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Plants generally react to the attack 
of non-host and incompatible host 

microorganisms by inducing pathogene-
sis-related (PR) genes and localised cell 
death (LCD) at the site of infection, a 
process collectively known as the hyper-
sensitive response (HR). Reactive oxygen 
species (ROS) are generated in various 
sub-cellular compartments shortly after 
pathogen recognition, and proposed to 
cue subsequent orchestration of the HR. 
Although apoplast-associated ROS pro-
duction by plasma membrane NADPH 
oxidases have been most thoroughly 
studied, recent observations suggest that 
ROS are generated in chloroplasts earlier 
in the response and play a key role in exe-
cution of LCD. A model is presented in 
which the initial outcome of successful 
pathogen detection is ROS accumulation 
in plastids, likely mediated by mitogen-
activated protein kinases and caused 
by dysfunction of the photosynthetic 
electron transport chain. ROS signal-
ing is proposed to spread from plastids 
to the apoplast, through the activation 
of NADPH oxidases, and from there to 
adjacent cells, leading to suicidal death 
in the region of attempted infection.

Introduction

The hypersensitive response (HR), first 
described by Stakmann1 in 1915, is the 
landmark of successful pathogen recog-
nition during non-host and incompat-
ible host plant-microbe interactions.2 It 
is a multicomponent response involving 
increased expression of defence-associated 
genes (pathogenesis-related or PR genes), 

synthesis of antimicrobial secondary 
metabolites and a form of localised cell 
death (LCD) at the site of infection, 
purportedly designed to restrict further 
advance of biotrophic or hemi-biotrophic 
microorganisms.2 Although the HR has 
been usually employed as a visual marker 
of biotic interactions, some of its features, 
including LCD and induction of PR 
genes, are shared by plant responses to a 
number of abiotic stresses such as excess 
of excitation energy (EEE),3 and expo-
sure to ozone.4 A biphasic oxidative burst 
leading to the generation of reactive oxy-
gen species (ROS) commonly precedes 
cell death, and the signaling role played 
by these oxidants in the orchestration of 
the HR has long been recognised.5-8 The 
link between ROS and the HR was estab-
lished more than twenty years ago, when 
Doke9 reported superoxide production 
prior to HR elicited by Phytophthora infes-
tans and tobacco mosaic virus on potato 
and tobacco, respectively. However, many 
aspects of ROS function remain obscure. 
For instance, it is not clear if they partici-
pate in triggering LCD, in the induction 
of PR genes, or in both pathways. Also, 
the relative contribution of ROS produced 
in different compartments has yet to be 
established. These reactive species can be 
synthesised in the apoplast by NADPH 
oxidases bound to the plasma membrane, 
or intracellularly in chloroplasts, mito-
chondria and peroxisomes, as byproducts 
of metabolic processes such as photosyn-
thesis and respiration.8 Although the con-
tribution of organellar ROS is increasingly 
appreciated, most researches have focused 
on NADPH oxidases as the HR-relevant 
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routes normally inhibited by pathogen 
infection, such as photosynthesis, amino 
acid synthesis and antioxidant metabo-
lism. Other aspects of the HR were 
instead not affected by flavodoxin expres-
sion. Induction of PR genes, and synthesis 
of salicylic and jasmonic acid proceeded as 
in inoculated non-transformed plants, and 
infection did not spread to tissues adjacent 
to the infiltrated regions. The results indi-
cated that chloroplast-derived ROS were 
essential for the progress of LCD during 
the HR, but did not contribute to induc-
tion of defence-associated genes or other 
signaling components of the response.

Integration of ROS Signaling  
During the HR

How the various extracellular and intrac-
ellular sources of ROS integrate to trigger 
the HR? Which are the signals that initiate 
ROS production in the different compart-
ments upon recognition of an invading 
pathogen? These questions remain largely 
unanswered, but recent developments 
have provided promising clues to under-
stand the succession of events that lead 
from ROS build-up to full manifestation 
of the HR.

An increasing number of reports have 
shown that plant mitogen-activated pro-
tein kinases (MAPKs) are converging 
nodes after perception of pathogens and 
elicitors.25-27 ROS-induced activation 
of MAPKs had generally been taken as 
evidence that ROS act upstream of the 
MAPK cascade.25 However, recent investi-
gations on different plant-pathogen inter-
actions showed that various MAPK and 
Ca++-dependent kinase pathways might be 
part of an amplification network upstream 
of rboh genes, which are in turn respon-
sible for producing the secondary peak 
of the biphasic ROS burst in response to 
pathogen infection.25,27-29 Liu et al.17 have 
studied a conditional gain-of-function 
mutant of tobacco MEK2, a protein 
kinase kinase that, when expressed under 
control of a steroid-inducible promoter, 
activates downstream kinases and induces 
LCD lesions in the absence of pathogen. 
Constitutive expression of MEK2 caused 
loss of membrane potential, electrolyte 
leakage and ROS generation in both 
chloroplasts and mitochondria, which 

oxygen consumption and ROS propaga-
tion.14 Salicylic acid, which is induced in 
many plant-microbe interactions and is 
involved in the deployment of systemic 
acquired resistance, has been shown to act 
as uncoupler of oxidative phosphorylation 
and, at higher levels, inhibitor of the respi-
ratory chain, leading to ROS generation 
in mitochondria.13 It is likely that changes 
in the redox status of this organelle result 
in cellular metabolic dysfunction, and sig-
nificantly contribute to the establishment 
of the HR-associated LCD.2,11

Chloroplasts Shed Light 
on the HR

Initial reports implicating chloroplasts as 
sources of ROS signaling for the HR were 
based on the observation that at least some 
forms of this response required light.15-17 
Indeed, chloroplasts are the major ROS 
source in plant cells (over mitochondria 
and peroxisomes), largely through over-
reduction of the photosynthetic electron 
transport chain (PETC) under EEE con-
ditions, when photon input exceeds that 
required for photochemistry.3,18 ROS pro-
duction in chloroplasts is also a common 
theme in many situations of abiotic stress, 
significantly contributing to the damage 
undergone by the plant.19

The role of chloroplast-generated ROS 
in the HR has been recently evaluated 
using tobacco plants which expressed a 
plastid-targeted flavodoxin. Flavodoxins 
are electron shuttle proteins present in 
photosynthetic microorganisms, but not 
in plants, which can engage in several 
plant-borne electron transport processes 
in vivo.20,21 When expressed in transgenic 
plants, they specifically prevent ROS for-
mation in chloroplasts, without affecting 
extra-plastidial sources.19,22 Transformants 
displayed enhanced tolerance to iron defi-
cit, to multiple sources of abiotic stress and 
to xenobiotics.20,23,24

Infiltration of flavodoxin-expressing 
plants with a non-host pathogen resulted 
in lower ROS accumulation in chloro-
plasts compared to non-transformed sib-
lings, whereas apoplastic ROS production 
was hardly affected.22 Noteworthy, LCD 
symptoms were largely prevented in the 
infected flavodoxin transformants, cor-
relating with preservation of metabolic 

ROS generating system. We will briefly 
review these contributions and propose an 
integrated working hypothesis for future 
developments.

Apoplastic ROS Production  
and its Contribution to the HR

By comparison with mammalian systems, 
ROS production in the apoplast, mediated 
by NADPH oxidase activities encoded by 
the Rboh gene family, has been long con-
sidered as a central feature of the HR. 
Plants usually contain several Rboh genes 
(ten in Arabidopsis) which are transcrip-
tionally upregulated by pathogens, and 
whose products display a certain degree 
of functional overlap.8 Genetic proof of 
the role played by NADPH oxidase iso-
forms in the pathogen-induced oxidative 
burst has been obtained by the use of Rboh 
mutants and antisense lines.10 Extracellular 
ROS production has been linked to direct 
lipid peroxidation, to the alkalinisation of 
the apoplast, thereby propagating the sig-
nal by alkali-responsive peroxidases, or to 
alterations in the levels and/or redox status 
of antioxidant pools.2 Interestingly, down-
regulation or elimination of Rboh genes 
could lead to variable effects on the HR. 
For example, although Arabidopsis RbohD 
and RbohF mutants exhibited lower ROS 
accumulation, they displayed enhanced 
HR when introduced into a lesion stimu-
lating disease 1 mutant background, or 
when challenged with avirulent bacteria.10 
These results indicate that while NADPH 
oxidase activity is required for pathogen-
induced ROS production in the apoplast, 
these ROS might serve different signaling 
purposes during the HR.10

Mitochondria and LCD

Mitochondria play an important role in 
ROS generation leading to LCD in mam-
malian cells, and recent observations 
suggest a similar role in plants.11-13 For 
instance, treatment of Arabidopsis leaves 
with bacterial elicitors results in rapid ROS 
generation in mitochondria, followed by 
membrane pore formation, dissipation of 
membrane potential and decline of ATP 
levels. The results indicate that oxida-
tive phosphorylation is uncoupled early 
after the challenge, leading to runaway 
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HR proceed unaffected and LCD is only 
ameliorated or delayed,22 indicating that 
ROS-independent processes also contrib-
ute to the HR. Distinction between these 

Finally, it should be borne in mind that 
even when ROS production is abolished 
by mutation, transgenic or pharmaco-
logical approaches, some aspects of the 

was preceded by disruption of metabolic 
activities in these organelles.17 Consistent 
with a role of chloroplast-generated ROS 
in MAPK-mediated LCD, plants kept in 
the dark failed to accumulate peroxides in 
plastids after MEK2 activation and cell 
death was considerably delayed.17

Another piece of evidence of the role 
played by chloroplasts in the early signal-
ing for the HR came from studies on the 
Arabidopsis response to ozone which, as 
indicated before, displays many features 
in common with pathogen-induced HR, 
including biphasic oxidative burst. In a 
time-course analysis of the response, Joo 
et al.4 were able to demonstrate that the 
early phase of ROS accumulation was 
confined to chloroplasts of the guard cells, 
followed by extracellular ROS production 
in the plasma membrane of the same cells 
(dependent on NADPH oxidase activity), 
and subsequent spread to adjacent tissues. 
Ozone did not penetrate the cytosol but 
triggered the response by an unknown 
mechanism which involves membrane-
bound heterotrimetic G proteins.4

Based on these recent contribu-
tions,4,17,22 we propose that chloroplasts 
are the initial source of ROS during the 
HR, resulting from shutdown of electron 
utilisation in the chloroplast stroma, and 
leading to over-reduction of the photo-
synthetic electron transport chain and 
EEE in the thylakoids. The ROS-linked 
signals are then somehow communicated 
to the plasma membrane for apoplastic 
oxidative burst and spread to adjacent 
cells, and eventually also to mitochondria. 
The comprehensive model depicted in 
Figure 1 is intended as a working hypoth-
esis and includes many unknown stages 
and open questions, providing direction 
for future research. For instance, the simi-
larities between the ozone and pathogen 
responses need to be further studied. 
Inhibition of chloroplast ROS build-up in 
flavodoxin-expressing plants was measured 
at 19 hours post infiltration, when both 
phases of the oxidative burst are expected 
to have occurred.22 Determination of the 
kinetics of the response in these plants is 
mandatory. The role of lipid peroxides in 
transmitting the signal from chloroplasts 
to other ROS sources should be investi-
gated, as well as the clues that promote 
plastid ROS production in the first place. 

Figure 1. Schematic diagram of ROS signaling for the LCD associated to the HR in a plant-patho-
gen interaction. (A) Recognition of an invading pathogen triggers light-dependent ROS produc-
tion in chloroplasts. Chloroplast-generated ROS then signal for further ROS production in the 
apoplast by directly or indirectly activating RboH-type NADPH oxidases, which are involved in 
propagation of the signal to adjacent cells. There is also a relay of information to the nucleus and 
mitochondria. Altogether, the different signaling factors lead to the establishment of LCD. 
(B) Flavodoxin (Fld) expression in chloroplasts specifically blocks ROS generation in this organelle, 
delaying the appearance of LCD symptoms. This experimental evidence supports the central role 
played by chloroplasts in the signaling pathways for HR-associated LCD.
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two types of mechanisms and the possible 
cross-talk between them constitutes yet 
another important task to understand this 
very complex plant response.
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