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Abstract

QTL analysis detects regions of a genome that are linked to a complex trait. Once a QTL is 

detected, the region is narrowed via positional cloning in the hope of determining the underlying 

candidate gene – methods used include creating congenic strains, comparative genomics and gene 

expression analysis. Combined cross analysis may also be used for species such as the mouse if 

the QTL is detected in multiple crosses. This process involves the recoding of QTL data on a per-

chromosome basis with the genotype recoded based on high- and low-allele status. The data are 

then combined and analyzed; a successful analysis results in a narrowed and more significant 

QTL. Using parallel methods, we demonstrate that it is possible to narrow a QTL by combining 

data from two different species, the rat and the mouse. We combined standardized HDL 

phenotype values and genotype data for the rat and mouse using information from one rat cross 

and two mouse crosses. We successfully combined data within homologous regions from rat 

chromosome 6 onto mouse chromosome 12 and from rat chromosome 10 onto mouse 

chromosome 11. The combinations and analyses resulted in QTL with smaller confidence 

intervals and increased LOD scores. The numbers of candidate genes encompassed by the QTL on 

mouse chromosomes 11 and 12 were reduced from 1343 to 761 genes and 613 to 304 genes, 

respectively. This is the first time that QTL data from different species were successfully 

combined; this method promises to be a useful tool for narrowing QTL intervals.

Introduction

Although quantitative trait locus (QTL) mapping is a very useful approach for identifying 

regions on the genome associated with a phenotype of interest, the mapped intervals are 

often very broad and contain many genes. The number of genes within the QTL must then 

be narrowed using genetic and bioinformatic approaches (DiPetrilloet al, 2005). These 

methods yield promising results, substantially reducing the candidate gene number. 

However, the steps are tedious and time-consuming, and the work required is commensurate 
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with the starting number of genes. Thus, any method that narrows the QTL confidence 

interval, thereby excluding many less likely candidate genes, saves time and money. A 

recent advance in QTL mapping involves combining QTL cross data; in this process the data 

from different crosses are combined when a QTL is identified in the same chromosomal 

region and it is believed that the same gene underlies the QTL.

In a QTL located using genotype data from F2 mice from a cross between inbred strains, a 

parental strain is determined to be the “high-allele strain” for that QTL by the effect plot for 

the peak marker; the homozygous genotype with the higher average phenotype carries the 

high allele. When genotype data from different crosses are combined, the high alleles are 

coded identically on a per-chromosome basis and the original cross is used as a covariate in 

analysis. Combining the datasets adds power to the QTL analysis, and if the underlying gene 

is the same, the resulting confidence interval is reduced. This method has been used in other 

species like the pig (Uleberg et al, 2005), and it complements other recent advancements in 

QTL mapping, such as the meta-analysis of QTL LOD values (Schmidt et al, 2008; 

Wuschke et al, 2007) or the pooling of assigned P-values along an entire QTL based on 

localized LOD scores (Peirce et al, 2007).

The level of homology between genomes of different species is variable at both the species 

and genomic level, depending both on the overall relatedness of the two species at hand and 

on the underlying physiology and genomic architecture which define the species. Closely 

related species may share a similar genomic structure with contiguous patches of nearly 

identical sequence and shared clusters of genes. In the last decade, the sequencing of the 

mouse (Waterston et al, 2002) and the rat (Gibbs et al, 2004) has allowed for a detailed 

analysis of the genomic divergence of the two species, revealing areas of both high and low 

sequence conservation (Hancock, 2004).

For many phenotypes, QTL are concordant among different species. High Density 

Lipoprotein (HDL) cholesterol QTL are homologous between humans and mice (Korstanje 

and DiPetrillo, 2004; Wang and Paigen, 2005), and kidney disease and hypertension QTL 

are homologous among rat, mouse, and human (Garrett et al; Herrera et al, 2006). This QTL 

concordance suggests an underlying shared contiguity of genetically mapped loci, which 

opens up the possibility to expand the combining of crosses beyond the use of one species. 

A successful combination is perhaps most likely using data from the mouse and the rat, as 

the two species are closely related and research involving both in the laboratory employs the 

use of inbred strains and similar crossing strategies.

We explored the possibility of narrowing HDL cholesterol QTL by combining data from one 

rat cross (Kloting et al, 2001; Kovacs et al, 2000) and two mouse crosses (Cervino et al, 

2005; Drake et al, 2001; Mehrabian et al, 2005; Wittenburg et al, 2005). Our results show 

that in parallel with the combination of QTL datasets from the same species, it is possible to 

both increase the statistical significance of a QTL and narrow the confidence interval of the 

homologous QTL region using the combined data from two different species.
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Materials and methods

QTL datasets

The WxDA dataset. WOKW and DA rats were reciprocally crossed to produce two F2 

crosses of 76 (WOKW×DA) F2 and 74 (DA×WOKW) F2 male and 72 (WOKW×DA) F2 

and 68 (DA×WOKW) F2 female rats. Animals received a standard chow diet. Blood 

samples were taken at 28, 30, and 32 weeks, and HDL cholesterol levels were determined 

using a Roche Cobas Mira Plus auto analyzer. Values did not differ between the two crosses, 

and the crosses were therefore combined. Details of this dataset were previously published 

by Kovacs et al. (2000) and Klöting et al. (2001). In these papers 126 microsatellite markers 

were used for genome-wide genotyping; since the publication, 19 additional markers have 

been genotyped, for a total of 145 markers.

The PxD2 dataset. PERA/EiJ and DBA/2J mice were reciprocally crossed to produce 324 F2 

progeny (166 females and 158 males). All animals were fed a chow diet until 6–8 weeks of 

age, followed by an 8-week atherogenic diet (Nishina et al, 1990). Ninety-seven 

microsatellite markers were used for genome-wide genotyping. Details of this dataset were 

previously published by Wittenburg et al. (2005).

The BxD2 dataset. This dataset has been described by Drake et al. 2001, Cervino et al. 

2005, and Mehrabian et al. 2005. C57BL/6J female mice were crossed to DBA/2J males, 

and the F1 mice were crossed to produce 111 female F2 progeny. The F2 females were fed a 

chow diet for 12 months and then fed an atherogenic diet for 16 weeks prior to phenotypic 

measurements. The mice were genotyped using 139 microsatellite markers.

Placing rat markers on the mouse genome

To determine the version 3.4 (November 2004 update) base pair positions of the 

microsatellite markers used in the WxD cross, marker IDs were used as input using the 

batch version of UCSC genome browser’s Table Browser (http://genome.ucsc.edu/cgi-bin/

hgTables?command=start). Markers that were not available through the UCSC genome 

browser were looked up individually in Ensembl (www.ensembl.org); markers without base-

pair positions at that point were discarded from the dataset. Of the 145 markers, 138 were 

assigned updated positions. UCSC’s web-based version of the batch coordinate conversion 

tool LiftOver (http://genome.ucsc.edu/ cgi-bin/hgLiftOver) was used to convert the rat 

genome positions to homologous mouse genome positions (NCBI build 37). Using this 

method, all but 10 of the 138 markers were converted; the remaining markers were 

positioned in Ensembl, and using Ensembl’s Comparative Genomics tool, genes adjacent to 

the rat marker and both homologous and contiguous to the mouse genome were determined. 

The mouse position of the nearest homologous gene in a contiguous sequence of genes was 

used as the rat marker's homologous position. For example, using Liftover, base pair 

positions for rat marker D10Mgh12 are not homologous to the mouse genome. However, the 

gene Lcp2 is adjacent to D10Mgh12 at 19,019,978-19,066,754 bp and contiguous to the 

other homologous mouse positions on chromosome (Chr) 11 at 33,947,144-33,992,281. 

Using the above methods, all but three rat markers—D2Wox32, D8Mit6 and D10Mgh2—

were aligned to the mouse genome.
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Assigning genetic map positions to the rat markers

Rat genome genetic positions for the rat markers were determined by interpolation to the 

SNP map recently published by the STAR Consortium (Saar et al, 2008); the version 3.4 

base-pair positions and STAR map cM positions are publicly available online at http://

www.well.ox.ac.uk/ rat_mapping_resources/ SNPmaps.html. Marker base pair positions 

were interpolated to the STAR map using MATLAB. The homologous mouse positions of 

the rat markers were interpolated to the Revised Shifman genetic map of the mouse (Cox et 

al, 2009) using the Center for Genome Dynamic’s online Mouse Map Converter (http://

cgd.jax.org/mousemapconverter/). Mouse chromosome and base pair positions were used as 

input, and sex-averaged cM positions were selected as output.

Single dataset QTL analysis

Individual QTL analyses were performed on the WxD rat dataset using rat positions, and 

then on each single mouse dataset using mouse positions. QTL analyses were performed 

using R version 2.8.1 and R/qtl version 1.11–12 (Broman et al, 2003). X-chromosome 

genotyping data were omitted. Genome scans were performed using the EM algorithm 

(Lander and Botstein, 1989) with 2 cM resolution, and significance thresholds were 

determined by permutation testing (1000 permutations). To determine which sex contributed 

more to a QTL, sex vs. HDL effect plots were created. Then, the datasets were separated by 

sex and reanalyzed to determine the adjusted QTL peak and confidence interval positions. 

For all analyses, 95% confidence intervals were determined by Bayesian analysis using the 

bayesint function in R/qtl, which calculates an approximate interval (endpoints around the 

maximum LOD) for a given chromosome using the genome scan output. Allele effects were 

determined using the effect plot function in R/qtl using the QTL peak marker or marker 

nearest to the peak as the reference marker.

Combining the rat and mouse QTL datasets and multi-species QTL analysis

The rat marker names were listed in chromosome and base-pair order in an Excel 

spreadsheet, along with the rat genetic position, the homologous mouse position, and the 

mouse genetic position. In the spreadsheet, the QTL peaks, confidence intervals and allele 

assignments for both the rat and mouse individual crosses were shaded. This allowed for the 

visualization of homologous and contiguous rat and mouse markers within a mouse QTL. 

Data were chosen for combination if the following criteria were met: 1) A set of markers 

within a rat HDL QTL significantly overlapped a mouse QTL based on homology with at 

least half of the markers from each species-specific QTL overlapping; 2) The markers were 

contiguous in both genomes; and 3) The peaks of the homologous QTL were close enough 

to suggest that the QTL from each species were caused by the same gene. In each case, the 

homologous peak positions were either adjacent or aligned in the same row in the Excel 

spreadsheet. In some cases, markers within a rat QTL were not included in the combined-

species analysis. For example, a rat QTL marker was excluded if it was within a rat QTL but 

outside of a homologous mouse QTL.

The original rat HDL cholesterol values were converted to the same unit as was used for 

mice (mg/dL). Prior to combining datasets, the HDL phenotype was log-transformed and 

then standardized by Z-score in R within each cross. The datasets were combined by mouse 
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chromosome as in Wittenburg et al. (2005), by coding high and low allele strains the same 

and then combining the datasets into one file.

The data were combined and analyzed one chromosome at a time. We followed the linear 

models and analyses described in (Li et al, 2005) (see equations 1–5) for all QTL scans. 

R/qtl version 1.11–12 was used for QTL analyses, and the EM algorithm with a resolution of 

2 cM was used for the scan and for determining significance thresholds with 1000 

permutations. For the combined plots, the significance thresholds were based on the additive 

model. Only one covariate was used in the analysis, representing either cross, species or sex, 

as there were no nested factors to consider within each covariate.

Determining the number of genes within the QTL confidence interval

NCBI build 37 gene lists for Mus Musculus for chromosomes 11 and 12 were downloaded 

via Ensembl’s BioMart (www.ensembl.org/biomart/martview); gene attributes selected for 

download were Ensembl Gene ID, Ensembl Transcript ID, Associated Gene Name, Gene 

Start (bp), Gene End (bp), and Description. The list of genes was downloaded as a csv file 

and then opened in MS Excel. The gene list was sorted by Gene Start base pair position and 

all gene repeats were removed (reflecting multiple transcripts per gene); such repeats were 

detected as duplicate Ensembl Gene IDs. To determine the number of genes within a QTL 

confidence interval, any gene with a starting base pair position within the confidence 

interval was counted. To convert from cM to Build 37 base pair positions, we used the 

Mouse Map Converter available on The Jackson Laboratory’s Center for Genome Dynamics 

Website (http://cgd.jax.org/mousemap converter). We chose the sex-averaged cM position 

as input. In comparing the gene lists within the QTL confidence intervals prior to and after 

species combination, the confidence interval resulting from analysis with the species-

additive covariate model was chosen for the post-analysis interval.

Results

The results of the rat WxDA genome scan are shown in Figure 1. Running the first genome 

scan with sex as a covariate revealed the presence of multiple sex-specific QTL on Chrs 2, 

4, 6, 7 and 9. Plotting genome scans using male and female data separately revealed which 

sex contributes to each sex-specific QTL detected in the covariate analysis and also unveiled 

any sex effects not detected in the first scan. Figures 1C and 1D show additional sex 

differences on Chrs 1, 3, 5, 8, 10 through 14, and 17. Due to the high incidence of sex-

specific or sex-influenced QTL, the male and female data from the rat and mouse datasets 

were separated for individual species analysis; only QTL from these analyses were 

considered for multi-species combination. The separation of sexes also facilitates the 

analysis of the combined data, as the influence of the sex, species and cross covariates may 

be assessed as one covariate. The genome scan plots for the separate mouse crosses are not 

shown, as they were previously published (Cervino et al, 2005; Drake et al, 2001; 

Mehrabian et al, 2005; Wittenburg et al, 2005)

The markers listed for rat Chrs 6 and 10 from the WxDA dataset, along with their rat genetic 

map positions and mouse genetic map positions on Chrs 12 and 11, are shown in Figure 2. 

The following rat-mouse QTL HDL data combinations were tested:
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1. Rat WxDA males (Chr 6; W, high allele) + Mouse BxD2 females (Chr 12; B, high 

allele)

2. Rat WxDA females (Chr 10; W, high allele) + Mouse PxD2 females (Chr 11; P, 

high allele)

Of these individual QTL, the PxD2 Chr 11 QTL is the only one that was previously 

published (Li et al., 2005, Wittenburg et al., 2005). The rat chromosomes 6 and 10 QTL 

were suggestive (LOD = 2.05 and LOD = 2.2, respectively) and not published previously.

The phenotypes were standardized by Z-score in the individual QTL datasets and combined 

by identically coding the high- and low-allele strains. The results of the QTL analyses for 

the combinations are shown in Figure 3 and Figure 4. Table 1 lists the peaks, confidence 

intervals and LOD scores for the original mouse QTL, and for the additive and interactive 

QTL resulting from the combination of data from different species. The numbers of genes 

within the original and species-additive confidence intervals are shown in Table 2.

Figure 3 shows the result of combining rat Chr 6 data with mouse Chr 12 data. The 

interactive, additive and non-covariate plots are all identical and overlaid, indicating that the 

QTL is probably not species-specific. The LOD is substantially higher than the original 

mouse QTL and the confidence interval is narrowed from 44 cM to 22 cM. The number of 

genes in the confidence interval is reduced from 613 to 304 genes.

Figure 4 shows the result of combining rat Chr 10 data with the mouse PxD Chr 11 female 

QTL data resulted in a narrowing of the confidence interval and an increase in LOD from 

2.3 to 3.7 (additive model). The additive and non-covariate plots are identical and overlaid. 

Although the interaction LOD score is somewhat higher than the additive model, the 

difference between them is not significant (ΔLOD=0.8). Thus, we conclude that the QTL is 

not species-specific. The confidence interval was reduced from 41 cM to 19 cM and the 

number of genes in the confidence interval was reduced from 1343 to 761 genes.

Discussion

Previously, genotype data from multiple mouse QTL datasets were successfully combined; 

if the QTL genes are the same, or close to each other with the same mode of inheritance and 

the same direction of the allele effect, the combined analysis results in higher LOD scores 

and narrower QTL. Using the same methodology, we combined HDL QTL datasets from 

two different species, the rat and mouse. Both combinations resulted in a successful increase 

in statistical significance and a narrowing of the QTL confidence interval. More importantly 

than the positional effects, however, this narrowing reduced the number of underlying 

candidate genes. The mouse QTL on Chr 11 was narrowed from a confidence interval 

spanning 41 cM to one spanning 17 cM, and the QTL on Chr 12 was reduced from 44 to 22 

cM. The numbers of underlying candidate genes were reduced by 43 and 54 percent, 

respectively.

These results are the first report of a successful combination of QTL data from two different 

species. While the methodology involved in combining cross data was not novel, the steps 

required to prepare the datasets for combination were thoroughly researched and tested by us 
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and may now be repeated. It is notable that in clarifying the steps required for aligning rat 

and mouse QTL at the marker level, several factors normally considered in QTL analysis 

were omitted for simplicity and for the value of testing by assumption. We designed the data 

combinations so that sex, diet or any other condition were cofactors only in addition to 

species, i.e., the datasets may have been from different species and different sexes, but one 

dataset never included both male and female mice. Diet significantly contributes to lipid 

metabolism, and the rats and mice from the different crosses were not fed identical diets or 

for the same time periods prior to phenotyping (see materials and methods), but its effects 

were not considered in this study. In implementing this procedure for actual positional 

cloning, a model with multiple cofactors should be used.

If QTL for the same trait are found in more than one species, it is common when narrowing 

the QTL to eliminate regions within the QTL that are not homologous to QTL regions for 

the same trait in the other species. This is especially true when the two species in 

comparison are extensively studied, as in humans and mice, or when the two species are 

very closely related, as among rodents. We recommend that in parallel or in conjunction 

with combining QTL data from multiple crosses within a species, combining QTL data from 

different species maybe be used along with all other QTL narrowing techniques, including 

cross-specific haplotyping and genome-wide association studies based on all strains. As 

previously suggested (Peirce et al, 2007), combining crosses complements the meta-analysis 

of QTL significance values.

Although rat and mouse are closely related rodents, this study represents a useful approach 

for combining data from other species, even from less related species, like mouse and 

human — if the species are extensively studied and if there is an appropriate arrangement of 

contiguous loci, as required in the selection of the datasets combined in this analysis. In 

attempting a mouse–human study, we would need to address the differences in overall 

metabolism in theoretical speculation as well as in data analysis. For example, in humans, 

females on average have higher HDL cholesterol than males, but in mice the opposite 

relationship is true. Such sex or other covariate differences in physiology are usually 

considered after one-species analyses are complete, when individual candidate genes are 

investigated. In combining QTL data within a species, we assume that allelic effects are 

parallel, which allows us to combine the data. A successful combination, i.e., the 

achievement of a higher LOD and narrower confidence interval, provides substantial 

evidence that the two QTL share the same underlying gene. We have shown that such 

success is possible with two closely related species, and because the rat and mouse are both 

closely related and physiologically similar, it is not a far stretch to draw the same 

conclusion. If the two species were different regarding HDL metabolism, as in mice and 

humans, narrowing the QTL by combined data analysis suggests the same underlying gene. 

However, because the physiological differences are not considered in the combined QTL 

analysis, any successful combination is based on a multi-dimensional assumption. The 

underlying differences in physiology are so complex in their polygenicity and dependent 

pathways that the data analysis would possibly need to coincide with physiological 

modeling. It may be possible to quantify metabolic differences between species based on 
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such modeling and then standardize the phenotype prior to combining QTL data 

accordingly.

In addition to metabolic differences, genomic function at the level of recombination must be 

considered. In the analysis presented here, homologous QTL with an underlying contiguous 

sequence of loci were combined. Because differences in recombination rate between the rat 

and mouse were not taken into account during the analysis, a likely result is the skewing of 

the genetic map created in the context of the mouse. Recombination rates should be 

consulted as data from more divergent species are combined.

In summary, sex, diet, species, physiology and genomic differences are all factors to 

consider when analyzing combined QTL datasets. In the examples we present, we use a 

simplified one-covariate model, encompassing all possible differences between the two 

datasets. Most importantly, we have described detailed methods for combining datasets from 

two different species. The successful combinations we achieved reveal a promising addition 

to the process of QTL narrowing. Had a combination not been successful, we would not 

have been able to declare that the individual QTL were species-specific as they could also be 

diet-, physiology-, sex- (in one case) or genome structure –specific. We recommend using a 

multi-covariate model when analyzing combined datasets for QTL-narrowing.

Advances in comparative genomics contribute greatly to the understanding of animal 

development and physiology. Incorporating such knowledge is essential for the construction 

of genomes, proteomes and metabolic networks, and for theorizing and elucidating the 

mechanisms of molecular and phenotypic evolution. Now, the near completion of entire 

genome homology maps, like the one available between the rat and mouse, allows for the 

ability to combine data in a way that is useful both intellectually and statistically. The 

methods introduced here recognize the decade-long explosion of empirical advancements 

and the resulting field of bioinformatics.

Beyond the alignment of homologous markers and genes, the integration of the QTL data for 

analysis adds a new level to species homology because theories of shared physiology may 

be tested mathematically. While statistical significance is both arbitrary and necessary for 

experimental validity, the increase in statistical significance (LOD) seen in these 

combinations is overshadowed by the potential insight gained into the underlying shared 

genome organization. The candidate genes underlie the QTL, but the replication and 

expression of those genes are dictated by the underlying DNA sequence and chromosome 

mechanics.
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Figure 1. 
QTL scans for the rat WxDA genome scan with (A) sex as an additive covariate, (B) sex as 

an interactive covariate, (C) males only, and (D) females only. The horizontal dashed lines 

represent suggestive (P=0.63) and significant (P=0.05) levels as determined by 1000 

permutation tests.
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Figure 2. 
Rat-mouse concordance between cholesterol QTL on two different chromosomes. Genetic 

maps for rat chromosomes are shown on the left and for mouse chromosomes on the right. 

Rat markers names are shown in alignment with their genetic positions on the rat genome, 

and with their homologous positions on the mouse genome. The grey boxes show the 

original (pre-combination) QTL confidence interval for each species; the black bar 

represents the QTL peak. The LOD score for each QTL is shown adjacent to the peak. (A) 

Rat WxDA chr 6 male (most left) and female QTL are aligned with mouse BxD2 Chr 12 
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QTL. The most proximal rat marker (D6Pas1) is homologous to mouse Chr 17. The 

remaining markers align to mouse chromosome 12 contiguously. The female rat data was 

not chosen for this combination as the rat peak positions are not within the rat/mouse 

overlapping regions. (B) Rat WxDA Chr 10 female QTL is aligned with the mouse PxD2 

Chr 11 female QTL. The region immediately surrounding the most distal rat marker, 

D10Mgh2, is not homologous to the mouse genome; the other markers align to mouse Chr 

11 contiguously.
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Figure 3. 
Combining rat chromosome 6 data with mouse chromosome 12 data. All cM positions are 

with respect to mouse chromosome 12. Confidence intervals for the original and species-

additive QTL are depicted by the black boxes; the box closest to the bottom represents the 

original 95% confidence interval in the mouse. The interactive and additive plots are 

indistinguishable, suggesting the QTL is caused by the same gene in both the rat and the 

mouse.
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Figure 4. 
Combining rat chromosome 10 data with mouse chromosome 11 data. All cM positions are 

with respect to mouse chromosome 11. Confidence intervals for the original and species-

additive QTL are depicted by the black boxes; the box closest to the bottom represents the 

original 95% confidence interval in the mouse. The interactive plot has a higher LOD than 

the additive plot, but not by a significant amount (ΔLOD = 0.8). Overall, the LOD score is 

increased and the QTL is substantially narrowed, suggesting that the underlying gene is 

shared between the rat and mouse.
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