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Introduction
To prevent chromosome missegregations, the onset of ana­
phase is inhibited by coordinated actions of the error correc­
tion and mitotic checkpoint machineries until all chromosomes 
have stably bioriented. The mitotic checkpoint directs formation 
of a mitotic checkpoint complex, which is catalyzed on un­
attached kinetochores and inhibits the anaphase-promoting  
complex/cyclosome (APC/C; for review see Musacchio and 
Salmon, 2007). As soon as all kinetochores have attached to 
microtubules in a stable fashion, the mitotic checkpoint is si­
lenced and inhibition of APC/C is released, ultimately causing 
anaphase initiation and mitotic exit (for review see Musacchio 
and Salmon, 2007). Checkpoint silencing in human cells re­
quires dynein-mediated removal of Spindly–RZZ–Mad1/Mad2 
from attached kinetochores (Howell et al., 2001; Barisic et al., 
2010; Gassmann et al., 2010), p31comet-mediated inhibition of 
Mad2 conformational activation (Xia et al., 2004; Mapelli  
et al., 2006), and APC/C-assisted disassembly of the inhibitory 
complex (Reddy et al., 2007).

The kinase Mps1 is an important player in prevention of 
chromosomal instability (Jelluma et al., 2008b; Tighe et al., 
2008), as its activity is crucial for chromosome biorientation by 
promoting attachment error correction as well as for APC/C in­
hibition by the mitotic checkpoint. In human cells, Mps1 regu­
lates error correction (Jelluma et al., 2008b; Santaguida et al., 
2010; Sliedrecht et al., 2010) by enhancing Aurora B activity 
through direct phosphorylation of Borealin (Jelluma et al., 
2008b; Bourhis et al., 2009; Kwiatkowski et al., 2010; Sliedrecht 
et al., 2010), and may in addition use other mechanisms (Espeut 
et al., 2008; Maciejowski et al., 2010; Santaguida et al., 2010). 
Mitotic checkpoint regulation by Mps1 has been observed in 
many model systems (Hardwick et al., 1996; Weiss and Winey, 
1996; He et al., 1998; Abrieu et al., 2001; Fisk and Winey, 2001; 
Stucke et al., 2002; Liu et al., 2003; Fischer et al., 2004; Jelluma 
et al., 2008b), and its enzymatic activity, at least in humans,  
directs a number of checkpoint proteins including Mad1 to  
unattached kinetochores (see Lan and Cleveland, 2010 for a  
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(Espeut et al., 2008; and see Lan and Cleveland, 2010 for re­
view of kinetochore proteins affected by Mps1 activity). Bore­
alin phosphorylation and subsequent increase in Aurora B 
activity was not involved, as addition of the Aurora B inhibi­
tor ZM447439 (Ditchfield et al., 2003) did not cause mislocal­
ization of active Mps1 (Fig. S1, D and E). Interestingly, however, 
LAP-Mps1-KD levels at kinetochores were increased twofold 
upon depletion of endogenous Mps1 by RNAi compared with 
control (Fig. 1 C). This increase could be reduced by coexpres­
sion of LAP-Mps1-WT, which was, in turn, prevented by Mps1-
IN-1 (Fig. 1 D). These results indicate that LAP-Mps1-KD 
could be displaced from kinetochores by the action of endoge­
nous or exogenous active Mps1. A similar influence of Mps1 
activity on its localization was observed when Mps1 was artifi­
cially targeted to peroxisomes via a C-terminal peroxisomal 
targeting sequence (PTS1; Gould et al., 1989). Only inactive 
Mps1-PTS1 was found in peroxisomes of interphase cells but 
its localization was prevented by coexpression of active Mps1-
PTS1 (Fig. S1 F). These data thus show that Mps1 activity could 
also regulate its own localization when artificially targeted to a 
different location in a different phase of the cell cycle. Although 
the mechanism of auto-regulation at peroxisomes might be dif­
ferent from what happens on kinetochores, structural rearrange­
ment of Mps1 by in trans autophosphorylation could account 
for delocalization from both sites.

Inhibition of Mps1 increases its residence 
time at kinetochores
Because short-term inhibition of Mps1 had no overt effects on 
its total cellular protein levels (Fig. S1 A), we examined if a de­
creased exchange rate at unattached kinetochores upon inacti­
vation was causing Mps1 to accumulate at these sites by 
measuring FRAP. After photobleaching, LAP-tagged Mps1-as 
(Sliedrecht et al., 2010) recovered rapidly to 99% (Fig. 1 E). 
Addition of 23dMB-PP1 caused Mps1 half-life at kinetochores 
to increase 1.5-fold (95% confidence intervals: uninhibited 
0.88–1.36; inhibited 1.38–1.67 s) and recovery was reduced to 
94% (Fig. 1 E; see Materials and methods for more details). 
Similar exchange and recovery kinetics of inhibited Mps1 was 
observed on kinetochores of PtK2 cells (Fig. S1 G). Although 
these analyses show a shorter Mps1 half-time of recovery at ki­
netochores than previously reported (Howell et al., 2004), tech­
nical limitations (see Materials and methods) prohibited us from 
drawing conclusions on the absolute recovery times of LAP-
Mps1 on kinetochores, but did allow comparison of kinetics  
between uninhibited and inhibited Mps1. The small but signifi­
cant change in half-life and in the size of stable, nonexchang­
ing pool of kinetochore-bound Mps1 may underlie the higher 
protein levels detected by immunofluorescence (Fig. 1, A and B; 
Fig. S1, B and C). Nevertheless, inactive Mps1 still had a high 
exchange rate at the kinetochore, indicating that the exchange 
of Mps1, although influenced by it, is not fully dependent on its 
kinase activity.

To examine in what circumstances Mps1 is recruited to 
kinetochores, cells were treated with Mps1-IN-1 but without 
spindle drugs, allowing accumulation of Mps1 on kinetochores 
of aligned and misaligned chromosomes that are nevertheless 

recent summary), allows Mad2 conformational activation (Hewitt  
et al., 2010), and stabilizes the cytoplasmic APC/C inhibitory 
complex(es) (Maciejowski et al., 2010).

Mps1 activity rises during mitosis (Stucke et al., 2002), at 
which time Mps1 dynamically localizes to kinetochores (Howell 
et al., 2004), dimerizes (Hewitt et al., 2010), and auto-activates 
by cross-phosphorylation of its activation loop (Kang et al., 
2007; Mattison et al., 2007; Jelluma et al., 2008a). The under­
lying mechanisms of Mps1 kinetochore recruitment and dynam­
ics, however, remain elusive. Mps1 requires the Hec1 component 
of the microtubule-binding NDC80 complex to reach kineto­
chores (Martin-Lluesma et al., 2002; Meraldi et al., 2004), 
likely through a localization signal intrinsic to its N-terminal 
300 amino acids that are also required for mitotic checkpoint 
function (Liu et al., 2003). Interestingly, a mutant lacking the 
N-terminal 100 amino acids also doesn’t reach kinetochores  
but still supports a mitotic checkpoint in cells that also express 
full-length, inactive Mps1 (Maciejowski et al., 2010). GFP-Mps1 
only transiently associates with prometaphase kinetochores  
in PtK2 cells, and this association decreases as chromosomes 
establish attachments, reaching its lowest levels after chro­
mosomes have aligned on the metaphase plate (Howell et al., 
2004). We here address the regulation of Mps1 levels at ki­
netochores and investigate the reason for its fast turnover at 
these sites.

Results and discussion
Mps1 auto-regulates its dissociation  
from kinetochores
Mps1 exchanges on kinetochores during mitosis in PtK2 cells, 
showing monophasic recovery of 99% with a half-life of 9 s 
(Howell et al., 2004). To investigate the role of Mps1 kinase ac­
tivity in recruitment and release of Mps1 at kinetochores, kineto­
chore levels of active and inactive Mps1 were examined by 
immunofluorescence. As noted by others (Hewitt et al., 2010), 
exogenous kinase-dead (KD, D664A) Mps1 (LAP-Mps1-KD) 
was found at much higher levels on unattached kinetochores of 
cells depleted of endogenous Mps1 than its active, wild-type 
(WT) counterpart (LAP-Mps1-WT; Fig. 1 A, Fig. S1 A). Short-
term chemical inhibition of endogenous Mps1 or LAP-Mps1 
with the specific inhibitor Mps1-IN-1 (Kwiatkowski et al., 2010) 
in HeLa cells, or of analogue-sensitive Mps1 (Mps1-as) with 
23dMB-PP1 in U2OS-derived cells (Sliedrecht et al., 2010) cor­
roborated this, causing a two- to tenfold increase in kinetochore-
bound Mps1 (Fig. 1 B; Fig. S1, B and C). This is in excellent 
agreement with a recent study using another Mps1 inhibitor, 
AZ3146 (Hewitt et al., 2010). Together, these results show that 
the levels of Mps1 at kinetochores in prometaphase increase 
when Mps1 kinase activity is impaired.

We next addressed what substrates of Mps1 could affect 
Mps1 localization to kinetochores. Mps1 modifies itself in trans 
and in cis by autophosphorylation (Kang et al., 2007; Mattison 
et al., 2007; Jelluma et al., 2008a; Hewitt et al., 2010), phos­
phorylates the inner-centromere protein Borealin (Jelluma  
et al., 2008b; Bourhis et al., 2009; Sliedrecht et al., 2010), and 
likely phosphorylates many kinetochore-localized proteins 

http://www.jcb.org/cgi/content/full/jcb.201003038/DC1
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Figure 1.  Mps1 accumulates on kinetochores when inhibited. (A) Immunolocalization of LAP-Mps1 in U2OS cells cotransfected with Mps1 shRNA and 
LAP-Mps1-WT or LAP-Mps1-KD and treated with nocodazole and MG132. Immunoblot shows expression of LAP-Mps1-WT and -KD in whole-cell lysates. 
(B) Immunolocalization of Mps1 and Mad2 in HeLa cells treated as indicated. Graph represents quantitation of fluorescence intensities (±SEM, 5 cells 
per condition, 22 kinetochores/cell). (C and D) Quantitation of fluorescence intensities at kinetochores of U2OS cells transfected and treated as indicated 
(±SEM, 8 cells per condition, 22 kinetochores/cell). (E) UTRM-LAP-Mps1M602G cells were treated as indicated, and 0.81-µm2 areas around single kineto-
chores (green squares in top panel) or in the cytoplasm (white squares) were bleached at t = 1 s. Graphs show average fluorescence intensities, shaded 
areas indicate SDs, and percentages indicate average recovery between 10 and 12 s. (F) Mps1 localization on bioriented and mono-oriented kinetochores 
in a HeLa cell treated as indicated.
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Sustained Mps1 activity at kinetochores 
prevents mitotic checkpoint silencing
The previous data suggest that removal of Mps1 is required for 
efficient checkpoint silencing, or, alternatively, that persistent 
kinetochore Mps1 might have caused unstable attachments that 
engaged the mitotic checkpoint, for instance by increasing local 
Aurora B activity or otherwise affecting kinetochore function. 
Five lines of evidence strongly argued against the presence of 
unstable attachments. First, if Aurora B–mediated destabiliza­
tion of kinetochore microtubules promoted checkpoint activity 
in Mis12-Mps1–expressing cells, stabilization of these attach­
ments by inhibition of Aurora B is predicted to revert the ex­
tension of metaphase in these cells, much like in the case of 
monastrol- or taxol-treated cells (Hauf et al., 2003; Yang et al., 
2009). However, addition of ZM447439 to cells expressing 
Mis12-Mps1 did not prevent the mitotic extension (Fig. 3 A).
Second, attachment defects that can engage the checkpoint for 
hours are expected to have at least some effect on ability of cells 
to quickly biorient all chromosomes (see Hanisch et al., 2006; 
Gaitanos et al., 2009; Liu et al., 2009; Raaijmakers et al., 2009; 
and Fig. S2, F and G for examples). Mis12-Mps1–expressing 
cells did not show any significant increase in prometaphase time 
(Fig. S2 H). Third, forced anaphase initiation in Mis12-Mps1–
expressing, metaphase-arrested cells via addition of Mps1-IN-1 
showed no increase in segregation errors compared with control 
cells (10%; Jelluma et al., 2008a,b; Videos 1 and 2; Fig. 3 B). 
Such increase would be expected if metaphase cells with (minor) 
attachment defects are induced to undergo anaphase. Fourth,  
interkinetochore distances of chromosomes in Mis12-Mps1 cells 
were similar to control cells, with no sisters that were under less 
tension than any of the sister pairs in control cells (Fig. 3 C). 
Fifth, overall microtubule density and appearance of cold-stable 
kinetochore fibers upon Mis12-Mps1 expression was indistin­
guishable from that of normal cells (Fig. 3 D).

Kinetochore-tethered Mps1 maintains 
Mad1 and Mad2 on attached,  
bioriented kinetochores
Despite normal attachment and alignment, Mad1 and Mad2 
were localized to kinetochores of bioriented chromosomes in 
metaphase cells expressing Mis12-Mps1, but not LAP-Mps1 
(Fig. 4 A and Fig. S3), and this depended on Mps1 kinase activ­
ity (Fig. 4 B). Strikingly, high levels of Mad2, similar to those 
in nocodazole-treated cells, were apparent on kinetochore pairs 
that were under full tension (Fig. 4, C and D) and that had nor­
mal, cold-stable k-fibers (Fig. 3 D). Importantly, Mis12-Mps1–
expressing metaphase cells with kinetochore-bound Mad2 
contained Mad2 on all kinetochores (Fig. 4 A). In contrast, 
metaphase figures of cells with slight destabilization of k-fibers 
or other attachment defects that allow alignment but signifi­
cantly prolong prometaphase and metaphase had no or very few 
kinetochores with detectable Mad1 or Mad2 (Fig. S2 G; Hanisch 
et al., 2006; Daum et al., 2009; Liu et al., 2009). The results 
strongly suggest that preventing Mps1 from leaving kineto­
chores is sufficient to cause persistent mitotic checkpoint-mediated 
APC/C inhibition, independent of the attachment status of  
kinetochores, and argue that Mps1 removal is a prerequisite for 

attached (Jelluma et al., 2008b). Under this condition, Mps1 
was present at kinetochores of misaligned chromosomes, but 
its levels were strongly reduced on bioriented chromosomes 
(Fig. 1 F). Inhibiting Aurora B prevented the accumulation 
of inhibited Mps1 on non-bioriented chromosomes (Fig. S1 
H; Santaguida et al., 2010). Thus, recruitment of Mps1 to ki­
netochores is strongly diminished as soon as chromosomes 
have bioriented. In agreement with this, Mps1 levels dimin­
ish on attached prometaphase kinetochores of PtK2 cells 
compared with unattached prometaphase kinetochores, and 
diminish further on late metaphase kinetochores (Howell  
et al., 2004).

Combined, the data support a model in which Mps1  
is recruited to non-bioriented chromosomes where it is  
rapidly released through a mechanism that involves Mps1- 
dependent phosphorylation. Upon biorientation Mps1 is no 
longer recruited, causing its depletion from kinetochores in 
metaphase cells.

Preventing dissociation of Mps1 from 
kinetochores prolongs metaphase
To address the functional relevance of rapid release of Mps1 
in prometaphase and its depletion in metaphase, a pool of 
Mps1 was prevented from leaving the kinetochore by fusion 
to the Mis12 protein. Mis12 is a constitutive kinetochore pro­
tein in mitosis (Cheeseman et al., 2004; Obuse et al., 2004) 
and fusion to INCENP was previously shown to efficiently 
recruit INCENP/Aurora B to metaphase kinetochores (Liu  
et al., 2009). LAP-tagged Mis12-Mps1 (LAP-Mis12-Mps1-
WT) was readily visible on kinetochores in prophase, pro­
metaphase, and metaphase (Fig. 2 A) at a similar location as 
wild-type Mps1 (nocodazole-treated; Fig. S2 A). Mis12-
Mps1 fully supported mitotic checkpoint activity in Mps1-
depleted cells, showing the fusion did not prevent Mps1 
functioning (Fig. 2 B). Please note that 60% of Mis12-
Mps1 associated transiently with kinetochores (Fig. S2,  
B and C), indicating that this approach could not tether all  
cellular Mps1 to kinetochores and thus maintained essential 
cytoplasmic pools of Mps1 (Maciejowski et al., 2010). We 
speculate that Mps1 dimerization (Hewitt et al., 2010) and/or 
targeting via the Mps1-intrinsic kinetochore localization do­
main may have been responsible for recruitment and release 
of this exchanging pool of Mis12-Mps1. Nevertheless, a sig­
nificant fraction (40%) of Mis12-Mps1 was stably associ­
ated with kinetochores (Fig. S2 B), allowing evaluation of the 
effect of sustained presence of Mps1 at kinetochores on chromo­
some segregation.

Strikingly, expression of Mis12-Mps1-WT but not -KD or 
LAP-Mps1-WT in U2OS cells caused pronounced extension of 
metaphase in more than 70% of cells, even up to 10 h in some 
cases (Fig. 2 C; Fig. S2, D and E). Treatment with Mps1-IN-1 
showed that these prolonged metaphases were due to sustained 
Mps1 activity on kinetochores (Fig. 2 C). Removal of Mad2 by 
expression of Mad2 shRNA effectively prevented the delays in 
anaphase onset in cells expressing Mis12-Mps1, showing Mad2 
and thus mitotic checkpoint activity was responsible for the de­
lays (Fig. 2 D).

http://www.jcb.org/cgi/content/full/jcb.201003038/DC1
2
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Figure 2.  Tethering Mps1 to kinetochores extends metaphase. (A) Immunolocalization of LAP-Mis12-Mps1(-WT) in U2OS during indicated phases of cell 
cycle. (B) Percentage of mitotic (Mpm2 positive) U2OS cells that were transfected and treated as indicated, as determined by flow cytometry. Immunoblot 
shows levels of LAP-Mps1 and LAP-Mis12-Mps1 in total cell lysate. (C and D) Time spent in prometaphase and metaphase of transiently transfected U2OS 
cells with indicated plasmids and treated as indicated. Each horizontal bar represents a single cell.
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Gassmann et al., 2010), showing that Spindly removal, like 
Mps1 removal, is a prerequisite for checkpoint silencing. It may 
be of interest to examine whether Mps1 influences Spindly func­
tion or vice versa.

mitotic checkpoint silencing. Interestingly, prolonged metaphases 
with high levels of Mad1 and Mad2 on bioriented chromosomes 
were also observed when Spindly–Dynein interaction was in­
hibited but not when Spindly was depleted (Barisic et al., 2010; 

Figure 3.  Sustained Mps1 activity at kinetochores does not affect microtubule attachment or chromosome biorientation. (A) Time spent in prometaphase 
and metaphase of U2OS cells transfected with indicated plasmids and treated as indicated. Each horizontal bar represents a single cell. (B) Stills of Video 1  
showing a LAP-Mis12-Mps1-WT–expressing U2OS cell after Mps1-IN-1 addition during metaphase. Graph shows distribution of time after Mps1-IN-1 
addition for cells to initiate anaphase. Average time is 12.4 min ± 3.0 min (SD), n = 45 cells. (C) Distribution of interkinetochore distances in U2OS cells 
transfected and treated as indicated. For LAP-Mis12-Mps1–expressing cells, only the cells showing clear Mad2 staining on kinetochores were analyzed. 
(D) Cold-stable microtubules in U2OS cells expressing the indicated constructs. Examples are shown for metaphases that show no, low/medium, or high 
Mad2 at kinetochores. Averages of absolute total spindle intensities per cell are indicated (±SD).

http://www.jcb.org/cgi/content/full/jcb.201003038/DC1
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Figure 4.  Persistent presence of Mps1 maintains Mad1 and Mad2 on attached, bioriented kinetochores. (A and B) Mad2 localization at kinetochores  
of U2OS cells transiently transfected with LAP-Mps1-WT or LAP-Mis12-Mps1-WT, treated as indicated. Graph shows distribution of cells with high,  
low/medium, or no Mad2 signal on kinetochores. (C) Close-up of Mad2 localization at individual kinetochore pairs of U2OS cells treated and transfected 
as in A. (D) Mad2 intensity related to interkinetochore distance of kinetochore pairs in cells transfected and treated as in A.
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A model for mitotic checkpoint regulation 
by Mps1
Combining the present and recent studies (Howell et al., 2001, 
2004; Jelluma et al., 2008a,b; Tighe et al., 2008; Hewitt et al., 
2010; Maciejowski et al., 2010; Santaguida et al., 2010; Sliedrecht 
et al., 2010), we propose the following model for the roles of 
Mps1 in the control of the metaphase-to-anaphase transition 
(Fig. 5): in prophase and prometaphase, Mps1 is recruited to 
unattached and/or tension-less kinetochores where its activity, 
possibly aided by dimerization, promotes error correction and 
ensures kinetochore-dependent catalysis of APC/CCdc20 inhibi­
tory complexes via establishing kinetochore binding of Mad1, 
via conformational activation of Mad2, and via inhibition of 
checkpoint silencing mechanisms. Once activated, Mps1 con­
tributes to its own release from kinetochores to ensure cytoplas­
mic stabilization of APC/C–Cdc20 inhibitory complexes and to 
allow its removal from kinetochores for efficient checkpoint si­
lencing once stable, bioriented attachment has been achieved. 
Deep understanding of how Mps1 promotes these various pro­
cesses will require the identification of the direct Mps1 sub­
strates and elucidation of the recruitment mechanisms of Mps1 
and the checkpoint machinery.

Materials and methods
Cell culture, plasmids, and transfections
U2OS and HeLa cells were grown in DME with 8% FBS, supplemented with 
penicillin/streptomycin. UTRM10-WT cells (Jelluma et al., 2008a) and 
UTRM-LAP-Mps1M602G cells (Sliedrecht et al., 2010) were grown in DME 
with 8% FBS, supplemented with penicillin/streptomycin, and 1 mg ml1 
doxycycline (Sigma-Aldrich) for continuous knockdown of the endogenous 
protein (Jelluma et al., 2008a). PtK2 cells (a gift from Jagesh Shah, Har-
vard Institutes of Medicine, Boston, MA) were grown in EMEM with 10% 
FBS, supplemented with glutamine, nonessential amino acids, and 
penicillin/streptomycin.

pSuper-Mock, pSuper-Mps1, pcDNA-LAPMps1, and pSuper-Mad2 
have been described previously (Kops et al., 2004; Jelluma et al., 2008b). 
pcDNA-LAPMps1-M602G was created by site-directed mutagenesis of 
pcDNA-LAPMps1. Endogenous Mps1 replacement assays were done as 
in Jelluma et al. (2008b). To add a PTS1 signal to Mps1, point mutations 
in pcDNA3-LAP-Mps1 construct were introduced by site-directed mutagen-
esis to alter the last three C-terminal amino acids to Serine-Lysine-Leucine 
or to Alanine-Lysine-Leucine (Gould et al., 1989). pcDNA-LAP-Mis12-
Mps1 constructs were created by inserting the full Mis12 sequence in 
pcDNA-LAP-Mps1. All sequences were verified by automated sequenc-
ing. Plasmid transfections in U2OS cells were done with calcium phos-
phate, and LAP-Mps1-WT was expressed transiently in PtK2 cells via 
standard electroporation.

Time-lapse live-cell imaging
U2OS cells were grown in 8-well chambered glass-bottom slides (LabTek), and 
co-transfected with the indicated plasmids and H2B-pEYFP or H2B-pDSRED  
for visualization of DNA. Cells were blocked in S phase with 2.5 mM thymi-
dine (Sigma-Aldrich) 24 h after transfection for 24 h. After release from thymi-
dine, mitotic progression was followed with live-cell imaging as described 
below. For prometaphase time measurements in Fig. S2 F, stable H2B-EYFP–
expressing HeLa cells were treated with 10 or 50 µM noscapine (Sigma-
Aldrich) or with 20 or 660 nM nocodazole (Sigma-Aldrich). See Vasquez 
et al. (1997) and Zhou et al. (2002) for effects of noscapine and low  
nocodazole on microtubule dynamics. Live-cell imaging was done on a  

Figure 5.  A model for mitotic checkpoint regulation by Mps1. Prophase: 
Mps1 is recruited in an Aurora B–dependent manner to unattached and/or  
tensionless kinetochores, where its activity is stimulated (red), possibly 
through dimerization. At kinetochores, Mps1 promotes error correction 
by enhancing Aurora B activity, ensures kinetochore binding of Mad1, 
inhibits checkpoint silencing mechanisms, and replenishes an interphasic 
pool of cytoplasmic Mps1 that stabilizes APC/CCdc20 inhibitory complexes. 
Prometaphase: After establishing Mad1 localization, Mps1 promotes  
kinetochore-dependent catalysis of APC/CCdc20 inhibitory complexes via 
conformational activation of Mad2, and contributes to its own removal 
from kinetochores. Dotted arrow indicates possibility that Mps1 contributes 
to maintenance of Mad1 at unattached kinetochores. The unknown details 
of what pools of Mps1 are dimers is represented by the question mark. 
Metaphase: The fast turnover of Mps1 at kinetochores allows its removal 
from kinetochores after stable, bioriented attachment, causing checkpoint 
silencing and ultimately APC/CCdc20 activity toward Cyclin B and Securin. 
Mis12-Mps1–induced prolonged metaphase: When Mps1 is not removed 

from kinetochores after biorientation, checkpoint silencing cannot occur. 
Question mark indicates the likely contribution of a cycling, and thus also 
cytoplasmic, pool of Mis12-Mps1 (60%) with the uncertainty of whether 
this fusion protein functions as a dimer.
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Online supplemental material
Figure S1 shows that Mps1 auto-regulates its turnover at kinetochores. 
Figure S2 shows that a pool of Mis12-Mps1 is tethered to kinetochores 
and causes prolonged metaphases without detectable prior defects in 
prometaphase. Figure S3 shows that Mad1 and Mad2 localize to meta-
phase kinetochores of Mis12-Mps1–expressing cells. Videos 1 and 2 show  
two examples of Mis12-Mps1–expressing, metaphase-arrested cells that  
were forced to initiate anaphase via addition of Mps1-IN-1. Online supple
mental material is available at http://www.jcb.org/cgi/content/full/jcb 
.201003038/DC1.
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