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Abstract

Background: The long chain N-acylhomoserine lactone (AHL) quorum sensing signal molecules released by Pseudomonas
aeruginosa have long been known to elicit immunomodulatory effects through a process termed inter-kingdom signaling.
However, to date very little is known regarding the exact mechanism of action of these compounds on their eukaryotic
targets.

Methodology/Principal Findings: The use of the membrane dipole fluorescent sensor di-8-ANEPPS to characterise the
interactions of AHL quorum sensing signal molecules, N-(3-oxotetradecanoyl)-L-homoserine lactone (3-oxo-C14-HSL), N-(3-
oxododecanoyl)homoserine-L-lactone (3-oxo-C12-HSL) and N-(3-oxodecanoyl) homoserine-L-lactone (3-oxo-C10 HSL)
produced by Pseudomonas aeruginosa with model and cellular membranes is reported. The interactions of these AHLs
with artificial membranes reveal that each of the compounds is capable of membrane interaction in the micromolar
concentration range causing significant modulation of the membrane dipole potential. These interactions fit simple
hyperbolic binding models with membrane affinity increasing with acyl chain length. Similar results were obtained with T-
lymphocytes providing the evidence that AHLs are capable of direct interaction with the plasma membrane. 3-oxo-C12-HSL
interacts with lymphocytes via a cooperative binding model therefore implying the existence of an AHL membrane
receptor. The role of cholesterol in the interactions of AHLs with membranes, the significance of modulating cellular dipole
potential for receptor conformation and the implications for immune modulation are discussed.

Conclusions/ Significance: Our observations support previous findings that increasing AHL lipophilicity increases the
immunomodulatory activity of these quorum compounds, while providing evidence to suggest membrane interaction plays
an important role in quorum sensing and implies a role for membrane microdomains in this process. Finally, our results
suggest the existence of a eukaryotic membrane-located system that acts as an AHL receptor.
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Introduction

Quorum sensing (QS) is the process through which bacterial

cells communicate enabling unicellular populations to coordinate

their response to an external stimulus as a function of population

density, for a review see [1]. Gram negative bacteria such as

Pseudomonas aeruginosa employ N-acylhomoserine lactone (AHL) QS

signal molecules. P. aeruginosa is an opportunistic human pathogen

responsible for causing infection in immune compromised indivi-

duals and is the leading cause of morbidity and mortality in cystic

fibrosis patients [2].

P. aeruginosa employs an AHL-dependent QS system employing

two LuxR/I pairs (LasR/I and RhlR/I) where LasR and RhlR are

transcriptional regulators which respond to the AHLs, N-(3-

oxododecanoyl)homoserine lactone (3-oxo-C12-HSL) and N-buta-

noylhomoserine lactone (C4-HSL) (Figure 1) respectively. These

are produced via the LasI and RhlI AHL synthases respectively

[3]. Although LasI directs the synthesis primarily of 3-oxo-C12-

HSL, the analogues 3-oxo-C10-HSL and 3-oxo-C14-HSL are also

produced, albeit at much lower levels [4]. The las and rhl systems

directly or indirectly regulate over 10% of the P. aeruginosa genome

[5] and are organized as a hierarchy in which LasR/3-oxo-C12-

HSL drives the expression of lasI (so constituting a positive

feedback loop) as well as rhlR and rhlI [6]. The las/rhl QS system

plays a key role in controlling virulence factor production, biofilm

maturation, swarming motility and the expression of antibiotic

efflux pumps [3].

P. aeruginosa AHLs have been detected in vivo during human

infections. They are readily detectable in sputum from cystic

fibrosis patients [7] although determining their physiological QS

concentration range is complicated as a consequence of their

susceptibility to alkaline [8] and/or enzymatic hydrolysis [9].
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Apart from modulating bacterial gene expression, AHLs such as 3-

oxo-C12-HSL (but not C4-HSL) antagonize growth and virulence

factor production in Gram positive bacteria such as Staphylococcus

aureus [10]. 3-oxo-C12-HSL may also contribute directly to the

outcome of host-pathogen interactions. 3-oxo-C12-HSL influences

smooth muscle contraction in blood vessels, exerts a marked

bradycardia [11] and modulates the junctional integrity and

paracellular permeability of epithelial cells [12]. It also modulates

host inflammatory and immune responses, (reviewed in [13,14]).

For example, at concentrations below 10 mM, 3-oxo-C12-HSL

reduced lipopolysaccharide (LPS)-induced production of the pro-

inflammatory cytokine IL-12 by monocytes [15] whereas pro-

inflammatory or pro-apoptotic effects were apparent at higher

concentrations in both macrophages and neutrophils [14,16,17].

The proliferation and function (cytokine production) of both

mitogen-stimulated (e.g., [18,19] and antigen-stimulated [20]) T

lymphocytes as well as antibody production by B lymphocytes

[15,19] are inhibited by 3-oxo-C12-HSL. Smith et al. [16] reported

that 3-oxo-C12-HSL induced activation of the pro-inflammatory

signaling components Cox-2 and NF-kB in transformed cell lines

however, this does not occur in primary cells in the absence of LPS

neither does 3-oxo-C12-HSL act via known pathogen pattern

recognition receptors [21]. In the absence of LPS, 3-oxo-C12-HSL

does induce phosphorylation of mitogen-activated protein kinase

(MAPK) p38, which could modulate cytokine production and also

potentiate TNFa-induced poly(adenosine 59-diphosphate-ribose)

(PARP) cleavage, a biochemical marker of apoptosis [22].

The direct target(s) of 3-oxo-C12-HSL in mammalian cells

have yet to be fully characterized. Since 3-oxo-C12-HSL enters

mammalian cells and retains intracellular activity [23,24], the

most likely receptor(s) for 3-oxo-C12-HSL has been suggested to be

intracellular. In this context, Jahoor et al. [25] obtained evidence to

suggest that 3-oxo-C12-HSL may bind to at least two isoforms

(PPARc and PPARb/d) of the peroxisome proliferator activated

receptors (PPARs). These belong to the nuclear hormone receptor

family which bind a range of endogenous and exogenous lipids

and play roles in inflammation and lipid metabolism. 3-oxo-C12-

HSL may therefore modulate NF-kB signaling via the direct

interaction with PPARs. Using an affinity matrix, Seabra et al.

[26] identified calprotectin as a target although this calcium

binding protein is unlikely to be the primary receptor for 3-oxo-

C12-HSL. In order for QS signal molecules to interact with

intracellular components they must first interact with the cell

membranes. Structure-activity assays of 3-oxo-C12-HSL have

revealed that optimal immune modulatory activity in a mouse

splenocyte proliferation assay in common with QS in P. aeruginosa

requires a C11 to C13 acyl chain, an intact homoserine lactone ring

and L-configuration at the chiral centre, suggesting lipophilicity is

important for QS immunosuppressive activity [18]. Based on these

observations and given the broad biological activity of 3-oxo-C12-

HSL in both pathogens and eukaryotic cells (particularly its action

on leukocytes), we have explored the interactions of long chain

AHLs with simple membranes and T lymphocytes. The potential

interactions of QS signal molecules with many types of membrane

have so far largely been ignored, although a recent study by

Lowery et al. [27] indicated they may have effects on bacterial

membrane permeability. This study presents evidence that 3-oxo-

C12 HSL and two close structural analogues, 3-oxo-C10-HSL and

3-oxo-C14-HSL are capable of insertion into the lipid bilayer in

both artificial membrane and Jurkat T-lymphocyte cell systems.

Although the AHL concentrations used are higher than those

reported in some human host samples e.g. sputum from cystic

fibrosis patients [7], the latter are likely to be an underestimate

since local AHL concentrations up to 600 mM have been detected

in culture supernatants of P. aeruginosa biofilms grown in vitro [4].

In order to determine whether these compounds are capable of

directly interacting with membranes they were studied using the

fluorescent probe di-8-ANEPPS (e.g. [28,29]). This technique

yields binding information such as affinity and overall binding

capacity as well as whether addition of AHLs impacts on the

membrane organization. The roles of QS acyl chain length (C10 to

C14) and cholesterol in membrane interactions are also investi-

gated and the potential roles of membrane microdomains (or rafts)

in immune modulation are discussed.

Results

AHL Immunosuppressive Activity is Dependent on
membrane affinity (Lipophilicity)

The concentrations of AHLs required to inhibit 50% prolifer-

ation (IC50) of human peripheral blood mononuclear cells

(PBMCs) was obtained from Chhabra et al 2003 [18]. These

data are plotted against a calculated LogP value in Table 1,

(calculated using the ACD/I-Lab Web service (ACD/LogP 12.0))

based on molecular structure. LogP is a measure of molecular

lipophilicity and is frequently used in the pharmaceutical industry

as an indicator of the likely bioavailability of a drug molecule.

Figure 1. Structures of common AHLs synthesized by P
aeruginosa. Structures of the most common AHL quorum sensing
compounds synthesized by Pseudomonas aeruginosa (C4-HSL, and 3-
oxo-C12-HSL) and those used in this study (3-oxo-C14-HSL, 3-oxo-C12-
HSL, COOH-3-oxo-C12-HSL and 3-oxo-C10-HSL).
doi:10.1371/journal.pone.0013522.g001

Interacting AHLs with Membrane

PLoS ONE | www.plosone.org 2 October 2010 | Volume 5 | Issue 10 | e13522



Figure 2 indicates that a strong negative correlation (Pearsons

r = 20.895, p = 0.016) exists between membrane affinity and

immunosuppressive activity.

The observation that AHLs with increasing chain length (and

therefore lipophilicity) impede cell proliferation to a greater extent

provides the first fully quantitative evidence to suggest that the

hydrophobic properties of AHLs play an important role in their

ability to inhibit immune cell function. This will most likely

manifest as an elevated ability to interact with biological

membranes, influencing membrane electrical potentials which

have been previously reported to effect indirectly membrane

protein function [29]. Alternatively AHLs with greater lipophilicity

will interact more readily with any hydrophobic binding pockets

that exist within receptor systems (i.e. either in a membrane or in a

soluble protein). The aim of this investigation is to provide

evidence which of these mechanisms AHLs elicit their well

documented immunomodulatory effects.

Interactions of AHLs with Phospholipid Membrane
Vesicles; Effects on Membrane Dipole Potential

Biological membranes, in addition to the well documented

transmembrane potential also possess two lesser known electrical

potentials termed the electrostatic membrane surface potential and

the membrane dipole potential (for an extensive review of this

trinity of membrane potentials see [30]). The membrane dipole

potential has a magnitude in the region of 300 mV and arises from

the orientation of dipoles at and just under the membrane surface.

On insertion of a molecule of interest into biological membranes,

this can cause a perturbation in this potential which can be

detected in both artificial and cellular membrane systems using the

electrochromic probe di-8-ANEPPS.

On this basis it is shown in Figure 3A & B that addition of 3-

oxo-C14-HSL, 3-oxo-C12-HSL and 3-oxo-C10-HSL to Phospho-

tidylcholine100% and Phosphatidylcholine70% Cholesterol30%

membranes vesicles led to a red shift in the excitation spectra of

di-8-ANEPPS. A red shift (with a minimum of ,440 nm and a

maximum of ,520 nm) is indicative of the ligands acting to

decrease the membrane dipole potential upon insertion into the

membrane. This finding is consistent with our previous work [29]

reporting that addition of reagents known to decrease the

membrane dipole potential, give rise to di-8-ANEPPS difference

spectra of similar profiles to those reported here.

Changes in the membrane dipole potential can be tracked over

time using the ratio of di-8-ANEPPS fluorescence at 460 nm and

520 nm excitation and a fixed emission (termed R(460/520)),

which is sensitive solely to variations of the local electric field due

to dipolar molecular properties. Upon titration of the AHLs into

these artificial membranes a concentration dependent decrease in

membrane dipole potential was observed as shown in Figure 3C.

These data were plotted as the incremental change of di-8-

ANEPPS fluorescence versus the concentration of AHL added

and fitted to various ‘binding’ models (eq. 1 & 2) as shown in

Figure 4A–C. Such observations are consistent with the interaction

and insertion of AHL molecules with the membrane vesicles. All

ligands were found to interact with both Phosphotidylcholine100%

and Phosphatidylcholine70%Cholesterol30% membranes via a

simple hyperbolic (i.e. non-cooperative) binding mechanism,

Figure 4D & E compare the dissociation constant (Kd) and

saturation point (Bmax) obtained in each case. Overall these figures

depict that as acyl chain length increases it leads to a decrease of

the observed the Kd, suggesting that longer chain AHLs have a

higher membrane affinity than the shorter chain variants. This was

found to be the case for both Phosphotidylcholine100% and

Phosphatidylcholine70%Cholesterol30% membranes. Titration of

the AHLs into membranes containing 30% cholesterol did not

result in a significant change in Kd (Figure 4D), however the

binding capacity of 3-oxo-C12 HSL and 3-oxo-C14 HSL (i.e.

saturation in fluorescence units) of Phosphatidylcholine70% Choles-

terol30% membranes was significantly greater than for Phosphatidyl-

choline100% membranes (p,0.05), suggesting that QS compounds

may be accumulating in membrane microdomains present in

Phosphatidylcholine70%Cholesterol30% membranes.

Addition of 200 mM COOH-3-oxo-C12 HSL to artificial mem-

branes (Figure 5A & B) was found to cause only a nominal red shift

in the di-8-anepps excitation spectrum. This shift was substantially

less than that observed for 3-oxo-C12 HSL. Titration of COOH-3-

oxo-C12 HSL into liposomes (Figure 5C) exhibited a dramatically

lower effect on the dipole potential than 3-oxo-C12 HSL and fit

poorly to both hyperbolic and sigmoidal models. This observation

Figure 2. A strong negative correlation is observed between
peripheral mononuclear cell proliferation and AHL lipophilic-
ity. The IC50 for human peripheral mononuclear cell proliferation
(PBMCs) isolated from three donors (* denotes n = 2) in the presence of
AHLs of chain lengths between 8 and 14 carbons (values obtained from
[18]) exhibit a strong negative correlation (Pearsons r = 20.895,
p = 0.016) against the predicted octanol/water partition coefficient
(LogP) for each compound (calculated using ACD/i-Lab LogP algorithm
12.0). n = 3, 6SEM. Projected LogP are given in Table 1.
doi:10.1371/journal.pone.0013522.g002

Table 1. Comparison of AHL octanol/water partition
coefficients.

QS molecule Projected LogP (±0.49)

3-oxo-C14-HSL 3.25

3-oxo-C13 HSL 2.74

3-oxo-C12-HSL 2.23

3-oxo-C11-HSL 1.72

3-oxo-C10-HSL 1.21

3-oxo-C8-HSL 0.19

COOH-3-oxo-C12-HSL 0.18

Comparison of AHL octanol/water partition coefficients (LogP) values calculated
from molecular structure using ACD/I-Lab LogP algorithm 12.0. Lipophilicity is
observed to significantly increase as AHL chain length increases from C8 to C14
(r = 1.000, p,0.01, Spearman correlation). Addition of a carboxylic acid group to
the 3-oxo-C12 HSL acyl chain results in a marked reduction in projected LogP.
This compound was therefore expected to interact with membranes to a lesser
degree than the major AHL released by P. aeruginosa 3-oxo-C12 HSL.
LogP695% confidence interval shown.
doi:10.1371/journal.pone.0013522.t001
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was expected as COOH-3-oxo-C12 HSL has a projected LogP

substantially lower than 3-oxo-C12 HSL (Table 1).

Interactions of AHLs with T-Lymphocytes; Effects on
Membrane Dipole Potential

In the previous section it was shown that addition of AHLs to

simple phospholipid membranes resulted in a decrease in the

membrane dipole potential, which is indicative of these com-

pounds inserting into artificial membranes. As a result, it was of

interest to study their interactions with T-Lymphocytes which we

utilize as a model for the interaction of quorum molecules with

their prospective eukaryotic host cell systems.

Figure 6A indicates that addition of 3-oxo-C14-HSL, 3-oxo-C12-

HSL and 3-oxo-C10-HSL to this model cell system resulted in a

red shift in the excitation spectra of di-8-ANEPPS (all normalized

to controls containing the DMSO vector but not the QS) similar to

those observed previously with the artificial membrane systems.

This suggests that the AHLs used in this study were capable of

insertion into the plasma membrane of Jurkat T-lymphocytes

leading to changes in the dipole potential.

Resazurin reduction-based cell viability assays were conducted

as it is conceivable that treatment of the cells with AHLs may

affect viability. It was found however, that no significant effects on

cell viability take place at any of the concentrations utilized in our

studies (data not shown).

Figure 6B indicates that upon titration of di-8-ANEPPS labeled

Jurkat T-lymphocytes with AHLs, a similar decrease in the R(460/

520) parameter was observed as for titration with the artificial

membrane systems. These data were plotted and fitted as before

and are shown in Figure 7. It was found that 3-oxo-C14-HSL

exhibited a strong interaction with the cell membrane with both a

greater binding capacity (1.4060.11 compared to 0.8660.08,

p = 0.02) and dissociation constant significantly less than 3-oxo-

C12-HSL (39 mM66 mM compared to 153 mM638 mM, p = 0.04)

as determined by two tailed T test. The latter exhibited a more

complex binding reaction that was poorly described by Eq. 1. Eq.

2 however was found to be able to describe the binding isotherm

and this model indicates that cooperativity appears to be

occurring. The cooperativity index (sometimes referred to as the

Hill coefficient) for these studies was found to be 1.8760.27.

There are several possible interpretations of this finding, such as

that two 3-oxo-C12-HSL molecules come together on/in the

membrane to promote their respective interaction. There are,

however other explanations that accommodate this behavior of

which the most likely is that the membrane is modified by the

presence of the AHLs and this affects the subsequent binding of

further molecules (see below).

3-oxo-C10-HSL exhibited only a very slight interaction which

fitted neither binding model to a satisfactory degree (R2 = 0.57).

Figure 8 indicates that pre-treatment of Jurkat T-lymphocytes

with 160 mM 3-oxo-C12 HSL caused a significant reduction in the

Bmax of P-glycoprotein (P-gp) for Saquinavir, in comparison to

cells treated with equivalent volumes of 0.5% DMSO solvent

(1.5360.04 compared to 1.9260.03, p = 0.002) in addition to a

significant increase in Kd (39 mM61 mM compared to 34 mM61 uM,

p = 0.007). A slight but insignificant decrease in binding cooperativity

was also observed. Subsequent work has shown that pre-treatment

of lymphocytes with saquinavir has no significant influence on the

interaction of 3-oxo-C12 HSL with Lymphocytes (Data not shown).

These findings may therefore suggest that 3-oxo-C12 HSL mediated

lymphocyte membrane dipole potential modulation has indirectly

acted to change the activity of P-glycoprotein.

Figure 3. The interactions of AHLs with artificial membrane
systems perturbs the membrane dipole potential. Fluorescence
difference spectra obtained by subtracting di-8-ANEPPS excitation
spectra (lem = 590 nm) of PC(100%) [A] or PC(70%)Cholesterol(30%) [B]
membrane vesicles (400 mM) from those obtained after these mem-
branes were exposed to the following QS molecules; 65 mM 3-oxo-C14-
HSL (thick dashed line), 200 mM 3-oxo-C12-HSL (solid black line) and
200 mM 3-oxo-C10-HSL (thin dashed and dotted line). Before subtrac-
tion, each spectrum was normalized to the integrated areas so that the
difference spectra would reflect only the spectral shifts. Each difference
spectrum was then normalised to a DMSO control (grey line) and a
three point moving average applied to reduce noise. In all experiments
the dye concentration was 10 mM and temperature was maintained at
37uC. [C] A dual wavelength ratiometric measurement of the dipole
potential variation in di-8-ANEPPS. Additions of 22 mM 3-oxo-C14-HSL or
equivalent volumes of DMSO were made to 400 mM PC(100%). Samples
were excited at 460 nm and 520 nm. Emission was read at 590 nm and
the ratio R(460/520) was calculated (shown). All experiments n = 3.
doi:10.1371/journal.pone.0013522.g003
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Discussion

The Interactions of AHLs with Artificial Membrane
Systems

The present study outlines the interactions between long chain

AHLs and a number of membrane types including live cells from

which it is possible to draw several important conclusions. First 3-

oxo-C14- HSL, 3-oxo-C12-HSL and 3-oxo-C10-HSL as shown in

Figure 4, were all observed to interact with PC100% and

PC70%Cholesterol30% artificial membrane systems. These model

membranes are taken to represent the most abundant lipid types

found in human cell types; their interaction profiles were found to

correspond to simple hyperbolic (saturatable) binding models

(Figures 3 & 4). Based on the well characterized responses of the

fluorescent probe we utilize in this study [30,31] we are able to

conclude from our observations that AHLs are capable of direct

insertion into biological membranes in the micromolar concen-

tration range.

The Interaction of AHLs with Cell Membranes
One virtue of using the di-8-ANEPPS probe is that it may also

be implemented with live cells as well as with our model

membrane systems. Analogous studies with T cells (Figure 7),

therefore, were found to indicate that all three AHLs are also

capable of insertion into the cell membrane in the micromolar

concentration range.

Previous work examining the immunomodulatory activity of

AHLs has suggested that insertion into T-lymphocyte membranes

is unlikely to be responsible for immunosuppressive effects of

3-oxo-C12 HSL at concentrations of less than 10 mM [20]. This

finding is corroborated by this study which suggests little

membrane association of 3-oxo-C12-HSL with T-Lymphocytes

at concentrations less than 30 mM. Above this concentration,

however, AHLs appear to have the ability to become inserted into

membranes. These findings are also in agreement with suggestions

that 3-oxo-C12-HSL acts via multiple signaling pathways [1].

The interaction of 3-oxo-C12-HSL with T-Lymphocytes was

found to be characterized most closely by a cooperative binding

mechanism. This suggests that two molecules may come together

on/in the membrane resulting in a fruitful binding/insertion

complex. As this effect was not observed in the artificial membrane

systems this observation implies that either 3-oxo-C12 HSL acts to

modify the more complex cell membrane which effects the

interaction of additional levels of 3-oxo-C12 HSL or that there

exists an as yet unidentified 3-oxo-C12 HSL receptor on the cell

surface. The former possibility is less likely as the cell membranes

possess both PC and cholesterol at about the levels we use in this

study. The latter possibility however, is consistent with previous

suggestions of the existence of a membrane receptor system for

AHLs. To date the putative eukaryotic receptors identified (PPARs

and calprotectin) [25,26] are both intracellular however the

existence of a membrane receptor has been suggested by Shiner

et al. [32] although its identity or nature has so far remained

elusive. Our present work therefore constitutes support for the

existence of a eukaryotic AHL membrane receptor which is active

at concentrations up to the micromolar range.

The concentrations of AHLs reported to influence membrane

dipole potential in this study are slightly greater than those

reported to cause significant inhibition of immune cell prolifera-

tion [18]. One possible suggestion that reconciles this observation

Figure 4. Binding profiles of the interactions of AHLs with artificial membrane systems. Binding profiles of [A] 3-oxo-C14-HSL, [B] 3-oxo-
C12-HSL and [C] 3-oxo-C10-HSL on titration to PC100% (N) or PC70%Cholesterol30% (D) di-8-ANEPPS labeled liposomes (400 mM) at 37uC (n = 5)
normalised to DMSO controls. Profiles were fitted to simple hyperbolic and sigmoidal binding models (equations 1 and 2) and extra sum of squares F-
Tests were used to determine the best fitting in each case (all hyperbolic). [D] Average saturation points and [E] Average dissociation constant of the
best fitting models6SEM.
doi:10.1371/journal.pone.0013522.g004
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is that the immunosuppressive activity of AHLs is predominantly

receptor mediated. The observation that the d-isomer of 3-oxo-

C12 HSL retains substantial immunomodulatory activity [18],

however, implies that indirect membrane interactions also play an

important role in the activity of these molecules. In addition,

Kaufmann et al. [33] reported more recently that many AHLs are

capable of decomposing to form substantial quantities of tetramic

acid breakdown products over the prolonged incubation times

used (24 to 48 hours in many proliferation assays). The

interactions of these tetramic acid breakdown products are as

yet poorly understood and may offer an additional explanation for

the greater than expected immunosuppressive activity of these

molecules.

Figure 5. Comparing the interactions of COOH-3-oxo-C12 HSL
and 3-oxo-C12 HSL with artificial membrane systems and their
effects on membrane dipole potential. Fluorescence difference
spectra obtained by subtracting di-8-ANEPPS excitation spectra
(lem = 590 nm) of PC(100%) [A] or PC(70%)Cholesterol(30%) [B]
membrane vesicles (400 mM) from those obtained after these mem-
branes were exposed to either 200 mM 3-oxo-C12-HSL (dotted line,
n = 5) or 200 mM COOH-3-oxo-C12-HSL (solid black line). Before
subtraction, each spectrum was normalized to the integrated areas so
that the difference spectra would reflect only the spectral shifts. Each
difference spectrum was then normalised to a DMSO control (dashed
line). In all experiments the dye concentration was 10 mM and
temperature was maintained at 37uC. [C] Binding profiles of 3-oxo-C12

HSL (m,N) and COOH-3-oxo-C12 HSL (D,#) on titration to PC100%

(circles) or PC70%Cholesterol30% (triangles) di-8-anepps labeled lipo-
somes (400 mM) at 37uC normalised to DMSO controls. Profiles were
fitted to simple hyperbolic and sigmoidal binding models (equations 1
and 2) and extra sum of squares F-Tests were used to determine the
best fitting in each case (3-oxo-C12 HSL was hyperbolic while COOH-3-
oxo-C12 HSL fit poorly to both models). All experiments n = 36SEM.
doi:10.1371/journal.pone.0013522.g005

Figure 6. The interactions of AHLs with lymphocyte mem-
branes perturbs the membrane dipole potential. [A] Fluores-
cence difference spectra obtained by subtracting the di-8-ANEPPS
excitation spectra (lem = 590 nm) of T Lymphocytes (40,000 cells/ml)
from those obtained after cells were exposed to the following QS
molecules 3-oxo-C14-HSL (thick line), 3-oxo-C12-HSL (dashed line) and 3-
oxo-C10-HSL (thin line). Before subtraction, each spectrum was
normalised to the integrated areas so that the difference spectra
would reflect only the spectral shifts before each difference spectra was
normalised to a DMSO control (not shown). A three point moving
average was then applied to reduce noise. [B] A dual wavelength
ratiometric measurement of the dipole potential variation in di-8-
ANEPPS. In this example additions of 22 mM 3-oxo-C14-HSL or
equivalent volumes of DMSO were made to T-Lymphocytes (40,000
cells/ml) labeled with 10 mM di-8-ANEPPS. Samples were excited at
460 nm and 520 nm. The fluorescence was read at 590 nm and the
ratio R(460/520) was calculated (shown). All experiments n = 3.
doi:10.1371/journal.pone.0013522.g006
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The Effects of AHL chain length on the Interaction with
Membranes

The AHL acyl chain length was also studied with an increasing

chain length observed to augment significantly the membrane

binding affinity in both artificial and T-Lymphocyte membrane

systems. This behavior was anticipated as an increasing AHL acyl

chain length raises the molecular lipophilicity as indicated by the

projected octanol/water partition coefficient (Table 1). This

parameter is known as Log P and often used by developmental

pharmacologists to predict the lipophilicity of drug molecules

which has an important bearing on their bioavailability [34].

Classification of the LogP of the AHLs is of interest as it has been

previously reported that increasing AHL acyl chain length from

C8 to C14 increased its immunomodulatory activity in the

micromolar range [18] and this was found to negatively correlate

with LogP (Figure 2). Overall these studies provides further

evidence that the membrane interactions of AHLs may play an

important role in inter-kingdom signaling including the immune

modulatory effects of AHLs.

Figure 5 indicates that modification of the acyl chain to

introduce a negative charge (COOH-3-oxo-C12 HSL, projected

pKa = 4.7860.1 calculated using ACD/pKa algorithm) signifi-

cantly reduces the ability of the compound to insert into artificial

membranes and modulate the dipole potential. This result was

predicted as the LogP of COOH-3-oxo-C12 HSL is substantially

lower than 3-oxo-C12 HSL (Table 1) and provides evidence that

changes in the di-8-anepps spectra observed occurred as a result

dipole potential modulation, when AHLs inserted into mem-

branes.

The Interaction of AHLs with Membrane Microdomains
A further sophistication to the systems that we investigate in the

present study includes preparation of membranes that we have

previously characterized and are known to exhibit microdomains

[35]. Such microdomains are rich in cholesterol and appear to be

similar to cellular structures known as membrane rafts [36]. The

presence of cholesterol containing microdomains on titration of

artificial membrane systems with 3-oxo-C12-HSL and 3-oxo-C14-

HSL was observed to increase significantly the saturation point in

comparison to membranes that were made up exclusively of

phosphatidylcholine. This suggests that the AHLs used in this

study may accumulate in cholesterol containing microdomains

which leads to a decrease in the membrane dipole potential. The

view that membrane microdomain localisation modulates the

behavior of receptor signaling is held by research groups in

addition to our own [35,37] and offers an interesting new

possibility regarding the activity of receptor controlled signaling

systems.

There is a growing body of evidence suggesting that the dipole

potential, which is higher in cholesterol rich microdomains than

the surrounding disordered membrane, is capable of modulating

membrane protein structure which may have implications for raft

associated cell signaling [29,30,38,39]. The decrease in membrane

dipole potential observed in this study could therefore stimulate the

indirect activation of signaling pathways by indirectly instigating a

conformational change in transmembrane receptor structure. This

principle could apply to both bacterial and eukaryotic organisms

and also offers an explanation as to why a primary AHL site of

action has so far remained elusive.

Towards Defining Mechanisms for Inter-kingdom
Signaling; Modulation of the Properties of a Membrane
Protein Receptor System by AHL-dependent Changes of
the Membrane Dipole Potential

The final section of this study is directed towards defining a

mechanism by which AHLs may elicit an inter-kingdom signaling

process. In other words we seek to demonstrate how a prospective

host cell (e.g. T cells) system may respond to the presence of AHLs

at appropriate concentrations as an illustration of how such

mechanisms may operate. In the present case we take advantage of

the fact that the binding of Saquinavir, a HIV-1 protease inhibitor

to the membrane protein P-gp is influenced by changes in the

Figure 7. Binding profiles of the interactions of AHLs with
Lymphocyte membranes. Binding profiles of 3-oxo-C14-HSL (D,
hyperbolic), 3-oxo-C12-HSL (N, sigmoidal) and 3-oxo-C10-HSL (6,
neither) on titration to di-8-ANEPPS labeled T-Lymphocytes (40,000
cells/ml) at 37uC normalised to DMSO controls. Profiles were fitted to
simple hyperbolic and sigmoidal binding models (equations 1 and 2)
and F-Tests were used to determine the best fitting model. In each
experiment n = 3, 6SEM.
doi:10.1371/journal.pone.0013522.g007

Figure 8. Effect of decreasing membrane dipole potential on
membrane receptor conformation. Binding profiles of the P-
glycoprotein ligand Saquinavir with T-Lymphocytes (40,000 cells/ml)
after pre-treatment with 160 mM 3-oxo-C12 HSL (N) or an equivalent
volume of DMSO (final concentration did not exceed 0.5%) (D) at 37uC.
Data were normalized for saquinavir additions by titrating cells with
equivalent volumes of DMSO (6, dashed lines). Profiles were fitted to
simple hyperbolic and sigmoidal binding models (equations 1 and 2)
and F-Tests were used to determine the best fitting model (sigmoidal
for 3-oxo-C12 HSL and DMSO pre-treatments). In each experiment n = 3,
6SEM.
doi:10.1371/journal.pone.0013522.g008
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membrane dipole potential [29,40]. The activity of this protein has

been shown to have a dependence on the lipidic content of the

membrane, particularly the sterol content [41] and appears to be

microdomain associated [42,43]. Previously it has been shown that

modification of the membrane dipole potential, through manip-

ulation of sterol concentrations, can influence the activity of P-gp

[29]. In the present paper we have shown that pre-treatment of T-

lymphocytes with micromolar concentrations of 3-oxo-C12 HSL

causes a significant reduction in the binding capacity of saquinavir

and increase in dissociation constant. These findings are consistent

with our previous work (see Asawakarn et al. [29]) that indicated

that the membrane dipole potential plays an important role in

modulating ligand-membrane interactions. We demonstrated that

disruption of cholesterol containing microdomains resulted in a

decrease in the binding capacity of P-gp for saquinavir. As a

similar trend was observed in the present work, this provides

further evidence to support the hypothesis that on insertion into

membranes, AHLs may act to disrupt cholesterol containing

membrane microdomains. This could have important conse-

quences on the activity of a plethora of raft-dependant membrane

proteins by no means limited to P-gp [44], although it is interesting

that P-gp activity is also associated with anti-microbial therapy.

P-gp belongs to the ABC-transporter protein superfamily and is

known to play a crucial role in the development of multiple-drug

resistance (MDR) [45]. The ability of AHLs to modulate PgP

activity would be advantageous to the bacteria and increase the

immune systems susceptibility to cytotoxic agents also released by

the pathogen. In addition, as MDR poses a significant problem for

the treatment of conditions including cancer, the search for

potential inhibitors has been intensive [45,46,47]. Our present

paper provides evidence of a membrane based mechanism of

action of AHLs on immune cells and suggests that through their

membrane interactions can act to modulate P-gp activity. AHLs or

their derivatives may therefore provide a novel drug template

family for the prevention of MDR.

The concentration of AHLs required to modulate immune cell

function in this way suggest that only cells in close proximity to the

bacterial biofilm would be subject to immune modulation through

these processes. This observation is in agreement with predictions

by Teplitski et al 2010 [48] who suggests the existence of such an

AHL gradient, up to micromolar concentrations under physiolog-

ical conditions. This could be of evolutionary advantage to P.

aeruginosa as under this system only immune cells which pose a

direct threat to the bacterial population are affected, allowing

more remote immune cells to retain their function, potentially

eliminating pathogens which would otherwise take advantage of a

compromised immune system, developing into secondary infec-

tions which would compete with P. aeruginosa.

Finally Chhabra et al. [18] have suggested that insertion of

AHLs into T-lymphocyte membranes causes immunosupression

through the inhibition of immunological synapse formation.

Membrane microdomains have been shown to play an important

role in the formation of the immunological synapse [49]. The

insertion of AHLs into biological membranes observed in this

study and the associated decrease in dipole potential could be

interpreted as evidence that this is the case.

Materials and Methods

Reagents
Egg phosphatidylcholine (PC) was supplied by Lipid Products

(UK). Di-8-ANEPPS was supplied by Invitrogen, UK. Saquinavir

was supplied by Roche (UK). AHLs were synthesized as described

previously [18,50]. Tissue culture reagents, cholesterol and all

other reagents were supplied at the highest purity available by

Sigma Aldrich (Poole, UK).

Membrane preparation and labeling with DI-8-ANEPPS
This technique is outlined more comprehensively in [29].

Briefly, PC100% and PC70%Cholesterol30% (molar ratios) were

dissolved in chloroform before drying under a stream of oxygen-

free nitrogen gas by rotary evaporation until a thin film was

formed. The lipid film was rehydrated with 280 mM sucrose,

10 mM Tris, pH 7.4 The resulting multilamellar solution was

freeze-thawed 5 times in liquid nitrogen and finally extruded 10

times through polycarbonate filters with pores 200 nm in diameter

(Nucleopore Corp., Pleasanton, USA) using an extruder (Lipex

Biomembranes Inc., Vancouver, Canada) according to the

extrusion procedure [51]. This resulted in a monodisperse,

unilamellar suspension of phospholipid vesicles. These were

labeled exclusively in the outer bilayer leaflet with Di-8-ANNEPS.

Here the phospholipid vesicles were incubated for at least

1.5 hours at 37uC in the dark in the presence of Di-8-ANEPPS

dissolved in ethanol.

Cell viability
An alamarBlue (Invitrogen; Carlsbad, CA) resazurin reduction

assay was used to measure of the number of viable and

proliferating cells and was conducted according to the manufac-

turer’s instructions. After incubation with AHLs compounds, 10%

alamarBlue was added to each well. Cells were incubated for 4 h

in a 5% CO2 incubator at 37uC. A negative control containing

culture medium and alamarBlue reagent without cells was

included. Fluorescence measurements were made by excitation

at 530–560 nm and measuring emission at 590 using a LS-55 plate

reader (Perkin Elmer, MA, USA).

Labeling of Jurkat T-Lymphocytes with Di-8-ANEPPS
The cells were cultured in RPMI 1640 medium supplemented

with 10% foetal bovine serum, L-glutamine (0.02M), penicillin

(100units/ml) and streptomycin (100 mg/ml) and maintained at

37uC and 5% CO2. Cells were counted using a trypan blue

exclusion assay before harvesting by centrifugation at 300 g for 5

minutes. Cells were then labeled with Di-8-ANEPPS according to

the methods outlined by Asawakarn et al. [29] as follows: 0.5 mM

Di-8-ANEPPS was added to a suspension containing 16106 cells

per ml21 and incubated for 1.5 h at 37uC.

Fluorescence measurements
Fluorescence time courses were undertaken by adding desired

amounts of an experimental reagent under study to suspensions of

cells or phospholipid vesicles (400 mM lipid or 40,000 cells ml21)

on a Fluromax-4 model spectrofluorimeter (HORIBA Jobin Yvon

Thermo Electron, UK). Di-8-ANEPPS spectra were obtained by

exciting the samples at 460 nm and 520 nm and measuring the

emission ratio at 590 nm [29,52]. The contribution of the dilution

effect to the fluorescence signal was corrected by using equivalent

liposome or cell suspensions and adding equivalent amounts of

DMSO solvent (final concentration did not exceed 0.6%). Any

changes in fluorescence signal were then subtracted from those

obtained with the quorum compounds. These data were fitted to

Equations 1 & 2 in order to determine the best description of the

molecular process. The model which best fit these data was

determined using an Extra sum-of-squares F-Test.

y~
Bmax:x

Kdzx
ð1Þ
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y~
Bmax:x

n

Kn
dzxn

ð2Þ

Where y is the observed signal, Bmax is the 100% ligand binding

capacity (fluorescent units), Kd is the affinity of the QS compound

for the membrane in concentration units and n represents the hill

coefficient, i.e. as an index of cooperativity. Unless otherwise

stated all experiments are reported from at least 3 replicates ie.

n = 3.
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