at: doi:10.1371/journal.pone.0013331.s001 (0.33 MB TIF)

Figure S2 K6 on Ub is required to direct lens proliferation and

differentiation. (A, B) Fluorescent micrographs of E18.5 K6W-Ub-

expressing and Wt lenses show distribution of connexin 43, an

epithelial lens cell marker. Wt lenses show an organized monolayer

of cells. While, transgenic lenses show a multilayered epithelium

consisting of disorganized lens epithelial cells. DAPI was used to

stain nuclei. (C–F) Electron micrographs of E18.5 K6W-Ub lenses

at the junction of epithelial cells and fiber cell. (C) The Wt lens

shows a single layered epithelium, whereas the K6W-Ub

expressing lens epithelium is thick composed of multiple layers

and disorganized cells. In addition, transgenic lenses (F) show
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accumulation of cellular debris, vacuoles and disorganized cell

structure when compared to wild type (E).

Found at: doi:10.1371/journal.pone.0013331.s002 (1.05 MB TIF)

Figure S3 K6 on Ub is required to direct lens differentiation. (A,

B) Fluorescent micrographs of P2 K6W-Ub lenses show retained

endoplasmic reticulum (green) by the presence of protein disulfide

isomerase in the OFZ of the lens when compared to wild type.

Immunohistochemistry was used to detect protein disulfide

isomerase, using anti-PDI antibodies. (G, H) Electron micrographs

of E18.5 K6W-Ub lenses show retention of mitochondria in fiber

cells from the nascent core of the lens when compared to wild type.

Found at: doi:10.1371/journal.pone.0013331.s003 (0.61 MB TIF)

Figure S4 Expression of K6W-Ub diminishes with time. (A)

Light micrographs of 4-month mice Wt and K6W-Ub-expressing

mice. Right panel. Lenses expressing K6W-Ub retain nuclei in the

core of the lens (insert) whereas the core of Wt lenses are free of

nuclei, left side. (B) Western blot for K6W-Ub in E18.5, P1, P3, P6

and P45 lenses. Levels of K6W-Ub in transgenic lenses at E18.5,

P1 and P3 are high, but, as the lens ages to P45, relative levels of

the transgene decrease. Lenses from wildtype and transgenic

animals were lysed and expression of transgene was determined by

western blotting using anti-RGS(His)4. (C) Real time PCR results

shows that expression of K6W-Ub (transgene) relative to GAPDH

at the transcriptional level (mRNA) does not change with age.

RNA was extracted from lenses of animals that express K6W-ub at

ages P1, P6 and P30. Twelve lenses from different animals were

used per age group.

Found at: doi:10.1371/journal.pone.0013331.s004 (0.65 MB TIF)
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