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Abstract

Background: One virulence property of Borrelia burgdorferi is its resistance to innate immunity, in particular to complement-
mediated killing. Serum-resistant B. burgdorferi express up to five distinct complement regulator-acquiring surface proteins
(CRASP) which interact with complement regulator factor H (CFH) and factor H-like protein 1 (FHL1) or factor H-related
protein 1 (CFHR1). In the present study we elucidate the role of the infection-associated CRASP-3 and CRASP-5 protein to
serve as ligands for additional complement regulatory proteins as well as for complement resistance of B. burgdorferi.

Methodology/Principal Findings: To elucidate whether CRASP-5 and CRASP-3 interact with various human proteins, both
borrelial proteins were immobilized on magnetic beads. Following incubation with human serum, bound proteins were
eluted and separated by Glycine-SDS-PAGE. In addition to CFH and CFHR1, complement regulators CFHR2 and CFHR5 were
identified as novel ligands for both borrelial proteins by employing MALDI-TOF. To further assess the contributions of
CRASP-3 and CRASP-5 to complement resistance, a serum-sensitive B. garinii strain G1 which lacks all CFH-binding proteins
was used as a valuable model for functional analyses. Both CRASPs expressed on the B. garinii outer surface bound CFH as
well as CFHR1 and CFHR2 in ELISA. In contrast, live B. garinii bound CFHR1, CFHR2, and CFHR5 and only miniscute amounts
of CFH as demonstrated by serum adsorption assays and FACS analyses. Further functional analysis revealed that upon NHS
incubation, CRASP-3 or CRASP-5 expressing borreliae were killed by complement.

Conclusions/Significance: In the absence of CFH and the presence of CFHR1, CFHR2 and CFHR5, assembly and integration
of the membrane attack complex was not efficiently inhibited indicating that CFH in co-operation with CFHR1, CFHR2 and
CFHR5 supports complement evasion of B. burgdorferi.
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Introduction

Lyme disease is the most commonly reported vector-borne

infectious disease in Eurasia and the United States. This multi-

systemic inflammatory disease is caused by species of the Borrelia

burgdorferi sensu lato complex, which includes B. burgdorferi sensu

stricto (s.s.), B. garinii, and B. afzelii [1]. More recently, B. spielmanii

has also been shown to be associated with cutaneous manifesta-

tions of Lyme disease [2–6]. Bacteria are transmitted to humans or

other vertebrates through the bites of infected Ixodes spp. ticks. In

most cases, human infection results in a localized skin rash

accompanied by headache, myalgia, arthalgia, and fever, which

usually resolve spontaneously. Untreated Lyme disease may lead

to late manifestations that can include chronic arthritis, neurolog-

ical abnormalities, cardiac complications, and skin lesions. The

ability of Lyme disease borreliae to perpetuate their natural

vertebrate-tick infectious cycle requires an array of strategies to

survive in diverse host environments, and necessitates mechanisms

to overcome innate and adaptive immune responses of several

hosts. Lyme disease spirochetes are highly resistant to killing by the

host’s alternative pathway of complement [7,8]. This is accom-

plished, at least in part, by the spirochetes camouflaging their

outer surface with host-derived complement factor H (CFH) and

factor H-like protein 1 (FHL1) which are fluid-phase immune

regulators of the alternative complement pathway [9–12].

CFH and FHL1 are both encoded by the human CFH gene and

are derived by alternative splicing [13–15]. The two proteins are

structurally-related and fold into repetitive protein domains

termed short consensus repeats (SCRs) [14,15]. The SCRs, also

termed as complement control protein modules are approximately

60 amino acids long and contain mainly beta-sheet structures

which are stabilized by two conserved disulphide bridges. CFH is a
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150 kDa glycoprotein that is composed of 20 SCR domains.

FHL1 is a 42 kDa glycoprotein, comprised of the seven amino-

terminal SCRs of CFH plus four unique amino acids at the C-

terminus. Both CFH and FHL1 act as cofactors for factor I-

mediated degradation of C3b and support the dissociation (decay-

accelerating activity) of the C3 convertase, C3bBb [14]. The

human CFH family also includes six ‘‘factor H-related’’ proteins

(CFHR1, CFHR2, CFHR3, CFHR4A, CFHR4B, and CFHR5)

[16,17]. These proteins are all encoded by distinct genes, and

individual domains show extensive sequence similarities to CFH

[13]. The SCR domains toward the C-terminus of CFHR proteins

share high degrees of similarity to the C-terminal surface binding

region of SCRs 18–20 of CFH. This similarity suggests related and

conserved function(s) [12]. The human CFHR1 protein consists of

five SCRs and exists in two glycosylated forms, the 37-kDa

CFHR1a and the 43-kDa CFHR1b protein [18,19]. CFHR1 is a

complement regulator that blocks C5 convertase activity as well as

assembly and membrane insertion of the terminal components

[20]. CFHR2 is composed of four SCRs and is found in plasma as

a non-glycosylated 24-kDa form (CFHR2) and a glycosylated 29-

kDa form (CFHR2a) [21]. The function(s) of CFHR2 is poorly

understood. The 65-kDa CFHR5 protein is comprised of 9 SCRs

and displays cofactor activity for factor I-mediated inactivation of

C3b [16,22]. CFHR5 also inhibited the activity of the fluid phase

C3 convertase.

Lyme disease borreliae bind CFH, FHL1 and CFHR1 to their

outer membranes through surface-exposed lipoproteins, collec-

tively called ‘‘CRASPs’’ (complement regulator-acquiring surface

proteins) [11,23–27]. CRASPs are divided into three groups of

genetically unrelated genes/proteins and different B. burgdorferi s.s.

strains express different combinations of CRASP proteins. Each

protein has different relative affinity for each of the three human

immune regulators. Based on binding profile for CFH, FHL1 or

CFHR1, the borrelial CRASPs expressed by B. burgdorferi s.s. are

divided into (i) CFH and FHL1 binding proteins (BbCRASP-1 and

BbCRASP-2), and (ii) molecules that interact with CFH and

CFHR1, but not FHL1 (BbCRASP-3 to BbCRASP-5) [11,23–

25,28]. BbCRASP-1, also termed CspA, is a member of the

paralogous protein family 54 (PFam54), and is expressed by

spirochetes only during tick-to-mammal and mammal-to-tick

transmission stages, but not during persistent mammalian infection

[26,29–31]. The BbCRASP-2 molecule, which is also termed

CspZ, is encoded by a unique gene and is expressed at high levels

during mammalian infection [29,32]. BbCRASP-3, BbCRASP-4

and BbCRASP-5, also known as ErpP, ErpC and ErpA, are

closely-related members of the polymorphic erp gene family, and

are expressed throughout mammalian infection [10,27,30,33–37].

BbCRASP-3, BbCRASP-4, and BbCRASP-5 (hereafter referred

to as CRASP-3, CRASP-4 and CRASP-5) bind CFH and CFHR1

through the C-terminal SCR(s), and do not bind the FHL1

protein. In contrast, BbCRASP-1 and BbCRASP-2 (hereafter

referred to as CRASP-1 and CRASP-2) both bind to SCR-7 of

CFH, which is shared with FHL1, enabling these two borrelial

outer membrane proteins to bind both human complement

regulators. Borrelial mutants lacking CRASP-1 and CRASP-2 are

sensitive to complement-mediated killing in culture, and comple-

mentation with the CRASP-1 or CRASP-2 encoding genes (cspA

or cspZ, respectively), facilitates survival in the presence of serum

and, thus restores a serum-resistant phenotype [32,38].

All investigated serum-resistant borrelial strains so far express

the CFH/FHL1-binding CRASP-1 protein in combination with

two or three of the CFH/CFHR1-binding, CRASP-3, CRASP-4

or CRASP-5 proteins. The potential of the single CFH/CFHR1-

binding CRASP molecule for binding of additional members of

the CFH protein family and the contribution of these CRASP

proteins for complement resistance is still under debate. We first

sought to identify whether recombinant CRASP-3 or CRASP-5

bind to additional serum proteins beside CFH, CFHR1, and

plasminogen. Furthermore, we aimed to elucidate the role of these

two borrelial proteins towards complement resistance by transfor-

mation of a serum-sensitive B. garinii strain which lacks CFH-

binding CRASP proteins. The transformed borreliae were assayed

for abilities to bind human serum proteins, surface deposition of

complement activation products, and survival in the presence of

normal human serum (NHS).

In the present study we identified two additional members of the

human CFH protein family, CFHR2 and CFHR5 as novel ligands

for CRASP-3 and CRASP-5 of B. burgdorferi. Binding of CFHR1,

CFHR2, and CFHR5 to native and recombinant CRASP-3 and

CRASP-5 proteins was more pronounced than that of CFH. The

expression of either CRASP-3 or CRASP-5 in a serum-sensitive B.

garinii strain lacking all CRASP proteins had no considerable effect

on serum susceptibility suggesting that spirochetes must be able to

acquire sufficient amounts of CFH on their surface beside

CFHR1, CFHR2, and CFHR5 to survive in complement active

serum.

Results

Identification of serum proteins that bind to CRASP-3
and CRASP-5

To elucidate whether CRASP-3 and CRASP-5 bind several

human proteins, the recombinant his-tagged CRASP-3 and

CRASP-5 proteins were immobilized to magnetic beads. Follow-

ing incubation with NHS, beads were extensively washed and the

recombinant proteins along with bound serum proteins were

eluted. Eluates were separated by Glycine-SDS-PAGE and

analyzed by silver staining (Fig. 1). In the elute fraction of

CRASP-3- and CRASP-5-coupled beads, proteins with apparent

molecular mass of 180-, 55-, 37-, 32-, 29- and 24-kDa were

detected. Two additional proteins of 25- and 20-kDa were found

in the elute fraction of CRASP-3-coupled beads, while an 18-kDa

protein was detected only in the elute fraction of CRASP-5-

coupled beads. Several proteins in the 60- to 80-kDa range that

also attach to uncoated beads were excluded from further analysis.

A very faint band of 25-kDa could also be found in the control

lane. All eluted proteins were subjected to in-gel trypsin digestion

and peptides were analyzed using MALDI-TOF. Obtained

spectra were searched against the NCBI.fasta protein database

and a score .80 was defined to be significant (p,0.05). The 180-

kDa band found in both elution fractions yield a high protein score

of .300 of a number of the tryptic peptides representing the

complement regulator CFH. Peptides of the 55-kDa protein were

identified as fragments of CFHR5 and tryptic peptides of the 37-

and 32-kDa protein represented CFHR1b and CFHR1a, the two

different glycosylated forms of CFHR1 [39]. The 29- and the 24-

kDa band were identified as CFHR2a and CFHR2, respectively.

The 25-kDa and 20-kDa bands in the eluate fraction of CRASP-3-

coupled beads corresponded to CRASP-3 itself. Likewise, the 18-

kDa band in the eluate fraction of CRASP-5-coupled beads was

identified as CRASP-5. Thus, CRASP-3 and CRASP-5 bind

several members of the human CFH protein family including

CFHR1, CFHR2, and CFHR5.

Binding of human serum proteins CFH, CFHR1, CFHR2
and CFHR5 to CRASP-3 and CRASP-5

Next, binding of recombinant CRASP-3 and CRASP-5 to each

of the three human identified serum proteins was analyzed by
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ELISA (Fig. 2). CRASP-3 and CRASP-5 as well as ErpX and

ErpQ, two outer surface proteins which belong to the paralogous

Erp protein family and included as controls were immobilized

onto microtiter plates and incubated separately with purified

recombinant CFHR1, CFHR2 and CFHR5. Purified CFH served

as a control. All three CFHR proteins bound to both CRASP-3

and CRASP-5 but not to ErpX or ErpQ.

Ectopic expression of CRASP-3 and CRASP-5 in CRASP-
deficient B. garinii

While serum-resistant isolates of B. burgdorferi may express up to

five distinct CFH-binding CRASP molecules, the serum-sensitive

B. garinii strain G1 does not express any of these proteins during

laboratory cultivation [23]. Thus, B. garinii G1 represents a useful

model for functional analyses of the individual CRASP proteins. B.

garinii G1 was transformed with plasmids pCRASP-3 or pCRASP-

5 as well as with the empty shuttle plasmid pKFSS1. Transfor-

mations were confirmed by PCR amplification of the plasmids’

streptomycin resistance gene (aadA) and the CRASP-3 encoding

erpP or CRASP-5 encoding erpA gene (Fig. 3A). Strains G1/

pCRASP-3 and G1/pCRASP-5 each yielded an amplicon that

correspond to erpP or erpA, whereas the control strains G1 and G1/

pKFSS1 did not. The streptomycin resistance gene of the

recombinant plasmid was detected in all transformed, but not in

the untransformed wild-type strain G1.

CRASP-3 and CRASP-5 are surface-exposed, outer membrane

proteins of B. burgdorferi [40]. To confirm surface-exposure of these

proteins in transformed B. garinii, immunofluorescence microscopy

was conducted using live bacteria and polyclonal antibodies

specific for either CRASP-3 or CRASP-5 [40]. To avoid damage

to the fragile borrelial outer membrane, intact bacteria were

incubated with antibodies before being fixed onto glass slides and

sealed with mounting medium containing the DNA-binding dye

DAPI. Both CRASP-3 of transformed strain G1/pCRASP-3 and

CRASP-5 of strain G1/pCRASP-5 were detected on the outer

membrane (Fig. 3C). Intactness of the fragile borrelial outer

membrane was confirmed by demonstrating lack of binding of

antibodies directed against the periplasmic flagellar protein FlaB

(Fig. 3C middle panels). In contrast, permeabilized spirochetes

showed a strong staining with the same antibody (Fig. 3C, left

panels). Control strains G1 or G1/pKFSS1 lack any fluorescence

reactivity with each antiserum (data not shown). Surface

localization of CRASP-3 and CRASP-5 was examined, by

incubation of intact bacteria with proteinase K, followed by

ligand affinity blot analyses of borrelial lysates. Ligand affinity blot

analyses of protease-treated cells revealed that CRASP-3 and

CRASP-5 were susceptible to proteinase K digestion (Fig. 3D).

CFH-binding to borreliae was also analyzed for cell lysates

derived from CRASP-3 and CRASP-5 expressing transformants

and the non-expressing control strains G1 and G1/pKFSS1.

Ligand affinity blot demonstrated binding of CFH to G1/

pCRASP-3 and G1/pCRASP-5 but not G1 and G1/pKFSS1

(Fig. 3E and F, respectively). Thus, CRASP-3 and CRASP-5

exposed on the borrelial outer surface binds human CFH. This

allowed further assays for the interaction of CRASP-3 and

CRASP-5 with the CFHRs serum proteins.

Binding of human serum proteins by transformed B.
garinii

We next examined whether transformed strains G1/pCRASP-3

and G1/pCRASP-5 bind human complement regulators. Spir-

ochetes incubated in EDTA-treated NHS were washed extensively

and bound proteins were eluted. The final wash and the elute

fraction were separated by Glycine-SDS-PAGE and after transfer

to nitrocellulose, presence of CFH was analyzed by immunoblot

with a specific mAb. CRASP-3 and CRASP-5 expressing

transformants bound low amounts of CFH (Fig. 4A). In addition,

four prominent bands with an mobility or apparent mass of 43-,

37-, 29- and 24-kDa were present in elute fractions of G1/

Figure 1. Identification of CRASP-3 and CRASP-5 ligands
present in human serum. Recombinant, polyhistidine-tagged
CRASP-3 or CRASP-5 proteins were immobilized onto magnetic beads
and incubated with normal human serum. Empty beads were also
incubated under the same conditions and used as a control to identify
nonspecific binding of serum proteins. After extensive washing, bound
proteins were eluted with 100 mM glycine-HCl and the eluate fractions
were separated by Glycine-SDS-PAGE, following silver staining. Protein
bands indicated were cut from stained gels and proteins were identified
by mass spectrometry. Mobilities of molecular mass standards are
indicated to the left.
doi:10.1371/journal.pone.0013519.g001

Figure 2. CRASP-3 and CRASP-5 bind diverse complement
proteins. Binding of equimolar amounts of CFH, CFHR1, CFHR2, CFHR5
(33 mM) to immobilized CRASP-3, CRASP-5, ErpX, and ErpQ (5 mg/ml)
was analyzed by ELISA. Bound CFH or CFHR proteins were detected
with either goat CFH polyclonal antiserum or mouse CFHR1 monoclonal
antiserum (JHD 7.10), which reacts with all the three CFHRs. Data
represent the means and standard errors from three separate
experiments.
doi:10.1371/journal.pone.0013519.g002
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pCRASP-3 and G1/pCRASP-5. In contrast, wild-type strain G1

and transformant G1/pKFSS1 did not bind CFH and CFH-

related proteins. Based on the reactivity with the mAb VIG8

which reacts with CFH, CFHR1 and CFHR2 [41] and based on

the mobility, the 43- and 37-kDa proteins correspond the two

glycosylated forms CFHR1a and CFHR1b. Similarly, the 29- and

24-kDa bands represent the non-glycosylated and the glycosylated

form of CFHR2.

Figure 3. Characterization of B. garinii G1 transformants producing CRASP-3 or CRASP-5. (A and B) B. garinii G1 and transformed G1
strains were characterized by PCR amplification using flaB, aadA, erpP, and erpA gene-specific primers, as listed in Table 1. Both panels, left to right:
wild-type B. garinii G1, B. garinii G1 transformed with the empty cloning vector pKFSS1, B. garinii G1 transformed with either pCRASP-3 or pCRASP-5,
and purified pCRASP-3 or pCRASP-5 alone. (C) Demonstration of surface expression of CRASP-3 and CRASP-5 by transformed B. garinii G1, by indirect
immunofluoresecence microscopy of intact borrelial cells. Spirochetes were incubated with rabbit polyclonal anti-CRASP-3 or anti-CRASP-5 antisera
before fixation. Periplasmic FlaB used as control was detected by mAb L41 1C11 using fixed and unfixed cells. For counterstaining, the DNA-binding
dye DAPI were used to identify all bacteria. Slides were visualized at a magnification of 61000 using a Olympus CX40 fluorescence microscope
mounted with a DS-5Mc charge-coupled device camera (Nikon). (D) Surface localization of CRASP-3 and CRASP-5 in transformed G1/pCRASP-3 and
G1/pCRASP-5. Spirochetes were incubated with or without proteinase K, then lysed by sonication and total proteins separated by Tricine-SDS-PAGE.
CRASP-3 and CRASP-5 were identified using NHS and MAb VIG8 specific for the C-terminus of CFH by ligand affinity analysis. Flagellin (FlaB) was
detected with MAb L41 1C11 (dilution 1/1000) by Western blotting. (E and F) Synthesis of CRASP-3 (panel D) and CRASP-5 (panel E) by transformed
G1 as assessed by ligand-affinity blotting. Whole cell lysates were separated by Tricine-SDS-PAGE and transferred to nitrocellulose. The membranes
were incubated with NHS and binding of CFH to borrelial proteins was detected with mAb VIG8. Monoclonal antibody, L41 1C11, specific for the
flagellin protein FlaB, was used to show equal loading of bacterial lysates.
doi:10.1371/journal.pone.0013519.g003
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The identity of the bands was confirmed with mAb JHD 7.10,

which is specific for the N-terminus of CFHR1, CFHR2, and

CFHR5 but which does not react with CFH or FHL1 [42]. The

mAB JHD 7.10 identified bands of 50-, 43-, 37-, 29-, and 24-kDa

which represent CFHR1, CFHR2, and CFHR5, respectively

(Fig. 4B). Thus, CRASP-3 and CRASP-5 expressed on the surface

of live borreliae bind the human serum proteins CFHR1 and

CFHR2, CFHR5, and only miniscute amounts of CFH.

Serum proteins bound with different intensities to
transformed borrelial cells

To define the effect of NaCl on the interaction of the human

serum proteins to CRASP expressed on transformed borrelial

strains G1/pCRASP-3, G1/pCRASP-5 and G1/pKFSS1 was

assayed. To this end spirochetes were washed extensively with a

buffer containing 150 mM NaCl and cell-bound proteins were

subsequently eluted with increasing concentrations of salt

(450 mM to 1350 mM). The elute fractions were then separated

by Glycine-SDS-PAGE and after transfer to nitrocellulose, human

serum proteins were detected with a polyclonal anti-CFHR1

antiserum (Fig. 5A). Concerning G1/pCRASP-3, neither CFH

nor CFHR2 and CFHR5 could be detected in the fractions

containing increasing salt concentrations (Fig. 5A, middle panel).

In contrast, CFHR1 and CFHR2 as well as their glycosylated

forms were readily detectable in the final glycine fraction

suggesting that these serum proteins possess a stronger binding

capacity to surface-exposed CRASP-3. As depicted in Figure 5A

(right panel), the faint band of 150-kDa corresponding to CFH

detected after incubation of G1/pCRASP-5 with up to 450 mM

NaCl and which signal decreased at higher salt concentrations,

suggests that CFH is relatively loosely attached to the borrelial

surface. The 150-kDa band was also hardly visible in the

respective fractions of the control strain G1/pKFSS1, thus

argueing for a non-specific binding of CFH to the borrelial

surface. In contrast, CFHR1 was detectable in all fractions of

transformants expressing CRASP-3 or CRASP-5 even in the

highest concentration of NaCl as well as in the final glycine

fraction. CFHR2 was only detected in the final glycine fraction,

suggesting a stronger binding capacity of CFHR2 to CRASP-3

and CRASP-5. However, CFHR5 was not detected by this assay.

No CFHRs proteins were identified in the control transformed

strain G1/pKFSS1 (Fig. 5A, left panel).

Employing flow cytometry for analyzing binding of CFH to

G1/pKFSS1, G1/pCRASP-3, and G1/pCRASP-5, this comple-

ment regulator was bound to some extent to the surface of the

CRASP expressing strains but not to the control strain (Fig. 5B).

Taken together, binding of CFHR1 and CFHR2 to borrelial cells

expressing CRASP-3 and CRASP-5 was more pronounced than

that of CFH and CFHR5.

Serum susceptibility of B. garinii producing CRASP-3 or
CRASP-5

Having demonstrated binding of CFHRs to intact borrelial

cells, the role of CFHR for complement resistance was assayed

under more physiological conditions. B. garinii strain G1 is sensitive

to complement and does not survive in NHS while wild-type B.

burgdorferi LW2 resist complement-mediated killing and survives

even in high concentrations of NHS [7,43]. Therefore, survival

and growth of CRASP-3 and CRASP-5 expressing spirochetes in

NHS was assayed. Neither of the CRASP-3 or CRASP-5

expressing transformants grew in the presence of NHS (Fig. 6D

and E) suggesting that binding of CFHR1, CFHR2, and CFHR5

alone is not sufficient for complement resistance. The serum-

resistant strain LW2 grew equally well in medium supplemented

with NHS or heat-inactivated NHS (Fig. 6A) while both isolates

G1 and G1/pKFSS1 survived only when heat-inactivated NHS

was used (Fig. 6B and C).

Next deposition of complement activation products was

analyzed on the bacterial surface. Following incubation in NHS,

the two transformed strains G1/pCRASP-3 and G1/pCRASP-5

as well as G1/pKFSS1 and the wild-type strain G1 showed surface

deposition of C3, C6 and C5b-9 (Fig. 7). Furthermore, extensive

bleb formation and lack of DAPI staining suggests that cells are

lysed. In contrast, bacteria incubated with heat-inactivated NHS

did not show evidence of complement deposition.

To exclude that misfolding of the exogenously expressed

CRASP-3 and CRASP-5 by B. garinii, similar analyses were

performed in a B. burgdorferi mutant strain, B313. This derivative of

strain B31 expresses only CRASP-5 and lacks all other CRASP-

encoding genes. Again strain B313 was transformed with

Figure 4. Binding of serum molecules by B. garinii transfor-
mants. B. garinii strains G1, G1/pKFSS1, G1/pCRASP-3, and G1/pCRASP-
5 were incubated in NHS plus EDTA to prevent complement activation,
washed extensively, and then bound proteins were eluted using 0.1 M
glycine (pH 2.0). Both the last wash (w) and the eluate (e) fractions
obtained from each strain were separated by Glycine-SDS-PAGE and
transferred to nitrocellulose. Membranes were probed with either (A)
MAb VIG8, which recognizes the C-terminus of CFH and CFHR proteins,
or (B) mAb JHD 7.10, which recognizes CFHR1 and CFHR2, but not CFH.
Probable identities of protein bands (confirmed by data shown in Fig. 1)
are indicated to the right of each panel. Mobilities of molecular mass
standards are shown to the left of the panels.
doi:10.1371/journal.pone.0013519.g004
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pCRASP-3 and pCRASP-5 did not grow in the presence of 50%

NHS (data not shown).

Taken together, binding of CFHRs by CRASP-3 or CRASP-5

producing borreliae does not protect spirochetes from comple-

ment-mediated killing.

Detection of C3b inactivation products after incubation
of Borrelia with CFH

As CFH is loosely bound to CRASP-3- and CRASP-5 positive

cells, we aimed to analyze if this residual CFH can inhibit

alternative pathway activity and promote factor I-mediated C3b

inactivation. Transformed borreliae G1/pCRASP-3 and G1/

pCRASP-5, as well as G1/pKFSS1, B. garinii G1 and B. burgdorferi

s.s. LW2 (control) were first incubated with purified CFH, and

after washing factor I and C3b were added. Following incubation

for 60 min, aliquots were subjected to Glycine-SDS-PAGE, and

C3b cleavage products were detected by Western blotting. CFH

retained cofactor activity when bound to B. burgdorferi s.s. LW2 as

demonstrated by the appearance of C3b inactivation products

a’68, a’46 and a’43 kDa (Fig. 8). In contrast, none of the B. garinii

strains preincubated with CFH promoted cleavage of C3b in the

presence of factor I, suggesting that CFH was unable to maintain

its regulatory activity or extremely low amounts of C3 cleavage

products were generated.

Discussion

B. burgdorferi employs multiple strategies to survive in and

persistent in the human host. One central immune evasion

strategy is the ability of borreliae to camouflage their surface with

host fluid phase complement regulators, CFH and FHL1 [10–

12,33]. This strategy allows the spirochetes to control, inhibit and

finely regulate complement activation directly on the surface.

Figure 5. Serum proteins display differential binding capabilities to CRASP-3 and CRASP-5. (A) The binding capabilites of serum proteins
to B. garinii strains G1/pKFSS1, G1/pCRASP-3, and G1/pCRASP-5 were assessed in the presence of increasing salt concentrations. Spirochetes were
incubated in NHS plus EDTA, washed fourfold with PBSA containing 0.05% Tween20. Cells were then resuspended in PBSA containing 450 mM NaCl,
incubated for 15 min at room temperature, and sedimented by centrifugation. The steps were repeated with increasing concentrations of NaCl.
Strong binding proteins were finally eluted using 0.1 M glycine buffer (e). The supernatants obtained from the last wash fraction (150 mM NaCl),
fractions from the incubation reactions (450, 750, 1050, 1350 mM NaCl), and the eluate fraction were then separated by Glycine-SDS-PAGE and
transferred to nitrocellulose. Membranes were probed with polyclonal anti-CFHR1 antiserum to detect CFH and CFHR proteins. Mobilities of
molecular mass standards are shown to the left of the panels. (B) The binding capability of CFH to G1/pCRASP-3 and G1/pCRASP-5 was further
analyzed by flow cytometry. The binding of CFH to G1/pCRASP-3 and G1/pCRASP-5 is shown by the solid line while the grey shaded histogramm
represents the binding of control strain G1/pKFSS1 (control). Borrelial cells were incubated with 4 mg CFH. The x-acis shows the fluorescence on a
log10 scale and the the y-acis represents the numbers of events. The isotype control (no CFH added) has been omitted for easier visualization.
doi:10.1371/journal.pone.0013519.g005
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Here, we extend the characterization of the infection-associated

CRASP proteins, CRASP-3 and CRASP-5 of B. burgdorferi s.s. and

show that these two molecules bind the host immune regulators

CFHR2 and CFHR5. To our knowledge, this is the first report

which demonstrates binding of CFHR2 and CFHR5 to a human

pathogen. Native CRASP-3 and CRASP-5 also bind complement

regulator CFHR1 and both isoforms of CFHR1 and CFHR2. For

CFHR2 the CRASP-3 and CRASP-5 binding domain is likely also

located in the C-terminus as SCR4 of CFHR2 shows a high level

of sequence identity (89% on the amino acid level) to SCR19 of

CFH [13].

Purified, recombinant CRASP-3, CRASP-4, CRASP-5, and

other, closely related Erp proteins such as OspE and p21 derived

from different B. burgdorferi s.s. isolates bind human CFH

[10,27,33,34,44–47]. Here we demonstrate that CRASP-3 and

CRASP-5 expressed by genetically engineered B. garinii bind CFH

in solid-phase affinity blot experiments. However, the intact

transformed B. garinii, bind CFHR1, CFHR2 and CFHR5 and

bind CFH from human serum with low affinity (compared Fig. 4

and 5). This difference may be due the lack of two additional

distinct CFH-binding proteins, CRASP-1 and CRASP-2 in B.

garinii strains. Serum CFH has a coiled, folded-back conformation,

with the C-terminus extended and at physiological concentrations

can form dimeric or oligomeric complexes in solution [48–52].

Binding of CFH to human cells is initially mediated by the C-

terminal domains SCR19 and 20, which then leads to an uncoiling

of the protein and exposure of other CFH domains to additional

cell-surface receptors [13,53–55]. The various CRASPs may play

similar roles, with initial interaction of the C-terminus of CFH by

CRASP-3 or CRASP-5 followed by binding to internal regions

SCR5 to 7 of CFH by CRASP-1 or CRASP-2. Conceivably, the

writhing of live spirochetes may dislodge long, extended and

weakly bound CFH molecules from the bacterial surface, whereas

the much smaller serum proteins CFHR1, CFHR2, and CFHR5

Figure 6. Serum susceptibility of transformed B. garinii G1. A growth inhibition assay was used to investigate susceptibility to human serum of
B. burgdorferi s.s. strain LW2 (A), and B. garinii strains G1 (B), G1/pKFSS1 (C), G1/pCRASP-3 (D), and G1/pCRASP-5 (E). Spirochetes were incubated in
either 50% NHS (filled diamonds) or 50% heat-inactivated NHS (open diamonds) over a cultivation period of 8 days at 33uC, respectively. Color
changes were monitored by measurement of the absorbance at 562/630 nm. All experiments were performed three times in which each test was
done at least threefold with very similar results. For clarity only data from representative experiments are shown. Error bars represent 6 SD.
doi:10.1371/journal.pone.0013519.g006
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are more likely to be retained. In addition, the stronger affinity of

CRASP-3 and CRASP-5 to CFHR1 and CFHR2 compare to

CFH may also favor preferred binding of these molecules to

borrelial cells, even though CFH is present in a 10-fold higher

concentration in plasma than CFHR1, CFHR2 or CFHR5

[28,56]. Furthermore, CFHR1 which lacks C3-mediated cofactor

activity but inhibits C5 convertase activity and MAC assembly

might compete under physiological conditions with CFH for

CRASP-3 and CRASP-5 binding (CFHR1:CFH ratio of 0.37:1)

and thus reduce local CFH-mediated complement regulatory

activity [28,56]. Displacement of CFH by CFHR1 (using equal

molar amounts of both proteins) is accompanied with a significant

reduction of C3b degradation products as recently demonstrated

by Heinen et al. [20]. Moreover, CFH improperly bound to the

borrelial surface appears to be unable to efficiently inactivate

deposited C3b or accelerate the decay of the formed C3

convertase after activation of the complement cascade. This

might explains why no C3b cleavage products were detectable

when B. garinii producing CRASP-3 or CRASP-5 were incubated

with purified CFH or human serum (Fig. 8). It is likely that

CFHR2, which exhibits sequence identities of 89% and 61% to

the C-terminal SCRs 19 and 20 of CFH, respectively, also

competes with CFH for the same binding site(s) on the two

borrelial proteins.

Figure 7. Deposition of complement components C3, C6 and C5b-9 on the surface of B. garinii G1 producing CRASP-3 or CRASP-5.
Complement components deposited on B. burgdorferi s.s. LW2 (control strain), transformants G1/pKFSS1, G1/pCRASP-3, and G1/pCRASP-5 were
detected by indirect immunofluorescence microscopy. Spirochetes were incubated with either 25% normal human serum (NHS) or heat-inactivated
NHS (hiNHS). Bound C3, C6, or C5b-9 were detected using specific antibodies against each component plus appropriate Alexa 488-conjugated
secondary antibodies. For visualization of intact spirochetes, the DNA-binding dye DAPI was used. Slides were visualized at a magnification of 61000
and the data were recorded via a DS-5Mc CCD camera (Nikon) mounted on an Olympus CX40 fluorescence microscope. Panels shown are
representative of at least 20 microscope fields.
doi:10.1371/journal.pone.0013519.g007
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Apparently as a consequence of the inability of CFH to bind to

the microbial surface, it appears that the interactions between

CFHR1, CFHR2 and CFHR5 and CRASP-3 and CRASP-5

proteins are not adequate to sufficiently protect borreliae against

complement-mediated killing (Fig. 6). This may explain why these

bacteria accumulated lethal complement activation products [C3,

C6 and C5b-9 (MAC)] on their surfaces (Fig. 7). Once complement

is activated by the borreliae, it seems that the inhibitory activity of

CFHR1 on the C5 convertase and the cofactor activity for factor I-

mediated inactivation of C3b by CFHR5 can not completely retard

formation and insertion of the MAC pointing to an crucial role of

human CFH in complement resistance of borreliae. However,

preincubation of borreliae with purified CFHR1 before treatment

of the spirochetes with complement active CFH-depleted serum did

not enhance survival of the transformants indicating that CFHR1

alone cannot restore the complement inhibitory function of CFH

(data not shown). Thus, human CFH plays a major role in evading

complement attack of B. burgdorferi.

CFHR1 and CFHR5 and likely also CFHR2 have complement-

regulatory activities, thus surface recruitment of these host proteins

may help Borrelia to control complement activation. Apparently the

three CFHR proteins alone are not sufficient to control

complement activation at the surface of Borrelia. Most likely the

CFHR proteins cooperate with CFH. CFHR1 and CFHR2 are

major constituents of serum lipoprotein particles that also contain

phospholipids, apolipoprotein A-I, lipopolysaccharide-binding

protein, and fibrinogen [57,58]. Thus, it is possible that Lyme

disease borreliae capture CFHRs or lipoprotein particles to allow

adherence to host epithelial cells and tissues, as recently described

for CFH-coated S. pneumoniae [59].

Brooks et al. reported that a B31 mutant strain carrying two

native copies of the erpA gene, but lacking the CRASP-1 encoding

cspA, displayed a serum-sensitive phenotype [60]. That result

hinted that expression of only CRASP-3 and CRASP-5 does not

sufficiently protect Lyme disease borreliae from complement-

mediated killing. However, in another report, when B. garinii strain

50/97 was genetically modified to produce the OspE protein of B.

burgdorferi s.s. strain 297 (a homolog of strain B31 CRASP-3 and

CRASP-5), those bacteria survived in the presence of 40% NHS

for up to 5 h [61]. That latter result may indicate that the strain

297 OspE protein is functionally different from the paralogous

CRASP-3 and CRASP-5 proteins of strain B31. Alternatively,

Alitalo et al. did not report having examined B. garinii strain 50/97

to see if it produced a CFH-binding protein(s) homologous to

CRASP-1 or CRASP-2 [61]. It is possible that, if strain 50/97

produced a CRASP-1 or CRASP-2 homolog, the ospE transfor-

mant would express both types of CFH-binding proteins on its

surface, and thereby bind CFH at levels sufficient to prevent

complement-mediated killing. Note that the current study used B.

garinii G1 and B. burgdorferi s.s. B313, both of which have been

demonstrated to lack CRASP-1 and CRASP-2 homologs.

Additional analyses of B. garinii strain 50/97, as well as production

and examination of transformed bacteria that specifically express a

CRASP-3/CRASP-5/OspE protein plus CRASP-1 or CRASP-2

will help clarify each CRASP alone and in combination.

In summary, we identified two new ligands, CFHR2 and

CFHR5 for the infection-associated CRASP-3 and CRASP-5

proteins of B. burgdorferi. In the absence of CRASP-1 and CRASP-

2, live borreliae that express CRASP-3 or CRASP-5 preferentially

bind CFHR1, CFHR2 and CFHR5 while binding of CFH was

rather weak. The capability of B. burgdorferi to interact with

different members of the CFH protein family via distinct CRASPs

suggests a role of these CFHRs in immune evasion of this

particular pathogen.

Materials and Methods

Ethics statement
The study and the respective consent documents were approved

by the ethic committee at the Johann Wolfgang Goethe-University

of Frankfurt (control number 160/10). All healthy blood donors

provided written informed consent.

Bacterial strains and culture conditions
B. burgdorferi s.s. strains B31 (tick isolate, USA) and LW2 (skin

isolate, Germany), B. garinii isolate G1 (CSF isolate, Germany)

classified by RFLP analysis as OspA serotype 6 according to

Michel et al. [4], and B. garinii transformants G1/pKFSS1, G1/

pCRASP-3 and G1/pCRASP-5 were grown at 33uC for 2 to 4

days to mid-exponential phase (16107 to 56107 spirochetes/ml) in

modified Barbour-Stoenner-Kelly (BSK) medium [23] or BSK

supplemented with streptomycin at a final concentration of 20 mg/

ml. The density of spirochetes was determined using dark-field

microscopy and a Kova counting chamber (Hycor Biomedical,

Garden Grove, CA). Escherichia coli DH5a or JM109 used for

cloning experiments and protein expression were grown at 37uC in

yeast tryptone supplemented with appropriate antibiotics.

Human sera, polyclonal and monoclonal antibodies
Non-immune human serum (NHS) obtained from 20 healthy

human blood donors without known history of spirochetal

Figure 8. Detection of C3b inactivation products after incuba-
tion of CFH with B. garinii transformants. Factor I-mediated
conversion of C3b to iC3b was analyzed by detection of C3b cleavage
fragments after incubation of spirochetes with purified CFH. B.
burgdorferi s.s. LW2 producing all five CRASP proteins (control strain),
B. garinii G1, G1/pKFSS1, G1/pCRASP-3, and G1/pCRASP-5 were
incubated with CFH for 60 min at room temperature. After extensive
washing with PBS, C3b (10 ng/ml) and factor I (20 ng/ml) were added
and the mixture was incubated for 30 min at 37uC. For control purposes
all reactions were also performed in the absence of CFH. Subsequently,
the probes were boiled for 5 min, subjected to 12.5% Glycine-SDS-PAGE
and transferred onto a nitrocellulose membrane. The various C3b
degradation products (a’46- and a’43-kDa bands) were visualized by
Western blotting using a polyclonal goat anti-human C3 antiserum
(Calbiochem). As additional controls, reaction mixtures containing C3b
and factor I were incubated with or without purified CFH (lanes 11 and
12), respectively.
doi:10.1371/journal.pone.0013519.g008
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infections was used as source for CFH. Sera that proved negative

for anti-borrelial antibodies were combined to form the NHS pool.

For some studies, human serum samples were incubated at 56uC
for 30 min to inactivate complement.

A goat polyclonal antiserum was used to detect human CFH

(Merck Biosciences, Bad Soden, Germany and Complement

Technology, Tyler, TE). Mouse polyclonal anti-CFHR1 antibody

or mAb JHD 7.10 were used for detection of CFHR1 and CFHR2

and CFHR5 [41]. The goat anti-human C3 and C6 antibodies were

purchased from Calbiochem, and the monoclonal anti-human C5b-

9 antibody was obtained from Quidel (San Diego, CA, USA). To

detect borrelial proteins specific MAb and polyclonal antibodies

were used as follows: MAb L41 1C11 was used to recognize the

flagellar component FlaB, MAb N38 1.1 and rabbit polyclonal

antiserum aCRASP-3 was used to identify CRASP-3, and MAb

B11 and rabbit polyclonal antiserum aCRASP-5 were used to

detect CRASP-5 [27,62,63].

Expression of recombinant borrelial proteins
Generation of vectors pBLS538, pBLS527, pBLS536, and

pBLS539 producing amino-terminally polyhistidine-tagged

CRASP-3(ErpP), CRASP-5(ErpA), ErpQ, and ErpX, respectively

were described previously [64]. Note that the CRASP-3 and

CRASP-5 encoded by erpP and erpA of B. burgdorferi s.s. type strain

B31 and the European B. burgdorferi s.s. strain LW2 are identical.

Expression of recombinant proteins was induced in DH5a at an

OD600 of 0.6 by the addition of 0.2 mM IPTG. Following

incubation for 4 h at room temperature, cells were centrifuged

(50006g, 20 min, 4uC) and subsequently suspended in lysis buffer

(300 mM NaCl, 56 mM NaH2PO4 pH 8, 10 mM imidazole)

containing 50 mg/ml lysozyme. Cells were lysed by 6 rounds of

sonication for 30 sec using a Branson B-12 sonifier (Heinemann,

Schwäbisch Gmünd, Germany). After centrifugation (14,0006g,

20 min, 4uC), supernatants were filtered through 0.45 mm filters

and stored at 220uC until used.

Expression of recombinant CFHR1, CFHR2, and CFHR5
Recombinant FHL1 and CFHR1 were expressed in Spodoptera

frugiperda Sf9 insect cells infected with recombinant baculovirus.

The cloning of various deletion constructs, expression, and

purification has been described previously [28,56,65,66].

The full length CFHR2 cDNA was cloned into pPICZaB

(Invitrogen) and the protein was expressed in the yeast Pichia

pastoris strain X33 according to standard protocols (Eberhardt et

al, manuscript in preparation). The full length CFHR5 cDNA was

cloned into pBSV-8His and expressed in the baculovirus system as

described [66] Uzonyi et al., manuscript in preparation]. All

expressed His-tagged recombinant proteins were purified by Ni2+

chelate affinity chromatography as described [13,20].

Protein purification and serum adsorption with magnetic
beads

For protein purification of histidine-tagged proteins and

analyses of interacting serum proteins, magnetic beads (Dynabeads

TALON, Invitrogen Dynal AS, Oslo, Norway) coated with cobalt

ions were used. For purification of CRASP-3 or CRASP-5-bound

human serum proteins, E. coli lysates (1 ml) containing expressed

histidine-tagged proteins were incubated with 2 mg of magnetic

beads for 10 min at room temperature as recommend by the

manufacturer. After four washes with phosphate buffer (50 mM

phosphate, 300 mM NaCl, 0.01% Tween20), histidine-tagged

proteins coupled onto beads were incubated with NHS for 1 h at

room temperature. After extensive washing with phosphate buffer,

bound proteins were eluted with 100 mM glycine-HCl (pH 2.0)

for 15 min. The eluate and the last wash fraction were separated

by 12.5% Glycine-SDS-PAGE under non-reducing conditions

followed by staining with silver or Coomassie brilliant blue.

Sample preparation for mass spectrometry
The selected protein spots were cored from gels and subjected to

in-gel digestion protocols as described [67,68], which were

adapted for use on a MicrolabH Star digestion robot (Hamilton,

Bonaduz, Switzerland). After 12 h, the supernatant was removed

and the remaining peptides were extracted three times with 50%

(v/v) ACN/5% FA. All fractions were pooled and dried prior to

analysis. For MALDI mass spectrometric analysis the samples

were solved in 5 ml 50% ACN/1% (v/v) TFA (Fluka, Buchs,

Switzerland). 0.5 ml of the sample was mixed with 0.5 ml of matrix

(2 mg/ml a-cyano-4-hydroxycinnamic acid (Bruker, Bremen,

Germany) in 50% ACN/0.5% (v/v) TFA) directly on a stainless

steel MALDI target (Applied Biosystems (ABI), Darmstadt,

Germany) and dried under ambient conditions.

MALDI TOF MS
Delayed extractionTM (DE) MALDI time of flight (TOF) mass

spectra were recorded on a Voyager-DE STR instrument (ABI)

using a nitrogen laser (l= 336 nm, repetition rate = 20 Hz) for

desorption and ionisation with an acquisition mass range from

600 m/z to 5000 m/z and the low mass gate set to 550 m/z. The

total acceleration voltage was 20 kV with 68.5% grid voltage on

the first grid, 0.02% guide wire voltage, 150 ns delay and a mirror

voltage ratio of 1.12. Spectra were externally calibrated with

SequazymeTM Peptide Mass Standards Kit (ABI). Between 1000

and 2000 laser shots were accumulated for each mass spectrum.

All spectra were smoothed, noise-filtered and deisotoped using

Data Explorer (Ver. 4.3, ABI). Deisotoped peaks were labelled by

the software and the 100 most intense peaks were used for

database searching. Autolytic tryptic peptides or peptides resulting

from the identified protein were used for internal calibration.

Protein database queries
Proteins were identified using Spectrum Mill (Ver. 3.0, Agilent

Technologies, Waldbronn, Germany) installed on a local server

using the MASCOT (TM) Search Engine, Matrix Science (http://

www.matrixscience.com). For PMF data, the 100 most intense peaks

were submitted to Spectrum Mill using a search tolerance of 25 ppm.

Construction of shuttle vectors
Vector pKFSS1, a streptomycin resistant derivative of pBSV2

[69] was used to generate shuttle vectors to allow expression of

CRASP-3 or CRASP-5 by the serum-sensitive B. garinii strain G1.

The erpP and erpA genes, plus their native promotor regions, were

amplified from B. burgdorferi s.s strain LW2 by PCR using primers

containing respective restriction sites (Table 1). The sequences of

the two erp genes of strain LW2 is identical to those of B. burgdorferi

type strain B31. Amplicons generated were digested with BamHI

and HindIII and cloned into pKFSS1 at the corresponding

restriction sites yielding shuttle vectors pCRASP-3 (expression of

CRASP-3) and pCRASP-5 (expression of CRASP-5). Purified

recombinant plasmid inserts were subjected to nucleotide

sequencing to verify that no mutations had been introduced

during PCR and cloning procedures.

Transformation of serum-sensitive B. garinii
The non-infectious, serum-sensitive B. garinii strain G1 was

grown in BSK medium and harvested at mid exponential phase
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(56107 to 16108 cells/ml). Electrocompetent cells were prepared

as described previously [70] with slight modifications. Briefly,

60 ml aliquots of competent G1 cells were electroporated at

2.5 kV/cm for 4 sec in 2-mm cuvettes with 25 mg of plasmid

DNA. Bacteria were transformed with either pCRASP-3,

pCRASP-5 or empty pKFSS1. Cells were immediately diluted

into 10 ml BSK medium and incubated without antibiotic

selection at 33uC for 48 h. For selection of transformants, cells

were diluted into 100 ml BSK medium containing 20 mg/ml

streptomycin, then 200 ml aliquots were transferred into 96-well

plates (Corning). After four to six weeks incubation at 33uC, wells

were evaluated for growth by color change of the medium and by

dark-field microscopy for the presence of motile spirochetes.

Several clones were expanded in 1 ml fresh BSK medium

containing streptomycin (20 mg/ml) for 7 to 14 days. Transformed

bacteria were then maintained in BSK medium containing 20 mg/

ml streptomycin.

PCR analysis of transformed borrelial cells
Streptomycin-resistant clones of transformed B. garinii were

characterized by PCR amplification of the introduced erpP or erpA

genes, and the recombinant plasmids’ streptomycin resistance gene

(aadA) using specific primers (Table 1). The native B. garinii flaB gene

was also PCR amplified as a positive control. Ten microliter aliquots

of bacterial cultures grown to mid-exponential phase were used for

direct PCR. PCR was carried out for 25 cycles using the following

parameters: denaturation at 94uC for 1 min, annealing at 50uC for

1 min, and extension at 72uC for 1 min. Reaction products were

separated by agarose gel electrophoresis, and DNA was visualized

by ethidium bromide staining and ultraviolet light.

SDS-PAGE, Western blot and ligand affinity blot analysis
Bacterial cell lysates were subjected to 10% Tricine-SDS-PAGE

under reducing conditions and samples obtained by serum

adsorption (last wash and elution fractions) were separated by

Glycine-SDS-PAGE under non-reducing conditions as previously

described [11,23]. Briefly, after transfer of proteins onto

nitrocellulose, nonspecific binding sides were blocked using 5%

(w/v) dried milk in TBS (50 mM Tris-HCl pH 7.4, 200 mM

NaCl) containing 0.1% Tween20 for 1 h at room temperature.

Subsequently, membranes were rinsed four times in TBS

containing 0.1% Tween20.

For ligand affinity blot analysis, membranes were incubated for

1 h with NHS. After four washings with TBS containing 0.2%

Tween20, membranes were incubated for 1 h with a polyclonal

rabbit antiserum that recognizes the amino-terminal regions of

CFH, monoclonal antibody (mAb) VIG8 which recognizes the C-

terminus of both CFH and CFHR1, or mAb JHD 7.10 which

recognizes CFHR1 but not CFH [20,41]. Following four washes

with TBS containing 0.2% Tween20, membranes were incubated

with an appropriate peroxidase-conjugated secondary antibody for

1 h. Detection of bound proteins was performed using 3,39,5,59-

tetramethylbenzidine (TMB) as substrate.

For Western blot analysis, membranes were incubated for 1 h at

room temperature with either mAb recognizing CRASP-3/ErpP

(N38 1.1), CRASP-5/ErpA (B11), CFH (VIG8), CFHR1 (JHD

7.10), or FlaB (L41 1C11). Following four washes with TBS

containing 0.2% Tween20, membranes were probed with

peroxidase-conjugated anti-mouse or anti-rabbit secondary anti-

body (Dako, Glostrup, Denmark) for 60 min at room temperature

and bound antibodies were detected using TMB.

ELISA
Microtiter plates (Nunc-Immuno Module) were coated with

CRASP-3 (5 mg/ml) or CRASP-5 (5 mg/ml) over night at 4uC.

The plates were washed with PBS containing 0.1% Tween20 and

treated for 1 h at RT with blocking buffer (Applichem GmBH,

Darmstadt, Germany). After washing, equimolar amounts (33 mM)

of CFH, CFHR1, CFHR2 or CFHR5 were added and incubated

for 1 h at RT. Thereafter, the wells were washed and bound CFH

or CFHR proteins were detected with either goat CFH polyclonal

antiserum or mouse CFHR1 monoclonal antiserum (JHD 7.10),

which reacts with all the three CFHRs [20]. After washing, protein

complexes were identified using appropriate secondary horserad-

ish peroxidase-coupled antiserum. The reaction was developed

with 1,2-phenylenediamine dihydrochloride (OPD, DakoCytoma-

tion, Glostrup, Denmark) and the absorbance was measured at

490 nm.

In situ protease accessibility experiments
Viable borreliae were gently washed and resuspended in 500 ml

PBS to obtained a density of 86105/ml. Subsequently, proteinase

K in distilled water (Sigma-Aldrich, Deisenhofen, Germany) was

added to a final concentration of 100 mg/ml. As a control, intact

Table 1. Oligonucleotides used in this study.

Oligonucleotide Sequence (59 to 39)a Use in this work

ErpA(+) GCATTTGCAATGGATCCATTTTGGGGAGTTG cloning of erpA or erpP in pKFSS1

ErpA Hind(-) CATAATTCTTACAAGAAAGCTTCAGCGCAAAAACTGCAC cloning of erpA in pKFSS1

ErpP Hind(-) CAGCACAAACAATCAAAGCTTTTTTATTCATAATTATTC cloning of erpP in pKFSS1

CRASP-3 79(+) GATGAGCCAAAGTAGTGGTGAGATAAACC amplification of erpP gene

CRASP-3 520(-) CTATTTTAAATTTTTTTTGGATCCTTATTATGGTTTGCATA amplification of erpP gene

CRASP-5 79(+) GATGAGCAAAGCAATGGAGAGGTAAAGGTC amplification of erpA gene

ErpA 3nc (-) GTTTTTTTATTCATATACGGGCCCTCCTATATTTCTAAC amplification of erpA gene

aadA+NdeI CATATGAGGGAAGCGGTGATC amplification of aadA gene

aadR+AatII GACGTCATTATTTGCCGACTACC amplification of aadA gene

Fla6 AACACACCAGCATCGCTTTCAGGGTCT amplification of flaB gene

Fla7 TATAGATTCAAGTCTATTTTGGAAAGCACCTA amplification of flaB gene

asequences of specific restriction endonuclease recognition sites are underlined.
doi:10.1371/journal.pone.0013519.t001
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spirochetes without treatment of protease were also used.

Following incubation for 2 h at room temperature, proteinase K

was terminated by adding phenylmethylsulfonyl fluoride (Sigma-

Aldrich) (50 mg/ml in isopropanol). Cells were then washed gently

twice with PBS/5 mM MgCl2, resuspended in 20 ml of the same

buffer, then lysed by sonication 5 times for 30 sec using a Branson

B-12 sonifier (Heinemann, Schwäbisch Gmünd, Germany).

Aliquots were separated using Tricine-SDS-PAGE as described

above.

Serum adsorption assay
Borreliae (16109 cells) grown to mid-log phase were washed

with veronal buffered saline and subsequently resuspended in

750 mM NHS supplemented with 34 mM EDTA (pH 8.0) to

avoid complement activation. After 1 h incubation at room

temperature and four washes with PBSA (0.15 M NaCl, 0.03 M

phosphate, 0.02% sodium azide, pH 7.2) containing 0.05%

Tween20, proteins bound to the cells surface were eluted with

100 mM glycine-HCl (pH 2.0) for 15 min. Cells were removed by

centrifugation at 14,0006g for 10 min at 4uC, and the supernatant

and the last wash were separated by Glycine-SDS-PAGE under

non-reducing conditions and analyzed by Western blotting as

described above.

For experiments using increasing salt concentrations, cells were

washed four times with PBSA, sedimented by centrifugation, and

resuspended in PBSA containing 450 mM of NaCl. The

spirochetes were then incubated for 15 min at room temperature,

sedimented and resuspended in PBSA containing the respective

concentration of NaCl (750 mM to 1350 mM). This procedure

was repeated for each incubation reaction. Finally, bound serum

proteins were eluted with 100 mM glycine-HCl (pH 2.0) for

15 min and all supernatants collected (last wash fraction, fractions

from the incubation reactions with increasing salt concentrations,

and the eluate fraction) were then analyzed by Western blotting

using a polyclonal anti-CFHR1 antiserum as described above.

C3b inactivation assay
The C3b cleavage capacity of B. garinii transformants was

assayed after incubation of spirochetes (46107) with PBS

supplemented with 750 ng/ml purified CFH for 60 min at room

temperature (Calbiochem, Darmstadt, Germany) as described

previously [43]. After washing with PBS, cells were resuspended in

50 ml PBS containing 10 ng/ml C3b (Calbiochem) and 20 ng/ml

factor I (Calbiochem) and incubated for 60 min at 37uC. Cells

were sedimented and the supernatants were mixed with sample

buffer. The samples were then subjected to Glycine-SDS-PAGE

under reducing conditions and transferred onto a nitrocellulose

membrane. C3b degradation products were detected by using

polyclonal goat anti-C3 IgG at a final dilution of 1/2000

(Calbiochem) and a secondary peroxidase-conjugated anti-goat

IgG antibody (DakoCytomation, Glostrup, Denmark). For detec-

tion, 3,39,5,59-Tetramethylbenzidine was used as substrate.

Serum susceptibility testing
Serum susceptibilities of B. garinii isolate G1, G1/pKFSS1, G1/

pCRASP-3 and G1/pCRASP-5 were assessed by growth

inhibition assay. Aliquots (1.256107 cells) of highly motile

spirochetes were diluted into final volumes of 100 ml fresh BSK-

medium, which contains 240 mg/ml phenol red. As bacteria grow

in BSK, the medium acidifies and the pH indicator dye turns from

red to yellow. To each aliquot of bacteria was added either 100 ml

NHS or 100 ml heat-inactivated NHS. Bacteria were then held in

96-well microtiter plates for 8 days at 33uC. For controls, aliquots

of bacteria were also incubated with 100 ml BSK medium instead

of human serum. Bacterial growth was monitored daily by

measuring the ratio of culture medium absorbance at 562 versus

630 nm using an ELISA reader (PowerWave 200; Bio-Tek

Instruments, Winooski, VT). For calculation of the growth curves

the Mikrowin Version 3.0 software (Mikrotek, Overath, Germany)

was used. Each experiment was conducted at least three times and

means 6 SD were calculated.

Flow cytometry
To analyze binding of CFH to transformed borreliae by flow

cytometry 26108 cells grown to mid-log phase were washed with

PBS and subsequently incubated in 300 ml PBS containing 4 mg

purified CFH (Calbiochem) for 60 min at room temperature.

Afterwards, spirochetes were washed twice and then stained with a

monoclonal anti-CFH antibody (Quidel) for 30 min at 4uC,

followed by incubation with phycoerythrin-labeld secondary

antibody (R&D, Wiesbaden, Germany) for 30 min at 4uC.

Samples were analysed immediately on a FACSCalibur (BD,

Heidelberg, Germany) using CellQuest Pro software (BD,

Heidelberg, Germany).

Immunofluorescence assay
Spirochetes grown to mid-exponential phase were harvest by

centrifugation (50006g, 30 min), washed, and resuspended in

veronal buffered saline (VBS, supplemented with 1 mM Mg2+,

0.15 mM Ca2+, 0.1% gelatin, pH 7.4).

For detection of deposited complement components on the

bacterial surface, spirochetes (66106) were incubated in 25% NHS

and, as a control, in 25% heat-inactivated NHS for 30 min at

37uC with gently agitation. After two washes with PBS containing

0.2% BSA, 10 ml aliquots of cell suspensions were spotted on glass

slides and allowed to air dry overnight. Slides were then fixed in

methanol for 10 min and air dried for 1 h. After 1 h incubation at

37uC with polyclonal antibodies directed against the complement

components C3 (1/500 dilution) (Calbiochem) or C6 (1/100

dilution) (Calbiochem) or a 1/50 dilution of a mAb directed

against C5b-9 (Quidel, San Diego, CA, USA) in a humidified

chamber, slides were gently washed four times with PBS and

subsequently incubated with a 1/2000 dilution of Alexa 488-

conjugated anti-goat antibody or Alexa 488-conjugated anti-

mouse antibody (Molecular Probes) for 1 h at 37uC.

For detecting surface-exposed proteins, polyclonal rabbit anti-

CRASP-3 antiserum (1/50 dilution) or polyclonal rabbit anti-

CRASP-5 antiserum (1/20 dilution) was added to the cells for 1 h

at 37uC with gently agitation. After two washes with PBS

containing 1% BSA, 10 ml aliquots of the cell suspensions were

spotted on glass slides and allowed to air dry overnight ( = unfixed

cells). Slides were then fixed in methanol for 10 min, air dried for

1 h following the incubation with an adequate Alexa 488-

conjugated antibody. Slides were then gently washed four times

with PBS and mounted on ProLong Gold antifade reagent

(Molecular Probes) containing DAPI before being sealed. Slides

were visualized at a magnification of 61000 using a Olympus

CX40 fluorescence microscope mounted with a DS-5Mc charge-

coupled device camera (Nikon).

As a control, periplasmic FlaB was also investigated using

unfixed as well as fixed spirochetes as described previously [32].

Briefly, cells were first incubated with a 1/50 dilution of mAb L41

1C11 recognizing FlaB and washed twice with PBS containing 1%

BSA ( = unfixed cells). Aliqouts of 10 ml were then spotted onto

glass slides and after air drying at room temperature, cells were

fixed with methanol. Slides were incubated with an anti-mouse

Alexa 488-conjugated antibody (1/1000 dilution), washed gently

four times with PBS, and mounted on ProLong Gold antifade
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reagent (Molecular Probes) containing DAPI before being sealed.

At the same time, spirochetes were first fixed onto coverslips using

methanol and then incubated with a 1/50 dilution of mAb L41

1C11 to detected the periplasmic-located FlaB protein ( = fixed

cells). The slides were then proceed as described above.
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