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Antibodies that target endogenous 
soluble ligands are an important 

class of biotherapeutic agents. While 
much focus has been placed on charac-
terization of antibody pharmacokinetics, 
less emphasis has been given to charac-
terization of antibody effects on their 
soluble targets. We describe here the 
properties of a generalized mechanism-
based PK/PD model used to characterize  
the in vivo interaction of an antibody 
and an endogenous soluble ligand. The 
assumptions and properties of the model 
are explored and situations are described 
when deviations from the basic assump-
tions may be necessary. This model is 
most useful for in vivo situations where 
both antibody and ligand levels are avail-
able following drug administration. For a 
given antibody exposure, the extent and 
duration of suppression of free ligand is 
impacted by the apparent affinity of the 
interaction, as well as by the rate of ligand 
turnover. The applicability of the general 
equilibrium model of in vivo antibody-
ligand interaction is demonstrated with 
an anti-Ab antibody.

Introduction

In recent years, antibodies and anti-
body-derived molecules have become an 
increasingly important class of therapeutic 
agents. A recent review article cited that 
more than 20 molecules from this class of 
compounds have been approved for use by 
the U.S. Food and Drug Administration 
(FDA), with more than 500 antibodies in 
various stages of development.1 In paral-
lel with this increased interest in anti-
bodies as drugs, the use of model-based 
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drug development has also dramatically 
increased. A number of examples of the 
use of pharmacokinetic (PK)/pharma-
codynamic (PD) modeling to better 
understand antibody pharmacology and 
drug development have been published in 
recent years,2-11 and the PK, PD and use of 
PK/PD modeling have been reviewed.1,12,13 
Despite the large number of antibodies in 
development and in clinical use, there are 
still relatively few examples of the use of 
PK/PD modeling to facilitate therapeutic  
antibody development in the primary 
literature.

Antibody agents that target soluble 
ligands are an important subclass of the 
antibody therapeutics. Approximately 
25% of the FDA-approved antibody prod-
ucts fall into this subclass of molecules.1 
Much focus has been placed on character-
ization of the PK of these types of antibod-
ies, but less emphasis has historically been 
placed on characterization of the anti-
body’s effects on the soluble target. Given 
that the antibody is the binding molecule 
and the soluble target is actually the active 
agent, more emphasis on the characteriza-
tion of the effects of the antibody on the 
target ligand is warranted. Further, under-
standing of the system gained by modeling  
the interaction between the antibody 
and target could help facilitate drug 
development, particularly in cases where 
establishing disease-specific biomarker 
relationships in early development are not 
feasible.

A number of recent articles have 
reviewed models of target-mediated drug 
disposition (TMDD) for biologics,14-16 
including antibodies, and more examples 
are beginning to appear in the published 
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to probe the impact of this assumption. 
Simulations were generated over a range 
of micro-constant values for k

on
 and k

off
, 

keeping the ratio, i.e., the affinity, of the 
interaction constant. Figure 5 shows the 
impact of increasing the k

on
 and k

off
 values  

on the profiles for total antibody, free 
antibody, total ligand and free ligand. 
Also shown on these figures are lines for 
the equilibrium K

D
 model. As expected, as 

k
on

 and k
off

 increase, the profiles converge 
to the profiles generated using the equilib-
rium model.

Although the non-equilibrium model 
is a closer representation to the actual 
system, we were also interested in explor-
ing whether, and under what conditions, 
the simplified equilibrium model might 
be adequate to fit the data generated 
using the more realistic non-equilibrium 
model. In many cases in drug develop-
ment, assays are not available for all four 
species of interest, i.e., total antibody, free 
antibody, total ligand and free ligand. In 
our experience to date, the two most com-
monly available measures for these sys-
tems are total antibody and total ligand. 
Additionally, as k

on
 and k

off
 increase, the 

expected profiles converge to the profiles 
generated using the equilibrium model. 
These two issues (limited data and conver-
gence to the equilibrium profiles as k

on
 and 

k
off

 increase) led us to hypothesize that a 
general equilibrium model may be appro-
priate for many, if not most current drug 
development applications. Thus, Figure 6  
demonstrates the best fits of the non-equi-
librium model-generated data using the 
equilibrium model when only total anti-
body and total ligand data are available. 
Table 2 shows the parameter values from 
the fits. The three parts in Figure 6 repre-
sent the total antibody and total ligand fits 
for the three k

on
/k

off
 scenarios. Also shown 

are the model-predicted free ligand pro-
files, together with simulated free ligand 
profiles for these sets of scenarios. In this 
exercise, it was assumed the free ligand 
concentrations were not available for the 
modeling. They are post-hoc observations 
to allow comparison of the equilibrium 
model predictions to the free ligand data 
generated by the ‘true’ non-equilibrium 
model. Again, as expected, the fits of total 
antibody and total ligand improve as k

on
 

and k
off

 increase. However, even in the 

the interaction and the kinetic parameters 
for both the antibody and ligand.

Figure 2 illustrates the impact of 
changing binding affinity on the projected 
free and total ligand profiles. For each 
simulation, the doses and PK parameters 
for the antibody remained constant, as did 
the input and elimination rate constants 
for the ligand. The affinity of the interac-
tion varied over the range of 0.1–10 nM.  
Decreasing the affinity of the interac-
tion leads to a smaller extent of maximal 
reduction in free ligand at any given dose, 
and a shorter duration of free ligand sup-
pression at any given dose. Decreasing the 
affinity of the interaction also increases 
the antibody-excess (ratio between total 
antibody concentration and total ligand 
concentration).

Figure 3 illustrates the impact of 
changing ligand turnover, with antibody 
kinetics and affinity of the interaction 
remaining constant. For simplicity, the 
ratio of k

in
/k

out
 for the ligand remained 

constant, i.e., constant baseline ligand 
concentration. For a given dose level, 
decreasing the turnover of the ligand leads 
to an increased extent and duration of free 
ligand suppression. It also decreases the 
maximum extent of total ligand accumu-
lation. Antibody-excess during the termi-
nal, parallel decline portion of the curves 
remains the same.

Application of general equilibrium 
model to in vivo data. The applicability  
of the general equilibrium model of in 
vivo antibody-ligand interaction was 
demonstrated with an anti-Ab antibody. 
The model predictions and observed data 
for both antibody and ligand (Ab

1-40
) are 

illustrated in Figure 4. After administra-
tion of anti-Ab antibody to PDAPP mice, 
total Ab

1-40
 levels increased in a dramatic 

and dose dependent fashion and the data 
were well described by the general model 
described in Figure 1. Parameter val-
ues resultant from the fit of this data are 
shown in Table 1.

Comparison of equilibrium and non-
equilibrium models. One of the primary 
assumptions of this basic model of antibody 
-ligand interactions is that the rates of 
antibody-ligand association and disso-
ciation can be neglected and the binding 
can be assumed to be at equilibrium. A 
non-equilibrium model was established 

literature describing models for antibod-
ies that bind to soluble ligands. While the 
latter have some similarities to the TMDD 
models, in many cases, the pharmacoki-
netics of the drug, e.g., the antibody, will 
not be affected by binding to the target, 
but rather the kinetics of the target will be 
affected by the drug. Balthasar and Fung 
provided perhaps the first in vivo PK/PD 
models for these types of antibodies when 
they described the effect of anti-drug 
antibodies on exogenously administered 
digoxin and methotrexate.17,18 Various 
models have been proposed for antibodies  
and other biologics that target soluble 
endogenous ligands such as TNF,4,8,9 
IL13,11 IgE,5,7,9,10,19 DKK-1,20 IL-1β21 and 
Factor IX.2,3

The purpose of the present article is 
to describe and explore the properties of 
a generalized mechanism-based PK/PD 
model that can be used as a basis for the 
development of models that characterize 
the in vivo interaction of an antibody and 
an endogenous soluble ligand. We also 
offer perspectives on common issues to 
consider when examining antibody-ligand 
interactions and practical approaches to 
modeling these interactions based on 
these issues. This model is most useful 
for in vivo situations when both antibody 
levels and ligand levels are available fol-
lowing drug administration. The assump-
tions and properties of this general model 
are explored, and situations are described 
when deviation may be necessary from the 
basic assumptions of the model.

Results

Properties of the general equilibrium PK/
PD model. Simulations were generated to 
illustrate the antibody and ligand concen-
tration-time profiles under a variety of sce-
narios. The results of these simulations are 
shown in Figures 2 and 3, with Figure 2  
exploring the impact of altering K

D
 on 

total and free ligand concentration and 
Figure 3 highlighting the effect of altering 
ligand turnover on the ligand profiles. In 
general, administration of an anti-ligand 
antibody leads to increases in total ligand 
concentrations and decreases in free ligand 
concentrations. The extent and duration 
of these changes are governed by the dose 
of antibody administered, the affinity of 
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In our experience, the most readily 
determined ligand measurement is total 
ligand; thus some general properties of 
the total ligand curves following antibody 
dosing are of note. These properties apply 
to the general case where the free ligand 
has a faster elimination rate constant than 
the antibody-ligand complex. Following 
dosing, the initial slope of the total ligand 
curve is indicative of the production or 
input rate of ligand into the system. The 
baseline levels of the ligand are determined 
by the ratio of k

in
/k

out
. The maximum pos-

sible increase in total ligand levels is deter-
mined by the ratio of the elimination rate 
constant for the free ligand to the elimina-
tion rate constant for the antibody-ligand 
complex. It is critical to obtain baseline 
measures of the ligand (more ideally, a full 
profile for negative control animals) to 
allow adequate inference of the basic PD 
parameters of the model.

For a given antibody exposure, the 
extent and duration of suppression of free 
ligand is impacted by the apparent affin-
ity of the interaction (Fig. 2), as well as 
by the production and elimination rates 
of the free ligand (Fig. 3). Because there 
is no effect on the PK of total antibody 
due to the altered affinity, these simula-
tions highlight one of the major pitfalls 
in attempting to use antibody PK in isola-
tion to try to determine dosing frequency 
for a therapeutic antibody to a soluble 
endogenous ligand. If antibody PK were 
the primary determinant of dosing fre-
quency, one might select the same dosing 
frequency for each of the K

D
 scenarios 

in Figure 2, but the effect on free ligand 
clearly wanes much more quickly when 
affinity is low, and more frequent dosing 
or higher dosing would be necessary to 
achieve the same effects of ligand suppres-
sion with the low affinity antibody relative 
to a high affinity antibody. Similarly, a 
common misconception when interpret-
ing antibody PK is the assumption that if 
high concentrations of free antibody are 
present, that antibody is still available to 
further bind the target ligand and drive 
the effect. Again, this interpretation is 
overly simplistic and ligand binding and 
turnover must be considered to under-
stand whether the presence of free anti-
body provides suppression of the target 
ligand. There will always be some level of 

to consider when using these models. As 
the general equilibrium model discussed 
herein represents the most basic assump-
tions to characterize the antibody-ligand 
interaction in vivo, there will likely be 
many scenarios when more complex mod-
els may be necessary. These scenarios will 
be discussed further below; however, this 
general model is useful to derive and illus-
trate some basic properties of the antibody 
and ligand profiles observed following 
administration of a therapeutic antibody 
designed to target an endogenous, soluble 
ligand.

In many cases, administration of an 
anti-ligand antibody leads to substan-
tial increases in total plasma levels of the 
target ligand. Figure 4 illustrates this 
increase for Ab

1-40
 following administra-

tion of an anti-Ab antibody. The gen-
eral model explored in this work assumes 
that the antibody-bound ligand takes on 
the elimination rate characteristics of the 
free antibody. Often, the free ligand has 
a substantially faster elimination rate con-
stant compared to the antibody-bound 
ligand. As such, when ligand becomes 
bound to the antibody and takes on dis-
tribution and clearance properties of 
the antibody, there is a rapid and often 
remarkable increase in total ligand lev-
els. This assumption of ligand-antibody 
complex adopting the elimination charac-
teristics of the antibody may not hold in 
all cases, and indeed has been previously 
modeled by assigning parameters for the 
complex that are unique from those of the 
free antibody.5,7,11 In such cases, differen-
tial elimination kinetics of the complex 
may be reflected in the antibody PK pro-
files, with faster antibody CL apparent as 
complex levels become a significant frac-
tion of total antibody levels. However, 
in many cases, the antibody may prevent 
normal processes involved in clearance of 
smaller ligands,1,12 e.g., diffusion to sites 
of catabolism, proteolysis, renal filtration, 
receptor-mediated clearance, and may not 
introduce additional clearance pathways, 
e.g., as in the case of the anti-Aβ antibody 
example in this article, thus giving the 
complex the clearance properties of the 
antibody. Unless data suggests otherwise, 
the simplest assumption that is reasonable 
is to allow the complex to be governed by 
the same parameters as the antibody.

slow k
on

 and k
off

 case, the fits of the total 
antibody and ligand data are not unrea-
sonable. Examination of the free ligand 
plots demonstrate that when k

on
 and k

off
 

are slow, the extent of the free ligand sup-
pression is over-predicted by the equilib-
rium model.

Figure 7 represents a scenario where 
total antibody, total ligand and free 
ligand concentrations are all available, 
with parameter values shown in Table 3. 
As with the data shown in Figure 6, the 
observed data were generated using the 
non-equilibrium model and the estima-
tions were performed with the equilibrium 
model. Inclusion of the free ligand data 
into the modeling improves the model 
prediction in all k

on
/k

off
 scenarios, relative 

to the situations where only total ligand 
data were available (Fig. 6).

Tables 4 and 5 show the parameter 
values obtained when using the non-equi-
librium model to fit the data generated by 
simulating with the micro-constant val-
ues, using only total ligand data and both 
total and free ligand data, respectively. 
Because the ‘true’ model was used in these 
fits, the fits were very good; however, the 
difficulty that arises with using the non-
equilibrium model pertains to the ability 
to estimate both k

on
 and k

off
. Crude sen-

sitivity experiments with the simulations, 
as well as practical experience with actual 
data (including the Aβ example in this 
paper), have shown that estimation of k

on
 

and k
off

 with any degree of reliability can 
be very difficult, particularly as k

on
 and k

off
 

become large and when the initial param-
eter estimates are not close to the ‘true’ 
values. In fact, even with this ideal experi-
mental system, we were not able to obtain 
reliable parameter estimates for scenario 
3 either with or without free ligand data 
available.

Discussion

This article explores the properties of a 
general PK/PD model to describe the in 
vivo interaction between a neutralizing 
antibody and its soluble ligand target. 
Similar models and examples of their use 
currently exist in published literature. 
This work reviews the most general form 
of this model, discusses some of the impor-
tant assumptions made, and probes issues 
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and K
D
, particularly in situations when 

limited data are available to characterize 
the entire system. Second, given only total 
antibody and total ligand data, in many 
cases it will be difficult to distinguish 
between the equilibrium model and the 
non-equilibrium model. Fortunately, the 
predictions of free ligand from the equilib-
rium model were quite reasonable, even in 
the worst case scenario (scenario 1). The 
equilibrium model performed even better 
to predict free ligand concentrations in the 
situation where total antibody, total ligand 
and free ligand were available (Fig. 7). For 
all practical purposes, it appears that an 
equilibrium model is likely sufficient for 
characterization of antibody-ligand bind-
ing and prediction of free ligand levels in 
many cases, as long as total (and/or free) 
ligand data are available and are well char-
acterized by the model.

As k
on

 and k
off

 increase, it becomes 
increasingly difficult to capture the 
parameters of the non-equilibrium model 
through estimation (Tables 4 and 5). 
Additionally, as initial estimates for the 
parameters get further from the ‘true’ 
values, it also becomes difficult to specify 
these parameters. It is tempting to try to 
fix the binding parameters for the in vivo 
model to values obtained from in vitro 
binding experiments; however, because 
the in vivo situation is quite different 
from in vitro binding experiments that are 
used to determine affinity, this may not 
be a good practice. In our experience, in 
vitro and in vivo K

D
 values have at times 

differed significantly from one another 
(unpublished observations). We recom-
mend starting with the general equilib-
rium model and fitting the apparent in 
vivo affinity constant to understand these 
interactions. If the equilibrium model 
appears insufficient, incorporation of k

on
 

and k
off

 micro-constants could be consid-
ered, again using the in vivo data to obtain 
estimates of these values.

This article primarily focuses on the-
oretical aspects of modeling antibody-
ligand interactions in vivo, but some 
practical aspects and complexities also 
must be addressed when considering use 
of modeling and simulation to facilitate 
antibody development. Perhaps most 
important are the difficulties and uncer-
tainties associated with the most common 

antibody-ligand binding approaches the 
elimination rate of the antibody (CL/V), 
the effects on both total and free ligand 
are significantly greater for the equilib-
rium model.

Although simulations using the ‘true’ 
models for the equilibrium and non-equi-
librium cases demonstrated significant 
differences as k

on
 and k

off
 decreased, we 

wanted to understand whether the equi-
librium model could be used to fit the 
data generated by the non-equilibrium 
model. This may be possible because, 
when fitting the data, the model param-
eters could adjust to compensate for the 
model-misspecification. And in practice, 
if a good fit is obtained for the total ligand 
and total antibody data, and if free ligand 
data is not available, it will be impossible 
to determine whether the model is suffi-
ciently parameterized. When population 
simulations were conducted, with inter-
individual and residual error simulated, 
the general equilibrium model adequately 
described the total antibody and total 
ligand data (Fig. 6). The free ligand data 
was still slightly over-predicted, but not to 
the extent as predicted from the simula-
tions alone (Fig. 5). When estimating 
the data, the k

in
, k

out
 and K

D
 parameters 

compensated to allow a good estimate of 
the total ligand data and, in turn, gave 
better estimates for the free ligand data. 
This simulation highlights a couple of 
interesting observations. First, models 
are only representations of the system, 
thus are always misspecified. This makes 
it difficult to put absolute physiological 
meaning to the parameters for k

in
, k

out
 

free antibody present in the system and the 
affinity of the interaction will determine 
the level of antibody excess. These con-
cepts are well illustrated in Figure 2J–L, 
demonstrating increasing antibody excess 
as affinity decreases. In each of these cases 
there is still free antibody present in the 
system, yet after a period of time, the free 
ligand levels return to baseline even in the 
presence of the free antibody. Thus, anti-
body PK alone is of limited utility in infer-
ring effects on suppression of ligand.

In previously published reports of 
antibody-ligand PK/PD modeling, both 
equilibrium constants5,7 and micro-con-
stants2,3,8,9,11 have been used to model 
the in vivo antibody-ligand interaction. 
Because antibody elimination is consid-
ered quite slow relative to antibody-ligand 
binding processes it has been assumed that 
equilibrium models may be adequate to 
capture the in vivo interaction.5 The equi-
librium model has the obvious advantage 
of having fewer parameter values, and we 
have previously noticed difficulty estimat-
ing the micro-constants from the non-
equilibrium model using only antibody 
levels and total ligand concentrations in 
certain situations (e.g., the Aβ data in this 
article). Therefore, we conducted simula-
tions using the non-equilibrium model in 
an effort to explore the adequacy of the 
general equilibrium model to character-
ize data generated from the more realis-
tic situation. As expected (Fig. 5), as k

on
 

and k
off

 increase (the ratio constant), the 
non-equilibrium model converges to the 
same output as the equilibrium model; 
however, for scenario 1, where k

off
 for the 

Figure 1. Schematic diagram of the basic equilibrium model. Ab represents antibody 
concentration; ka is a 1st-order absorption rate constant for the antibody; V is the apparent volume 
of distribution for the antibody; CL is the apparent clearance for the antibody; L is free ligand 
concentration; kin is a zero-order input rate constant for ligand (units of concentration/time); kout 
is a 1st-order rate constant for free ligand elimination; KD is the equilibrium constant governing 
antibody-ligand binding; Ab•L is concentration of antibody-ligand complex.
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antibody. Furthermore, because most 
therapeutic antibodies are now human-
ized or human, detecting total antibody 
in clinical studies is increasingly difficult. 
Ligand assays also suffer from several 
limitations and many questions arise. For 
total ligand assays, do the antibodies used 
in the assay have the same specificity as 

antibody assay, there are complexities asso-
ciated with this measurement. Because of 
the dilution involved, as well as the poten-
tial for exchange of antibody between 
that bound to ligand in the sample and 
ligand coated on the plate, in most cases 
it becomes unclear what exactly is being 
measured with respect to total or free 

bioanalytical assays used to measure 
antibodies and ligands. At present, most 
antibody assays are ELISA-based assays 
that attempt to measure either total or 
free antibody in plasma. While on the  
surface it may seem that an antigen-cap-
ture ELISA to measure free therapeu-
tic antibody may be the most desirable 

Figure 2. Simulations illustrating effects of varying KD in the general antibody-ligand PK/PD model. All parameters except KD were held constant 
throughout simulations. KD was 0.1, 1 and 10 nM for the three scenarios. Effect of varying KD on total antibody concentration (A–C), total ligand (D–F) 
and free ligand (G–I) are shown. (J–L) show total antibody, total ligand and free ligand on the same plot for each scenario at a 100 mg/kg dose of 
antibody.
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four measures would be desirable (total 
and free antibody and total and free 
ligand), this is often not practical or possi-
ble. Thus, we recommend using the mea-
sures that are determined most reliable, 
and using mechanism-based modeling  
to infer what cannot be measured.

ligand levels, any degree of exchange or 
contamination from the total levels in 
the free assay will be very misleading. To 
model antibody-ligand data in vivo, at least 
one measure of antibody PK (total or free) 
and one measure of ligand levels (total or 
free) is necessary. Although ideally, all 

the therapeutic antibody? Is the standard 
representative of the endogenous ligand? 
Free ligand assays are currently difficult 
to make sufficiently sensitive for many 
ligands and are very difficult to validate. 
Because total ligand levels are often many 
orders of magnitude greater than free 

Figure 3. Simulations illustrating effect of varying kin and kout in the general antibody-ligand PK/PD model. All parameters except kin and kout were held 
constant throughout simulations and the ratio of kin to kout was held constant at 0.061. kin was 0.42, 0.042 and 0.0042 nM h-1 for the three scenarios. 
Effect of varying kin and kout on total antibody concentration (A–C), total ligand concentration (D–F) and free ligand concentration (G–I) are shown. 
(J–L) show total antibody, total ligand and free ligand concentrations on the same plot for each scenario at a 100 mg/kg dose of antibody.
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free ligand levels in the presence of anti-
body in vivo. Not only would free ligand 
levels provide a more direct measure of the 
pharmacologic agent of interest, it would 
also allow for further probing and under-
standing of PK/PD models for these inter-
actions and greater confidence in using 
these models in instances where free levels 
are not available.

Methods

General equilibrium PK/PD model of 
antibody ligand interactions. A simplified 
general model of in vivo antibody-ligand 
interaction is shown in schematic form 
in Figure 1. This basic model represents 
a reasonable theoretical starting point for 
development of PK/PD models to char-
acterize antibody effects on endogenous 
ligand concentrations. Additional com-
plexities can be added to the model, as 

development. To date, there are few pub-
lished examples to probe the utility and 
complexities of modeling these interac-
tions. Because understanding ligand 
modulation is much more important to 
pharmacology than antibody pharmaco-
kinetics alone, more effort is warranted 
toward better understanding how to char-
acterize and understand these interactions. 
The general equilibrium model discussed 
herein represents a starting place for both 
understanding conceptually the in vivo 
interaction, and for building PK/PD 
models with which to characterize in vivo 
data. The mechanism-based nature of the 
model provides a powerful tool to allow 
insight into potential effects on free ligand 
levels when only total ligand levels may be 
available. In concert with additional work 
on PK/PD modeling of these interactions, 
further effort is warranted to develop bet-
ter analytical tools with which to measure 

In some cases, the simple general equi-
librium model discussed herein will not 
be sufficient to characterize the PK/PD 
of antibody-ligand interactions in vivo 
and additional complexities must be con-
sidered. These complexities may include: 
whether the antibody-ligand complex 
takes on the distribution and elimination 
properties of the antibody or whether it 
needs unique properties; whether the anti-
body needs multiple compartments, e.g., 
following intravenous dosing; whether 
the antibody or antibody-ligand complex 
exhibit non-linear pharmacokinetics; and 
whether additional distribution compart-
ments may be necessary for the ligand. 
Additionally, study design considerations 
such as sampling scheme may also influ-
ence model selection.

PK/PD modeling of antibody-ligand 
interactions in vivo is a new and excit-
ing field related to therapeutic antibody 

Figure 4. Observed and model predicted antibody and ligand (Aß1-40) levels obtained using the general equilibrium model to fit m266 PK and ligand 
data in the PDAPP mouse. Symbols represent individual animal data and lines are population means for doses of 0.5 (●, —), 2 (○, ∙∙∙) and 5 (●, ---) 
mg/kg of antibody. Antibody concentrations are shown in (A) with total ligand concentrations following 0.5, 2 and 5 mg/kg m266 shown in (B–D) 
respectively.
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describing antibody and ligand concentra-
tion changes over time for the basic model 
are shown below.

that was administered extravascularly to 
mice, we chose to establish this model 
for extravascular administration. The 
model can easily be adapted for intrave-
nously administered biologics. Equations 

warranted by in vivo data. Since many 
therapeutic biologics in preclinical and 
clinical development are administered 
via the subcutaneous route,5-7 and we cite 
here an example of an anti-Aβ antibody 

Figure 5. Antibody and ligand levels obtained by simulation using the non-equilibrium model (symbols) for 3 kon/koff scenarios compared with 
simulations obtained using the equilibrium model (lines). All parameters except kon and koff were held constant throughout simulations and the ratio 
of koff and kon was held constant at 0.03 nM. Symbols and lines are population means for n = 4 for doses of 0.5 (●, —), 1.5 (▼, ∙∙∙) and 5 (■, ---) mg/kg of 
antibody. Vehicle control is also shown for the free ligand plots (-●-). Total antibody concentrations (A–C), free antibody concentrations (D–F), total 
ligand concentrations (G–I) and free ligand concentrations (J–L) are shown.



584	 mAbs	 Volume 2 Issue 5

ligand concentration in plasma; k
in
 is a 

zero-order input rate constant for ligand 
(units of concentration/time); k

out
 is a 

first-order rate constant for free ligand 
elimination; f

f, L
 is the fraction of ligand 

that is free in plasma; f
b, L

 is the fraction 
of ligand that is bound to antibody in 
plasma; K

D
 is the equilibrium constant 

governing antibody-ligand binding. This 
basic model assumes that the antibody-
ligand binding is always in equilibrium. 
Standard mass balance and antibody-
ligand binding equations were used for 
Ab and L to obtain the final relationship 
for f

b, L
 in equation 4.22 The model fur-

ther assumes that the ligand will take on 
the clearance and distribution properties 

Free and bound ligand fractions as a 
function of total ligand and total antibody:

	
				    (4)

f
f, L

 = 1 - f
b, L

			   (5)

In these equations, Ab
total

 represents 
total antibody concentration in plasma; 
k

a
 is a first-order absorption rate constant; 

A
adm

 is antibody mass at the extravascu-
lar administration site; V is the apparent 
volume of distribution for the antibody 
(V/F); CL is the apparent clearance 
for the antibody (CL/F); L

total
 is total 

Plasma antibody concentrations:

(1)

Plasma total ligand concentrations:

	
				    (2)

Plasma free ligand concentrations:

L
f
 = L

total
 x f

f, L			 
(3)

Figure 6. Total antibody (A–C) and total ligand (D–F) concentrations for 3 kon/koff scenarios fitted to the equilibrium model. Symbols represent 
simulated data used for fitting and lines represent model predicted means for doses of 0.5 (●, —), 1.5 (△, ∙∙∙) and 5 (◆, ---) mg/kg of antibody. Plots in 
(G–I) illustrate comparison between simulated data and model predicted mean free ligand concentrations.
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of an anti-ligand antibody. Simulations 
were performed to demonstrate the impact 
of changes in key PD parameters of the 
model: binding affinity and the ligand 
turnover parameters. For these simula-
tions, antibody PK parameters were con-
stant, with k

a
 = 0.00837 hr-1, CL = 0.00193 

Lhr-1kg-1 and V = 0.231 Lkg-1. Antibody 
doses were 1, 10 and 100 mgkg-1, corre-
sponding to doses of 13.3, 133 and 1,333 
nmolkg-1 antibody binding sites. Antibody 
concentrations in the figures are in nM 
antibody binding sites, assuming 2 moles 
of binding sites for every mole of antibody. 
It was assumed that the binding at each 
site was independent, i.e., no cooperativity. 

These equations were used to probe the 
general characteristics of ligand concentra-
tion-time profiles following administration 

of the neutralizing antibody once the 
complex is formed.

Figure 7. Total antibody (A–C), total ligand (D–F) and free ligand (G–I) concentrations for 3 kon/koff scenarios fitted simultaneously to the equilibrium 
model. Symbols represent simulated data used for fitting and lines represent model predicted means for doses of 0.5 (●, —), 1.5 (△, ∙∙∙) and 5 (◆, ---) 
mg/kg of antibody.

Table 1. Parameter estimates obtained by fitting the equilibrium model to anti-Ab antibody and 
total Ab1-40 data

Parameter description Population estimate (%SEE)

ka (hr-1) 0.53 (14.2)

CL/F (L hr-1 kg-1) 0.00065 (16.7)

V/F (L kg-1) 0.17 (6.59)

kin (nM hr-1) 0.17 (11.9)

kout (hr-1) 12.7 (7.87)

KD (nM) 0.17 (20.7)

Proportional residual error 53.9% (15.0)

SEE, Standard error of the estimate.
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equilibrium model, the model was param-
eterized in terms of micro-constants (k

on
/

k
off

) instead of K
D
. Equations describing 

free, bound and total antibody and ligand 
concentration changes over time for the 
non-equilibrium model are shown below.

Plasma free antibody concentrations:

	
				    (6)

were characterized using model equations 
1–5 shown above for the general model of 
antibody-ligand interactions. The model-
ing was implemented using NONMEM 
VI.

Probing the validity and applicabil-
ity of the general equilibrium model. A 
basic and major assumption of the general 
model discussed here is that of instanta-
neous equilibrium; however, the assump-
tion of equilibrium binding may not hold 
under all situations. Therefore, to further 
probe the validity and applicability of the 

For the simulations exploring effect of 
binding affinity, 3 K

D
 scenarios were 

represented: 0.1, 1 and 10 nM. Ligand 
turnover was fixed in those simulations at  
k

in 
= 0.42 nMhr-1 and k

out 
= 6.85 hr-1. For 

the simulations exploring varying ligand 
turnover, K

D
 was fixed at 1 nM and k

in
/k

out
 

values were 0.42 nMhr-1 and 6.85 hr-1 in 
scenario 1, 0.042 nMhr-1 and 0.685 hr-1 in 
scenario 2 and 0.0042 nM hr-1 and 0.0685 
nM hr-1 in scenario 3. The parameter val-
ues selected for these (and subsequent) 
simulations do not correspond to a single 
antibody but were chosen to both cover 
a wide range of possible values, and to be 
representative of antibodies that might be 
considered for development. Additionally, 
all of the relevant parameter values may 
change depending on the species studied; 
the selected values were not for any partic-
ular species. Simulations were performed 
using either WinNonlin Enterprise version 
5.0.1 or NONMEM VI. Plots were gener-
ated using SigmaPlot 10.0.

Application of general equilibrium 
PK/PD model to an anti-Ab antibody. 
To demonstrate the applicability of this 
general model to observed in vivo PK/
PD data, the model was applied to data 
obtained from an anti-Ab antibody. 
Briefly, anti-Ab antibody m266 was 
administered via intraperitoneal injection 
to transgenic platelet-derived growth fac-
tor promoter expressing amyloid precursor 
protein (PDAPP) mice (0.5, 2 and 5 mg 
kg-1 antibody). Plasma samples were col-
lected for approximately 2 weeks follow-
ing dosing (one sample per mouse) and 
were assayed for anti-Ab antibody levels 
using an antigen capture ELISA and for 
total Ab

1-40
 levels using a sandwich ELISA 

developed for the purpose. Validation 
work was not performed to determine 
whether the ELISA for anti-Ab antibody 
was a better representation of free or total 
antibody levels (see Discussion). However, 
since antibody levels are in significant 
excess to Ab levels in this experiment, it 
is reasonable to assume that total and free 
antibody levels are sufficiently similar for 
the general model using total antibody 
concentration to be applicable to this 
system. Some animals had no antibody 
exposure and these animals were excluded 
from the PK/PD analysis. The plasma 
antibody and total Ab

1-40
 concentrations 

Table 2. Parameter estimates obtained by fitting the equilibrium model to total antibody and 
total ligand data

Parameter description Population estimate (%SEE) Actual

Scenario 1 Scenario 2 Scenario 3

ka (hr-1) 0.0125 (10.0) 0.0110 (8.81) 0.0103 (7.52) 0.00837

CL/F (L hr-1 kg-1) 0.00216 (8.70) 0.00216 (8.43) 0.00215 (8.14) 0.00193

V/F (L kg-1) 0.364 (6.79) 0.321 (6.73) 0.294 (7.93) 0.231

kin (nM hr-1) 0.0810 (13.3) 0.239 (6.78) 0.368 (4.40) 0.417

kout (hr-1) 1.45 (11.9) 3.86 (6.89) 5.58 (6.68) 6.85

KD (nM) 0.179 (17.1) 0.0572 (14.0) 0.0373 (12.0) 0.03a

Variability

IIV in CL/F 31.9% (29.8) 27.8% (28.0) 26.7% (26.8) 28.3%

IIV in kout 0 (FIXED) 0 (FIXED) 0 (FIXED) 12.7%

Res_prop for PK 36.5% (16.2) 35.4% (15.1) 34.9% (15.1) 31.6%

Res_prop for PD 48.8% (6.89) 33.5% (7.61) 20.5% (8.55) 17.3%

SEE, Standard error of the estimate; IIV, Inter-individual variability; Res_prop, Proportional residual 
error. aSimulated dataset did not utilize KD, but rather micro-constants that gave a KD of 0.03 nM. 
kon and koff were 0.042 nM-1 hr-1 and 0.0013 hr-1; 0.42 nM-1 hr-1 and 0.013 hr-1; and 4.2 nM-1 hr-1 and 
0.13 hr-1 for scenarios 1, 2 and 3, respectively.

Table 3. Parameter estimates obtained by fitting the equilibrium model to total antibody, total 
ligand and free ligand data

Parameter description Population estimate (%SEE) Actual

Scenario 1 Scenario 2 Scenario 3

ka (hr-1) 0.00872 (6.71) 0.00793 (3.35) 0.00898 (2.61) 0.00837

CL/F (L hr-1 kg-1) 0.00203 (8.52) 0.00206 (8.50) 0.00205 (8.05) 0.00193

V/F (L kg-1) 0.270 (6.63) 0.244 (4.04) 0.250 (4.36) 0.231

kin (nM hr-1) 0.686 (17.6) 0.506 (7.41) 0.400 (2.88) 0.417

kout (hr-1) 11.8 (18.0) 8.76 (9.01) 6.72 (4.81) 6.85

KD (nM) 0.309 (7.86) 0.0848 (6.86) 0.0395 (5.37) 0.03a

Variability

IIV in CL/F 34.1% (27.6) 30.9% (29.1) 27.9% (28.4) 28.3%

IIV in kout 0 (FIXED) 0 (FIXED) 0 (FIXED) 12.7%

Res_prop for PK 30.2% (13.0) 32.4% (12.1) 28.0% (11.6) 31.6%

Res_prop for PD 59.8% (10.0) 38.5% (7.30) 21.3% (6.97) 17.3%

SEE, Standard error of the estimate; IIV, Inter-individual variability; Res_prop, Proportional residual 
error. aSimulated dataset did not utilize KD, but rather micro-constants that gave a KD of 0.03 nM. 
kon and koff were 0.042 nM-1.
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In addition to the terms described 
previously, in these equations, Ab

free
 rep-

resents free antibody concentration in 
plasma; L

free
 is free ligand concentration in 

plasma; Ab•L represents concentration of 
antibody-ligand complex in plasma; k

on
 is 

the association rate constant and k
off

 is the 
dissociation rate constant for antibody-
ligand binding.

First, simulations were performed to 
compare free and total antibody and ligand 
concentration-time profiles obtained 
using the non-equilibrium model (equa-
tions 6–10) with those obtained using the 
equilibrium model (equations 1–5). For 
both simulations, antibody PK param-
eters and ligand turnover parameters were 
constant, with k

a
 = 0.00837 hr-1, CL = 

0.00193 Lhr-1kg-1, V = 0.231 Lkg-1, k
in
 = 

0.42 nMhr-1 and k
out

 = 6.85 hr-1. Antibody 
doses were 0.5, 1.5 and 5 mg kg-1, corre-
sponding to doses of 6.7, 20 and 67 nmol 
kg-1 antibody binding sites. Antibody 
concentrations in the figures are in nM 
antibody binding sites. For the simula-
tions using the non-equilibrium model, 3 
k

on
/k

off
 scenarios, all yielding the same K

D
 

(0.03 nM), were explored: k
on

/k
off

 values 
were 0.042 nM-1hr-1 and 0.0013 hr-1 in 
scenario 1, 0.42 nM-1hr-1 and 0.013 hr-1 in 
scenario 2 and 4.2 nM-1hr-1 and 0.13 hr-1 
in scenario 3. Simulations were performed 
using NONMEM VI. Plots were gener-
ated using SigmaPlot 10.0.

Our next aim was to assess whether the 
equilibrium model can adequately charac-
terize total antibody and total ligand con-
centration-time profiles when these are the 
only data available. For this purpose, sim-
ulated datasets for the 3 k

on
/k

off
 scenarios 

(n = 4 per dose level) were first generated 
by incorporating random effects (inter-
subject variability and residual error) in 
the non-equilibrium model. The equilib-
rium model was then fit to the total anti-
body and total ligand concentration-time 
data thus obtained and model-predicted 
free ligand concentration-time profiles 
were compared with ‘observed’ profiles 
obtained from the simulations. Further, 
we included the free ligand concentra-
tion-time data in the estimation process 
to explore whether inclusion of this data, 
when available, would improve the overall 
fit to the equilibrium model.

Plasma total antibody concentrations:

	 (9)

Plasma total ligand concentrations:

	 (10)

Plasma free ligand concentrations:

	
				    (7)

Plasma antibody-ligand complex 
concentrations:

	
				    (8)

Table 4. Parameter estimates obtained by fitting the non-equilibrium model to total antibody 
and total ligand data

Parameter description Population estimate (%SEE) Actual

Scenario 1 Scenario 2 Scenario 3

ka (hr-1) 0.00854 (4.67) 0.00893 (9.33) * 0.00837

CL/F (L hr-1 kg-1) 0.00214 (8.55) 0.00215 (8.42) * 0.00193

V/F (L kg-1) 0.239 (6.36) 0.253 (11.3) * 0.231

kin (nM hr-1) 0.518 (21.0) 0.438 (6.85) * 0.417

kout (hr-1) 7.89 (21.9) 6.63 (9.47) * 6.85

kon (nM-1 hr-1) 0.0401 (6.63) 0.419 (7.97) * 0.042, 0.42, 4.2

koff (hr-1) 0.00174 (45.9) 0.0150 (20.1) * 0.0013, 0.013, 0.13

Variability

IIV in CL/F 28.8% (28.4) 28.1% (27.8) * 28.3%

IIV in kout 0 FIXED 0 (FIXED) * 12.7%

Res_prop for PK 34.8% (14.8) 34.9% (14.9) * 31.6%

Res_prop for PD 19.3% (10.0) 18.9% (9.97) * 17.3%

SEE, Standard error of the estimate; IIV, Inter-individual variability; Res_prop, Proportional residual 
error.

Table 5. Parameter estimates obtained by fitting the non-equilibrium model to total antibody, 
total ligand and free ligand data

Parameter description Population estimate (%SEE) Actual

Scenario 1 Scenario 2 Scenario 3

ka (hr-1) 0.00847 (4.51) 0.00888 (5.87) * 0.00837

CL/F (L hr-1 kg-1) 0.00214 (8.55) 0.00215 (8.19) * 0.00193

V/F (L kg-1) 0.237 (6.96) 0.251 (8.01) * 0.231

kin (nM hr-1) 0.437 (14.5) 0.419 (6.35) * 0.417

kout (hr-1) 7.14 (15.1) 6.85 (7.23) * 6.85

kon (nM-1 hr-1) 0.0450 (3.76) 0.470 (5.34) * 0.042, 0.42, 4.2

koff (hr-1) 0.00182 (47.9) 0.0147 (14.4) * 0.0013, 0.013, 0.13

Variability

IIV in CL/F 29.4% (27.9) 28.5% (27.6) * 28.3%

IIV in kout 6.14% (40.1) 6.73% (47.7) * 12.7%

Res_prop for PK 34.9% (14.5) 35.1% (14.9) * 31.6%

Res_prop for PD 18.4% (8.62) 18.9% (7.48) * 17.3%

SEE, Standard error of the estimate; IIV, Inter-individual variability; Res_prop, Proportional residual 
error. *Parameter estimates could not be obtained.



588	 mAbs	 Volume 2 Issue 5

4.	 Jit M, Henderson B, Stevens M, Seymour RM. TNF-
alpha neutralization in cytokine-driven diseases: 
a mathematical model to account for therapeutic 
success in rheumatoid arthritis but therapeutic fail-
ure in systemic inflammatory response syndrome. 
Rheumatology (Oxford) 2005; 44:323-31.

5.	 Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ. A 
mechanism-based binding model for the population 
pharmacokinetics and pharmacodynamics of omali-
zumab. Br J Clin Pharmacol 2007; 63:548-61.

6.	 Marathe A, Peterson MC, Mager DE. Integrated 
cellular bone homeostasis model for denosumab 
pharmacodynamics in multiple myeloma patients. J 
Pharmacol Exp Ther 2008; 326:555-62.
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ity anti-IgE monoclonal antibody. Aaps J 2008; 10 
425-30.

8.	 Furuya Y, Ozeki T, Takayanagi R, Yokoyama H, 
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anti-inflammatory effect of infliximab on Crohn’s 
disease. Drug Metab Pharmacokinet 2007; 22:20-5.

9.	 Meno-Tetang GM, Lowe PJ. On the prediction of 
the human response: a recycled mechanistic pharma-
cokinetic/pharmacodynamic approach. Basic Clin 
Pharmacol Toxicol 2005; 96:182-92.

10.	 Racine-Poon A, Botta L, Chang TW, Davis FM, 
Gygax D, Liou RS, et al. Efficacy, pharmacody-
namics and pharmacokinetics of CGP 51901, an 
anti-immunoglobulin E chimeric monoclonal anti-
body, in patients with seasonal allergic rhinitis. Clin 
Pharmacol Ther 1997; 62:675-90.

11.	 Vugmeyster Y, Tian X, Szklut P, Kasaian M, Xu X. 
Pharmacokinetic and pharmacodynamic modeling 
of a humanized anti-IL-13 antibody in naive and 
Ascaris-challenged cynomolgus monkeys. Pharm Res 
2009; 26:306-15.

12.	 Lobo ED, Hansen RJ, Balthasar JP. Antibody phar-
macokinetics and pharmacodynamics. J Pharm Sci 
2004; 93:2645-68.

13.	 Ternant D, Paintaud G. Pharmacokinetics and con-
centration-effect relationships of therapeutic mono-
clonal antibodies and fusion proteins. Expert Opin 
Biol Ther 2005; 5:37-47.

Finally, we wanted to explore what sce-
narios might allow reasonable estimates 
for k

on
 and k

off
 when fitting the non-equi-

librium model to either total ligand data 
alone or both total and free ligand data. 
The estimation procedure was performed 
using the simulated data generated above 
for the 3 k

on
/k

off
 scenarios.
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