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Are Human and Mouse Satellite Cells Really the Same?

Luisa Boldrin, Francesco Muntoni, and Jennifer E. Morgan

Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, United Kingdom

SUMMARY Satellite cells are quiescent cells located under the basal lamina of skeletal
muscle fibers that contribute to muscle growth, maintenance, repair, and regeneration.
Mouse satellite cells have been shown to be muscle stem cells that are able to regenerate
muscle fibers and self-renew. As human skeletal muscle is also able to regenerate following
injury, we assume that the human satellite cell is, like its murine equivalent, a muscle stem
cell. In this review, we compare human and mouse satellite cells and highlight their simi-
larities and differences. We discuss gaps in our knowledge of human satellite cells, compared
with that of mouse satellite cells, and suggest ways in which we may advance studies on
human satellite cells, particularly by finding new markers and attempting to re-create the
human satellite cell niche in vitro. (J Histochem Cytochem 58:941–955, 2010)
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THE SATELLITE CELL is defined by its location between the
basal lamina and sarcolemma of skeletal muscle fibers.
It was identified first in adult frog skeletal muscle
(Mauro 1961) andwas subsequently found in other ver-
tebrates (Muir et al. 1965), including human (Laguens
1963; Shafiq et al. 1967).

Experiments in rodents demonstrated that satellite
cells contribute to the growth and regeneration of
skeletal muscle (Moss and Leblond 1971; Bischoff
1975; Cardasis and Cooper 1975a; Konigsberg et al.
1975; Schultz 1976; Snow 1978).

Normally quiescent in adult muscle, satellite cells
become activated when muscle is injured and prolifer-
ate to generate a pool of muscle precursor cells (mpc)
or myoblasts. These can then either repair damaged
segments of fibers or fuse together to generate entirely
new multinucleated muscle fibers. During the processes
of proliferation and differentiation into myofibers, the
satellite cell recapitulates the myogenic program that is
not an exact recapitulation of muscle development,
although the myogenic regulatory factors (MRFs) Myf5,
MyoD, MRF4, and myogenin (Figure 1) [reviewed by
Weintraub (1993)] are expressed in similar sequence in
both processes.

Early interest in satellite cells and their progeny mpc
was due to their role in muscle repair and regeneration,

which is particularly relevant to the treatment of in-
herited muscle diseases. Recently, satellite cells have
emerged as a model of a postnatal stem cell because
the availability of markers and genetically modified
mice has allowed investigators to follow in vitro and
in vivo the processes of activation, proliferation, dif-
ferentiation, and self-renewal.

Challenges in Studying Satellite Cells
Despite being of such interest, quiescent satellite cells
are very difficult to study. Their scarcity and location
under the basal lamina of muscle fibers makes them
difficult to isolate. Another major problem relates to
the difficulty encountered in attempting to separate
them from other cells present within skeletal muscle
(e.g., fibroblasts, endothelial cells, interstitial cells,
and blood vessel–associated cells), in order to obtain
a pure population of satellite cells. Because of these
factors, performing experiments that require large
numbers of satellite cells can be challenging, even in
rodents. These difficulties are significantly compounded
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when studying human muscle, not only because of the
practical difficulties in obtaining muscle biopsies to
prepare cells but also because of the lack of markers
to distinguish satellite cells from myonuclei and other
cells present within skeletal muscle. It is because of
these reasons that most of the work done so far is
focused on rodents, particularly mice.

Satellite cells may be studied either in frozen sec-
tions of skeletal muscle, or following their isolation
from fresh muscle, by growing muscle explants from
which muscle cells, including mpc, migrate onto the
culture dish substrate (Harvey et al. 1979; Garrett and
Anderson 1995; Conboy andRando 2002; Conboy et al.
2003; Smith and Merrick 2010), or by mincing and
enzymatically disaggregating skeletal muscle (Naffakh
et al. 1993; Partridge 1997; Yablonka-Reuveni et al.
1999a; Conboy et al. 2003; Montarras et al. 2005).
Both methods give rise to a mixture of cell types, but
do not necessarily release all cells from the muscle. Flow
cytometry has been used to purify both mouse and hu-
man satellite cells on the basis of expression of marker
proteins (Baroffio et al. 1996; Conboy et al. 2003,2010;
Sherwood et al. 2004; Montarras et al. 2005; Fukada
et al. 2007; Pallafacchina et al. 2010), but this method
does not give rise to completely pure populations of
cells. In addition, enzymatic treatment removes cells
from their niche and may strip or alter cell surface
markers so that satellite cells prepared in this way may
not completely maintain their in vivo phenotype.

An elegant method to prepare rodent satellite cells
in their niche on the fiber was developed by Bischoff

(1986) and used in many in vitro and in vivo stud-
ies (Rosenblatt et al. 1995; Shefer et al. 2004,2006;
Zammit et al. 2004; Collins et al. 2005; Yablonka-
Reuveni et al. 2008; Boldrin et al. 2009). Isolated
viable muscle fibers bearing their satellite cells under
the basal lamina may be either fixed immediately or
placed in suspension culture so that the activation,
proliferation, differentiation, and self-renewal of satel-
lite cells in their niche can be followed (Beauchamp
et al. 2000; Zammit et al. 2004; Collins et al. 2007,
2009; Day et al. 2007; Gnocchi et al. 2009). Fibers
may be cultured on a substrate, usually Matrigel (a
commercially available mixture of basement mem-
brane components and growth factors), or other sub-
strates, such as collagen (Shefer et al. 2004); under
these conditions, satellite cells migrate from the fiber,
proliferate, and differentiate into myotubes (Rosenblatt
et al. 1995; Blaveri et al. 1999; De Coppi et al. 2006;
Yablonka-Reuveni and Anderson 2006; Boldrin et al.
2007; Malerba et al. 2009). Alternatively, single muscle
fibers may be carefully washed to eliminate any ex-
traneous cells, and satellite cells removed from them
by either physical (Shefer et al. 2004; Collins et al.
2005; Boldrin et al. 2009) or enzymatic (Ono et al.
2009) methods.

Using this single fiber protocol, it is possible to
obtain pure populations of satellite cells, albeit in rela-
tively small number. However, a major limitation of
this method is that it requires entire freshly dissected
muscles to allow the isolated fibers to remain intact
and is therefore not easily applicable to human muscle

Figure 1 Model of satellite cell acti-
vation and progression through the
myogenic program. Quiescent satel-
lite cells, underneath the basal lamina
of muscle fibers, express Pax7 and
Myf5. Upon activation, they upregu-
late MyoD and divide to produce a
pool of muscle precursor cells (mpc).
Satellite cell progeny then follow
one of two fates. They may down-
regulate MyoD and self-renew to give
rise to a Pax71 satellite cell. Alterna-
tively, they may differentiate, down-
regulating Pax7, Myf5, and MyoD
and expressing MRF4 and myogenin,
eventually fusing either to form new
or to repair damaged myofibers.
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biopsies. Nevertheless, protocols using particularly
short muscles (Bonavaud et al. 2002; De Coppi et al.
2006) or fiber fragments (Cardasis and Cooper 1975b)
may be suitable for human muscle preparations.

Studies on quiescent satellite cells need to be per-
formed as soon as possible after fiber or cell prepa-
ration as they become activated extremely rapidly
(Wozniak et al. 2003; Zammit et al. 2004). On acti-
vation, satellite cells promptly enter the myogenic pro-
gram (Cornelison and Wold 1997; Yablonka-Reuveni
et al. 2008) and may not therefore retain the capabil-
ities of quiescent satellite cells.

Identification of Satellite Cells
In early studies, satellite cells were identified by elec-
tron microscopy on the basis of their position between
the basal lamina and sarcolemma of muscle fibers
(Cardasis and Cooper 1975a), but this method is tech-
nically demanding and not suitable to study large por-
tions of muscle. There is now a panel of reliable markers
of satellite cells in mouse, but not in human. However, it
must be borne in mind that some are expressed on acti-
vated and quiescent satellite cells, whereas others are
also expressed on other cell types (Table 1).

The majority of mouse satellite cells can be defined
by their expression of Pax7, CD34, caveolin, calcitonin
receptor, b1-integrin, M-cadherin, a7-integrin, and
nestin (Table 1), but only for the first five of these
markers are there commercially available antibodies.
Furthermore, it should be noted that nestin expression
in quiescent satellite cells has been revealed only by
means of green fluorescent protein (GFP) positivity in
the nestin-GFP mouse.

In the Myf5nLacZ/1 mouse, which has nuclear-
localizing b-galactosidase targeted to the Myf5 locus,
quiescent and activated satellite cells are b-galactosidase
positive. However, Myf5 protein expression has not
been described in quiescent satellite cells, even though
Myf5 transcripts can be detected in sorted mouse satel-
lite cells (Day et al. 2007) (Table 1). Possible expla-
nations may be either the protein level is too low to be
detected, or instability of the protein, or simply the lack
of a clear signal from the antibody used.

Because of the limitations highlighted previously,
it is at present unclear whether all of these markers
recognize satellite cells in human muscle (Table 1).

Satellite Cell Heterogeneity
There is clear evidence from mouse studies that satel-
lite cells, both within the same muscle and even on
the same fiber, are different in terms of their marker
expression (Beauchamp et al. 2000; Montarras et al.
2005; Kuang et al. 2007) and/or function (Collins et al.
2005,2007; Kuang et al. 2007; Sacco et al. 2008;
Boldrin et al. 2009). It is also clear that numbers of

satellite cells per fiber (Collins et al. 2005; Shefer et al.
2006; Zammit 2008; Ono et al. 2009) and capacity of
satellite cells to differentiate in vitro, or contribute to
muscle regeneration in vivo (Pavlath et al. 1998; Collins
et al. 2005; Montarras et al. 2005; Ono et al. 2009),
differ depending on which muscle is used for their isola-
tion. These observations all derive from mouse muscle,
and therefore, we do not knowwhether the human satel-
lite cell pool is, as in the mouse, heterogeneous.

Quantification of Mouse Satellite Cells
Early ultrastructural studies of mouse muscles suggest
that 30–35% of fiber nuclei are satellite cells at birth,
declining to 5–7% in adults (Allbrook et al. 1971;
Cardasis and Cooper 1975a; Schultz 1976). Subse-
quent studies using either electron microscopy or M-
cadherin staining to identify satellite cells in adult
mouse soleus muscles give similar numbers of satellite
cells (4.6% and 3.4% of nuclei, respectively; Snow
1977; Reimann et al. 2004). Many later studies have
relied on counting the number of satellite cells per
fiber, based on expression of different marker proteins
(Yablonka-Reuveni and Rivera 1994; Beauchamp et al.
2000; Zammit et al. 2004). Nevertheless, even using
the same marker, there are differences in the estimated
numbers of satellite cells per fiber between laboratories
(Collins et al. 2005; Shefer et al. 2006) or even between
experiments performed at different times in the same
laboratory (Collins et al. 2005,2007). These discrep-
ancies may be due to age, sex, or strain of mouse.

Quantification of Human Satellite Cells
Comparison of ultrastructural data suggests that there
are similar percentages of satellite cells in adult mouse
and human muscles—4% 6 2% of all nuclei within the
fiber basal lamina of human muscles (Schmalbruch and
Hellhammer 1976), which is similar to the 5–7% for
mouse satellite cells. More direct comparison is however
difficult, as in the mouse, satellite cell number depends
on the muscle in which they reside (Collins et al. 2005;
Zammit 2008), whereas we lack details in the human.

Lack of specific satellite cell markers in the human
has led to equivocal and sometimes contradictory re-
ports on their presence and number in human muscle
sections. The first antibodies used to identify satellite
cells in sections of human skeletal muscle were Leu19
and NKH-1, which recognize CD56, or neural cell
adhesion molecule (NCAM; Schubert et al. 1989; Illa
et al. 1992; Belles-Isles et al. 1993). NCAM is expressed
by quiescent human (Fidzianska and Kaminska 1995)
and rat (Irintchev et al. 1994), but not mouse, satellite
cells; mouse satellite cells only express NCAMwhen they
become committed to differentiation (Capkovic et al.
2008). Despite NCAM expression not being satellite
cell specific (Cashman et al. 1987; Schubert et al. 1989;
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Table 1 Markers of satellite cells

Satellite
cell marker

Majority of
satellite
cells

Subset of
satellite
cells

Quiescent
satellite
cells

Activated
satellite
cells Detection Mouse Human

Marker
localization

Transgenic
mouse

Expressed by
other cells References

Pax7 ✓ 2 ✓ ✓ Ab ✓ ✓ Nucleus Pax7-Zs
Green
mouse

Neurons Seale et al. 2000;
Bosnakovski
et al. 2008

Pax3 2 ✓ ✓ 2 TM ✓ ? Nucleus Pax3GFP/1

mouse
Neural crest

lineages
Relaix et al. 2006

Myf5 ✓ 2 ✓ ✓ KI, Ab,
mRNA

✓ ? Nucleus Myf5nlacZ/1

mouse
Neurons, muscle

spindle,
denervated
fibers

Tajbakhsh and
Buckingham
1995; Kitzmann
et al. 1998;
Beauchamp
et al. 2000;
Friday and
Pavlath 2001;
Day et al.
2007,2010

MyoD 2 2 2 ✓ Ab ✓ ? Nucleus 2 Myogenic cells Yablonka-Reuveni
et al. 1999a;
Zammit
et al. 2004

MNF 2 ✓ ✓ ✓ Aba ✓ ? Nucleus 2 Myonuclei in
regenerating
fibers, cardiac
and skeletal
myocytes,
brain, and
kidney

Garry et al. 1997

c-met 2 ✓ ✓ ✓ ISH ✓ ? Cell
membrane

2 Pericytes, neural
crest lineage,
and other
tissues

Cornelison and
Wold 1997;
Wozniak et al.
2003

Syndecan-3 ✓ ✓ ✓ ✓ Aba ✓ ? Cell
membrane

2 Macrophages,
leukocytes,
uterine tissue,
ovarian cancer,
chondrocytes

Cornelison et al.
2001

Syndecan-4 ✓ ✓ ✓ ✓ Aba ✓ ? Cell
membrane

2 Macrophages,
leukocytes,
mammary
cells, breast
cancer

Cornelison et al.
2001; Tanaka
et al. 2009

CD34 ✓ 2 ✓ ✓ Ab ✓ ? Cell
membrane

2 Hematopoietic
stem and
progenitor
cells, small-
vessel
endothelium

Beauchamp
et al. 2000

M-cadherin ✓ 2 ✓ ✓ Aba ✓ ✓ Cell
membrane

2 Granular cells
of the
cerebellum
and brain

Irintchev
et al. 1994;
Cornelison and
Wold 1997;
Beauchamp
et al. 2000;
Reimann
et al. 2004
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Table 1 (continued )

Satellite
cell marker

Majority of
satellite
cells

Subset of
satellite
cells

Quiescent
satellite
cells

Activated
satellite
cells Detection Mouse Human

Marker
localization

Transgenic
mouse

Expressed by
other cells References

CD56 ✓ ? ✓ ✓ Ab NA ✓ Cell
membrane

2 Human
peripheral
lymphocytes,
NK cells,
dendritic cells,
neurons, glia

Schubert
et al. 1989

a7-Integrin ✓ 2 ✓ ✓ Ab ✓ ? Cell
membrane

2 Fibers, neurons,
vasculature
and nervous
system

Blanco-Bose et al.
2001; Gnocchi
et al. 2009;
Rooney
et al. 2009

b1-Integrin ✓ 2 ✓ ✓ Ab ✓ ? Cell
membrane

2 Widely expressed,
isoform b-1D
expressed
specifically
in striated
muscle

Sherwood et al.
2004; Cerletti
et al. 2008

Caveolin-1 ✓ 2 ✓ ✓ Ab ✓ ? Cell
membrane

2 Prostate cancer,
adipocytes,
neurons,
fibroblasts,
smooth
muscle cells

Volonte et al.
2005; Gnocchi
et al. 2009

Calcitonin
receptor

✓ 2 ✓ ✓ Ab ✓ ? Cell
membrane

2 Kidney, central
and peripheral
nervous
systems,
osteoclasts

Gnocchi
et al. 2009

Jagged-1 2 ✓ 2 ✓ Ab ✓ ? Cell
membrane

2 Widely expressed
in many
tissues, mainly
in brain, heart,
muscle, and
thymus

Gnocchi
et al. 2009

Nestin ✓ 2 ✓ ✓ mRNA
TM

✓ ? Cell
membrane

NES-GFP Neural
progenitors

Shefer et al. 2004;
Day et al. 2007

Desmin ? ? ✓ ✓ mRNA
Ab

✓ ? Cytoplasm 2 Expressed in
skeletal,
smooth, and
cardiac muscle

Yablonka-Reuveni
et al. 1999a;
Day et al. 2007

Fzd7 2 ✓ ✓ ✓ Ab ✓ ? Cell
membrane

2 Highly expressed
in adult
skeletal muscle
and fetal
kidney, fetal
lung, adult
heart, brain,
and placenta.
Specifically
expressed in
squamous cell
esophageal
carcinomas

Le Grand
et al. 2009

Continued on next page
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Mechtersheimer et al. 1992) (Table 1), it has been exten-
sively used for identification of satellite cells on sections
of human muscle (Illa et al. 1992; Charifi et al. 2003;
Kadi et al. 2006;Doppler et al. 2008;Mackey et al. 2009).

M-cadherin, a reliable marker for mouse satellite-
cells (Irintchev et al. 1994; Beauchamp et al. 2000), has
also been used to identify human satellite cells (Sajko
et al. 2004), but this particular antibody is not commer-
cially available and has therefore not been widely used.

Although Pax7 is a reliable mouse satellite cell marker
(Seale et al. 2000), in human muscle it appears not to
identify all satellite cells; in addition, it may also stain
myonuclei (Reimann et al. 2004). In an attempt to dis-

tinguish Pax71 satellite cells from myonuclei, some
authors combined Pax7 and NCAM antibodies for sat-
ellite cell quantification (Verdijk et al. 2007) or counted a
satellite cell as being a NCAM- and/or Pax7-positive cell
in a sublaminar position (identified by laminin immuno-
staining) (Lindstrom and Thornell 2009). The latter study
showed that the majority of human satellite cells ex-
pressed both Pax7 and NCAM, but there were also small
numbers ofNCAM1/Pax72 andNCAM2/Pax71 satel-
lite cells, which may have been either activated or differ-
entiating (Lindstrom and Thornell 2009).

To further complicate comparison between studies,
the following parameters have been used by different

Table 1 (continued )

Satellite
cell marker

Majority of
satellite
cells

Subset of
satellite
cells

Quiescent
satellite
cells

Activated
satellite
cells Detection Mouse Human

Marker
localization

Transgenic
mouse

Expressed by
other cells References

Vangl2 2 ✓ 2 ✓ Ab ✓ ? Cell
membrane

2 Widely expressed,
mainly in
thymus, brain,
spinal cord,
heart, lung,
prostate

Le Grand
et al. 2009

SM/C-2.6 ✓ ? ✓ ? Aba ✓ ? Cell
membrane

2 ? Fukada et al. 2004

ABCG2 2 ✓ ✓ ? Ab ✓ ? Cell
membrane

2 Highly expressed
in placenta.
Low expression
in small
intestine, liver,
and colon

Tanaka et al. 2009

CXCR4 ✓ 2 ✓ ? Ab ✓ ? Cell
membrane

2 Expressed in
numerous
tissues

Sherwood et al.
2004; Cerletti
et al. 2008

Robo1 ? ? ? ✓ Ab ✓ ? Cell
membrane

2 Widely expressed,
with exception
of kidney

Siegel et al. 2009

Nap1l1 ? ? 2 ✓ Aba ✓ ? Nucleus 2 Ubiquitously
expressed

Pallafacchina
et al. 2010

Doublecortin ? ? 2 ✓ Aba ✓ ? Cytoplasm 2 Neurons Pallafacchina
et al. 2010

Adam19 ? ? 2 ✓ Aba ✓ ? Cell
membrane

2 Widely expressed Pallafacchina
et al. 2010

Sca-1 2 ✓ ✓ ✓ Ab ✓ ? Cell
membrane

2 Hematopoietic
stem cells

Mitchell et al.
2005; Kirillova
et al. 2007;
Tanaka
et al. 2009

CD56 ? ? ✓ ? Ab 2 ✓ Cell
membrane

2 Myoblast,
myotubes,
lymphocyte,
NK cells,
neuronal
derived tissues,
lung cancer,
and other
neoplasm

Schubert
et al. 1989

aNon-commercially available.
Ab, antibody; TM, transgenic mouse; KI, knockin mouse; NK, natural killer.
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authors for normalization of the satellite cell count:
number of myonuclei (Crameri et al. 2004; Eriksson
et al. 2005; Sinha-Hikim et al. 2006), length of muscle
fiber (Sinha-Hikim et al. 2003; Sajko et al. 2004), and
fiber cross-sectional area (Charifi et al. 2003; Dreyer
et al. 2006; Kadi et al. 2006; Verdijk et al. 2007;
Lindstrom and Thornell 2009). The correlation with
the cross-sectional fiber area allows processes like
muscle growth, pathological events, and ageing to
be taken into account (Sajko et al. 2004), but it has
been suggested that ideally both satellite cells per
fiber and satellite cells per number of myonuclei should
be used together for a more accurate measurement
(Lindstrom and Thornell 2009).

In conclusion, it is still not clear if different anti-
bodies detect all satellite cells and if satellite cell
number determined by antibody staining and electron
microscopy concur. In addition, it remains to be de-
termined if differences between immunostaining of
human and mouse satellite cells are an indication of
species-specific differences, or merely reflect that the
antibody itself is species specific. There is therefore a
pressing need to standardize the identification and
quantification of satellite cells in transverse sections
of skeletal muscle so that comparisons of satellite cell
numbers in different muscles, or the same muscles
in individuals of different age and sex or individuals
suffering from different pathological conditions, can
be made.

Control of Satellite Cell Activation
and Proliferation
Nearly all the work done on the processes of quies-
cence, activation, and self-renewal has been done on
mouse, not human, satellite cells [reviewed by Dhawan
and Rando (2005), Collins (2006), and Zammit (2008)].
We therefore summarize briefly findings on rodent
satellite cells, but whether the same mechanisms apply
to the human remains to be demonstrated.

Satellite cells are awakened from quiescence in re-
sponse to normal physiological stimuli, e.g., exercise
(Darr and Schultz 1987), and mechanical stretch
(Tatsumi et al. 2002; Wozniak et al. 2003) and by
pathological degeneration of muscle fibers, as seen for
example in muscular dystrophy. These events lead to
the activation of specific signaling pathways. Stretch-
induced satellite cell activation is mediated by nitric
oxide (NO) (Wozniak et al. 2003) that activates hepa-
tocyte growth factor (HGF) (Tatsumi et al. 1998,2002;
Anderson and Pilipowicz 2002). Notch receptors on
the satellite cell membrane play a crucial role in regu-
lating self-renewal of satellite cells (Conboy et al. 2003;
Kuang et al. 2007), and the wnt pathway is involved in
both activation and self-renewal (Fuchs et al. 2004;
Brack and Rando 2007; Le Grand et al. 2009) of

mouse satellite cells. Sphingosine 1 phosphate induces
mouse satellite cells to enter the cell cycle (Nagata et al.
2006). Growth factors such as fibroblast growth factor
(FGF) (DiMario and Strohman 1988; DiMario et al.
1989) and insulin-like growth factor (IGF)-1 (Hill
and Goldspink 2003) play a part in satellite cell prolif-
eration and muscle regeneration (Charge and Rudnicki
2004). Other signals that are involved in controlling
satellite cell function include stromal cell–derived fac-
tor (SDF)-1 that binds to CXCR4 and CXCR7 recep-
tors on myogenic cells (Melchionna et al. 2010) and
M-cadherin (Irintchev et al. 1994) that is involved in
both satellite cell quiesence (Irintchev et al. 1994) and
fusion into muscle fibers (Charrasse et al. 2007). Other
cells within skeletal muscle may influence satellite
cells, e.g., smooth muscle cells and fibroblasts secrete
angiopoietin 1 that is involved in satellite cell quies-
cence and self-renewal (Abou-Khalil et al. 2009). How-
ever, the control of satellite cell quiescence, activation,
proliferation, differentiation, and self-renewal within
adult skeletalmuscle in vivo has yet to be fully elucidated.

Satellite Cell Contribution to Skeletal
Muscle Regeneration
Evidence that there are some satellite cells that ful-
fill the definition of a stem cell—a cell that is able to
give rise to differentiated progeny and to self-renew
(Ramalho-Santos and Willenbring 2007)—came from
work in which quiescent satellite cells prepared from
genetically modified mice were grafted into dystrophic
mouse muscles and contributed both to regenerated
muscle fibers and to functional satellite cells (Collins
et al. 2005).

In mouse, the regenerative capacity of satellite cells
does not appear to depend on the niche, as quiescent
satellite cells removed from their fiber retain their
ability to regenerate skeletal muscle and functionally
reconstitute the satellite cell pool when grafted into
dystrophin-deficient host mice (Collins et al. 2005;
Boldrin et al. 2009; Ono et al. 2009). Similar work on
human satellite cells has not been performed because
of the difficulties in obtaining sufficient human satel-
lite cells for grafting and particularly in determining
if the donor cells had given rise to satellite cells, which
requires the availability of a reliable human-specific
satellite cell antibody.

However, as it is impractical to obtain satellite cells
directly from donor muscle for treatment of patients,
expansion in vitro would be necessary. A major limita-
tion of the use of mpc to treat muscular dystrophies
is that they lose their regenerative capacity following
tissue culture. In vitro expansion of donor mouse
(Montarras et al. 2005) and chicken satellite cells
(O’Neill and Stockdale 1972) for only a short time
significantly reduces the number of muscle fibers they
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form in vivo, probably because they commence myo-
genic differentiation. Similar to mouse, the regenera-
tive capacity of human mpc is reduced after they have
been expanded in vitro (Cooper et al. 2003; Brimah
et al. 2004), which may be as a result of senescence
during the culture period (Decary et al. 1996). This
suggests that expansion of both mouse and human
mpc in vitro may cause stem-like properties to be out-
weighed and therefore lost. Stem cell potential may also
be affected by tissue culture conditions, e.g., signals
from the substrate, medium components, growth fac-
tors, the cells themselves, or prior events in the life
history of that particular population of cells. Whether
there are ways to maintain the stem cell subpopulation
in vitro, e.g., by using low-oxygen conditions as in the
case of pluripotent stem cells (Millman et al. 2009),
or using growth factors and substrates to re-create the
niche (Cosgrove et al. 2009), remains to be investigated.

Nevertheless, there are some mouse mpc that retain
their ability to regenerate skeletal muscle following a
limited period of tissue culture. It is known that only
a minority of cultured mouse mpc survive in vivo fol-
lowing intramuscular grafting, and these were the cells
that were non-proliferating in vitro (Beauchamp et al.
1999). Within irradiated (but not in non-irradiated)
dystrophic mdx hosts, the surviving donor cells prolif-
erated, but nevertheless their contribution to regener-
ated muscle fibers was inefficient (Beauchamp et al.
1999) compared with freshly isolated satellite cells
(Collins et al. 2005). For technical reasons, it has not
been possible to follow the kinetics of human mpc
grafted into mouse muscles, but similar to mouse mpc
(Morgan et al. 1989,1990,1993; Watt et al. 1991;
Gross and Morgan 1999), human mpc contribute to
regenerated muscle fibers in immunodeficient mouse
hosts (Huard et al. 1994; Brimah et al. 2004; Silva-
Barbosa et al. 2005; Ehrhardt et al. 2007). However,
human mpc repopulate host mouse muscle even less
effectively than mouse mpc; fewer fibers of donor
origin are found when the same number of human
(Brimah et al. 2004) and mouse mpc (Morgan et al.
2002; Cousins et al. 2004) are grafted. This suggests
that human myoblasts do not regenerate as effectively
as mouse myoblasts, unless the difference in efficiency
is related to the xenografts. Furthermore, neither mouse
(El Fahime et al. 2000) nor human (Skuk et al. 2006)
mpc are able to migrate far from the injection site,
which is another major limitation of their use for
therapeutic applications.

Interestingly, the pretreatment of host muscle (Brimah
et al. 2004) and the host mouse strain (Cooper et al.
2001; Morgan et al. 2002; Silva-Barbosa et al. 2005)
affects the number of donor-derived muscle fibers
formed, and this effect seems to differ for human and
mouse mpc. For example, human mpc contribute to
more fibers of donor origin in cryoinjured rather than

irradiated host muscles (Brimah et al. 2004), whereas
the opposite is true for mouse satellite cells (Boldrin
et al., unpublished data). Mouse mpc contribute to sig-
nificantly more muscle fibers of donor origin in mdx
nu/nu than in C5-/Rag2-/ g chain-host mice (Morgan
et al. 2002). This implies that mouse and human mpc
respond differently to an in vivo environment; human
mpc may not undergo an expansion phase within the
host mouse muscle and therefore neither regenerate
skeletal muscle nor reconstitute the satellite cell niche
efficiently (Ehrhardt et al. 2007).

The environmental factors that modulate donor
mouse or human myoblast or satellite cell–derived
muscle regeneration and self-renewal have yet to be
fully determined. Certainly, other cells present within
skeletal muscle, e.g., macrophages (Gordon 1995;
Tidball 1995; Chazaud et al. 2003; Malerba et al.
2009), microvascular components (Rhoads et al.
2009), nerves (Tatsumi et al. 2009), smooth muscle
cells, fibroblasts (Abou-Khalil et al. 2009), and the
fiber itself, together with growth factors, gases (e.g.,
NO) (Anderson and Pilipowicz 2002; Tatsumi et al.
2002), or connective tissue components produced by
them (Silva-Barbosa et al. 2008), as well as systemic
factors (Conboy et al. 2005; Brack et al. 2007; Brack
and Rando 2007), influence the capacity of satellite
cells to survive, proliferate, migrate, regenerate muscle
fibers, and self-renew.

There is evidence that growth factors such as IGF-1
(Mourkioti and Rosenthal 2005), leukemia inhibitory
factor (Kurek et al. 1998), HGF (Miller et al. 2000),
and FGF promote endogenous regeneration (Kurek
et al. 1998; Yablonka-Reuveni et al. 1999b; Miller
et al. 2000) or donor human myoblast–derived regen-
eration in the mouse (Brimah et al. 2004). However,
not all growth factor isoforms have the same effect—
for example, in some reports, IGF-6 has no effect on
(Fiore et al. 2000) or even impairs (Floss et al. 1997)
muscle regeneration; similarly, different FGF isoforms
may achieve different effects (Neuhaus et al. 2003).
Even the concentration of a particular growth factor
and its interaction with other factors, e.g. HGF and
myostatin, may be crucial for its effect on satellite cells
(Yamada et al. 2010).

Function of Aged Satellite Cells
Satellite cells are lost with age in both mouse and man
(Renault et al. 2002; Kadi et al. 2004; Sajko et al.
2004; Brack et al. 2005; Shefer et al. 2006; Collins
et al. 2007; Verdijk et al. 2007). Although satellite cells
from aged mouse muscles have a reduced capacity to
self-renew (Day et al. 2010), there is a satellite cell frac-
tion that retains muscle stem cell characteristics in aged
mouse muscle and, if grafted into a young muscle envi-
ronment, is still capable of muscle regeneration and
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self-renewal to the same extent as young satellite cells
(Collins et al. 2007). However, the equivalent experi-
ments on human satellite cells have not been performed.

Skeletal muscle mass is lost, and there is a decline in
the ability of muscle to regenerate with increasing age
in both mouse and humans (Alnaqeeb and Goldspink
1987; Cartee 1995; Grounds 1998; Bross et al. 1999).
Whether this is due to defects in the environment
(either local or systemic), or in muscle satellite cells,
or both has been the subject of much recent debate.

In the mouse, satellite cells from aged muscle show
impaired activation (Betters et al. 2008; Leiter and
Anderson 2010) and increased apoptosis (Collins et al.
2007); similarly, aged human satellite cells are less capa-
ble of activation in vitro compared with young satellite
cells (Renault et al. 2002). It has been suggested that ac-
cumulation of lipofuscin with age on human myofibers
and satellite cells could result in a delay in satellite cell
activation (Renault et al. 2002; Nakae et al. 2004;
Leiter and Anderson 2010). The different expression
of muscle actin isoforms in cultures of human mpc
from individuals of different ages supports the view
that old human satellite cells indeed differ from young
human satellite cells (Lancioni et al. 2007).

The aged muscle environment impedes muscle re-
generation (Conboy et al. 2005; Solomon and Bouloux
2006; Brack and Rando 2007; Carlson et al. 2009),
possibly because of systemic or local levels of wnt
or TGF-b1 (Carlson et al. 2009), but it may be modi-
fied by preirradiation to allow efficient donor-derived
satellite cell regeneration and self-renewal (Boldrin
et al. 2009).

Satellite Cell Response to Exercise and
Contribution to Skeletal Muscle Hypertrophy
In response to exercise, satellite cells become activated
and increase in number (Armand et al. 2003; Parise
et al. 2008). Human satellite cells of both young and
old individuals respond similarly to exercise, increasing
in number and activation status (Crameri et al. 2004;
Kadi et al. 2005; Mackey et al. 2009; Verdijk et al.
2009) and contributing to muscle hypertrophy (Kadi
et al. 1999; Kadi and Thornell 2000). Interestingly,
resistance exercise seems to have a different hyper-
trophic effect on men and women (Kosek et al. 2006),
with satellite cell number only increasing in young men
(Petrella et al. 2006).

In the mouse and rat, it was demonstrated that
satellite cells are required for hypertrophy of over-
loaded skeletal muscles (Rosenblatt and Parry 1992;
Rosenblatt et al. 1994; Snijders et al. 2009). Growth
factors that cause muscle hypertrophy include par-
ticular isoforms of IGF-1 (Barton et al. 2002,2010;
Goldspink 2003), but only when muscle is growing
or regenerating (Shavlakadze et al. 2010).

Muscle atrophy is mediated by interacting signal-
ing pathways (Glass 2003,2005), including FoxO
(Southgate et al. 2007) and nuclear factor kB (Li
et al. 2009). Myostatin induces muscle atrophy (Lee
and McPherron 2001), and its inhibition results in
muscle hypertrophy (McPherron and Lee 1997; Lee
and McPherron 2001; Bogdanovich et al. 2002). How-
ever, satellite cells do not seem to be involved in muscle
hypertrophy mediated by this pathway (Amthor et al.
2009). In rodent models of unloading-induced muscle
atrophy, satellite cells initially become activated (Ferreira
et al. 2006), but eventually decrease in number (Schultz
et al. 1994; Mozdziak et al. 2000; Hawke and Garry
2001; Jejurikar et al. 2002; Jejurikar and Kuzon 2003),
and those that remain are dysfunctional (Mitchell and
Pavlath 2004). These studies have implications not only
for repair and maintenance of skeletal muscle during
periods of immobilization but also for using satellite
cells to repair muscle that is already affected by disuse
atrophy as, for example, in muscular dystrophies.

Satellite Cells in Pathological Conditions
Satellite cell dysfunction has been implicated in the
muscular dystrophies, and in cases where there is a
mouse model of the human dystrophy, comparisons
may be made between satellite cells in mouse and hu-
man muscles with the same genetic defect. In Duchenne
muscular dystrophy (DMD), lack of functional dystro-
phin leads to sarcolemma fragility and to continuous
cycles of muscle degeneration and regeneration, result-
ing in regeneration failure, loss of muscle mass and
function, and progressive substitution of muscle tissue
with fibrotic and adipose tissue (Rando 2001; Emery
2002). In contrast, skeletal muscle regenerates at first
effectively in the dystrophin-deficient mouse model
of DMD, the mdx mouse (Coulton et al. 1988a,b;
Stedman et al. 1991), although older mdx mice show
a degree of defective regeneration (Zacharias and
Anderson 1991) and their muscle eventually deteriorates
with age (Pastoret and Sebille 1995). It is not therefore
clear whether there is really a difference in dystrophic
mouse/human satellite cell regenerative capacity, and
if so, whether it is caused by differences in the satellite
cells themselves, or the localmuscle (e.g., extent of fibro-
sis), or systemic environment, or even by the genetic
background of the mouse model (Fukada et al. 2010).

Whether satellite cell numbers are altered in dys-
trophic muscle is difficult to determine, as accurate
satellite cell quantification in dystrophic muscle is
complicated by substitution of muscle fibers by fibrotic
and adipose tissue (Desguerre et al. 2009). In addition,
“branching” of regenerated myofibers (Bradley 1979;
Blaveri et al. 1999) makes quantification of satellite
cell numbers per fiber difficult. Nevertheless, based
on observations on skeletal muscle sections, it has been
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reported that satellite cell number is greater in muscles of
patients with DMD (Wakayama et al. 1979; Ishimoto
et al. 1983; Watkins and Cullen 1988; Maier and
Bornemann 1999) and neurogenic atrophy, but not in
other muscular dystrophies (Becker muscular dystro-
phy, limb-girdle dystrophy) or inflammatory myopa-
thies (Maier and Bornemann 1999). Numbers of
M-cadherin1 satellite cells (calculated as the ratio of
M-cadherin1 cells/total cell nuclei) were greater in
mdx than in C57Bl/10 mouse muscles (Yamane et al.
2005), but their activation state was not determined.
There is evidence that satellite cells in muscles of DMD
patients may be in a more activated state (Wakayama
et al. 1979; Watkins and Cullen 1988; Maier and
Bornemann 1999), as they seem to be in mdx muscles
(Bhagavati et al. 1996; Ikemoto et al. 2007) and be
detrimentally influenced by the pathological environ-
ment (Watkins and Cullen 1986). This state of constant
activation and contribution to the repair of necrotic
muscle fibers may deplete the stem cells from the satellite
cell pool (Heslop et al. 2000).

Although human DMD mpc have reduced prolifera-
tive capacity (Blau et al. 1983; Melone et al. 1999), they
can differentiate in vitro into myotubes and normal
mpc (Blau et al. 1983), but only when contaminating
fibroblasts have been removed from the preparation
(Delaporte et al. 1984). The mpc from mdx EDL mus-
cles have been reported to differentiate to the same
extent as mpc from age-matched control animals, but
mpc from some mdx mice displayed poor differentia-
tion (Schuierer et al. 2005). Although these mice are
of the same genetic background, there may be a differ-
ence in the muscle pathology between both muscles in
the same mouse and the same muscle of different mice.
However, the kinetics of differentiation of mdx mpc
seems to be accelerated—normal mouse mpc prolifer-
ated faster and differentiated earlier than mdx mpc
(Cheng et al. 1996), in accordance with work showing
that mpc derived from mdx flexor digitorum brevis
and diaphragm muscles had accelerated differentia-
tion (Yablonka-Reuveni and Anderson 2006). How-
ever, there is no evidence that satellite cell–derived mpc
fail to proliferate at later stages of the mdx pathological
process (Bockhold et al. 1998). Different dystrophies
may affect satellite cells in different ways, as suggested
in mpc derived from biopsies of patients with myotonic
dystrophy type II, which proliferate, but fail to differ-
entiate (Pelletier et al. 2009).

Finally, in vitro experiments have suggested that
satellite cells may actually be contributing to muscle
pathology by transdifferentiating into adipocytes or
fibroblasts (Asakura et al. 2001; Brack et al. 2007).
However, the satellite cell population may be contami-
nated with other cell types, and recent in vivo experi-
ments have provided evidence that adipocytes and
fibroblasts in skeletal muscle derive from interstitial

cell progenitors rather than from satellite cells (Joe et al.
2010; Uezumi et al. 2010). There is therefore a need to
study human satellite cell number, activation, and differ-
entiative and self-renewal ability in muscles of patients
with muscular dystrophies and in particular to address
the contribution of satellite cells to fat and fibrotic tissue
in different pathological conditions. These studies would
be invaluable for our understanding of why skeletal
muscle fibers are lost in muscular dystrophies.

Conclusions
Although human and mouse satellite cells express simi-
lar markers, it has been difficult to determine whether
their phenotype and functions are equivalent. This is
mostly due to the difficulty in isolating quiescent hu-
man satellite cells and the lack of specific antibodies
for their unequivocal identification. In particular, it is
not clear whether human satellite cells are indeed effec-
tive muscle stem cells. Both mouse and human skeletal
muscles are capable of regeneration, but whether hu-
man satellite cells can self-renew following injury
to give rise to functional satellite cells has not been
demonstrated. In order to progress work on human
satellite cells, one first needs to ascertain whether
newly discovered markers of mouse satellite cells
(Fukada et al. 2007; Gnocchi et al. 2009; Pallafacchina
et al. 2010) are expressed by human satellite cells. Then,
if there was a method to induce cultured mpc to give
rise to quiescent satellite cells (e.g., by re-creating the
niche in vivo), these markers could be verified and used
to either subfractionate human satellite cells or study
their activation and differentiative potential in vitro.

Isolation of human satellite cells and investigation
of their in vitro and in vivo properties, similar to the
extensive work that has been performed on mouse
satellite cells, would pave the way to either using donor
satellite cells as a therapy for muscular dystrophies or
enhancing the function of endogenous satellite cells in
dystrophic or aged muscles.
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