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Abstract
Local polynomial regression is a useful nonparametric regression tool to explore fine data structures
and has been widely used in practice. In this paper, we propose a new nonparametric regression
technique called local composite-quantile-regression (CQR) smoothing in order to further improve
local polynomial regression. Sampling properties of the proposed estimation procedure are studied.
We derive the asymptotic bias, variance and normality of the proposed estimate. Asymptotic relative
efficiency of the proposed estimate with respect to the local polynomial regression is investigated.
It is shown that the proposed estimate can be much more efficient than the local polynomial regression
estimate for various non-normal errors, while being almost as efficient as the local polynomial
regression estimate for normal errors. Simulation is conducted to examine the performance of the
proposed estimates. The simulation results are consistent with our theoretical findings. A real data
example is used to illustrate the proposed method.
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1 Introduction
Consider the general nonparametric regression model

(1.1)

where Y is the response variable, T is a covariate, m(T) = E(Y|T), which is assumed to be a
smooth nonparametric function, and σ(T) is a positive function representing the standard
deviation. We assume ϵ has mean 0 and variance 1. Local polynomial regression is a popular
and successful method for nonparametric regression, and it has been well studied in the
literature (Fan & Gijbels 1996). By locally fitting a linear (or polynomial) regression model
via adaptively weighted least squares, local polynomial regression is able to explore the fine
features of the regression function and its derivatives. Although the least squares method is a
popular and convenient choice in local polynomial fitting, we may consider using different
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local fitting methods. For example, in the presence of outliers, one may consider local least
absolute deviation (LAD) polynomial regression (Fan, Hu & Truong 1994, Welsh 1996). When
the error follows a Laplacian distribution, the local LAD polynomial regression is more
efficient than the local least squares polynomial regression. Of course, the local LAD
polynomial regression can do much worse than the local least squares polynomial regression
in other different settings. The aim of this paper is to develop a new local estimation procedure
that can significantly improve upon the classical local polynomial regression for a wide class
of error distributions, and has comparable efficiency in the worst case scenario.

Our proposal is built upon the composite-quantile-regression (CQR) estimator recently
proposed by Zou & Yuan (2008) for estimating the regression coefficients in the classical linear
regression model. Zou & Yuan (2008) show that the relative efficiency of the CQR estimator
compared to the least squares estimator is greater than 70% regardless the error distribution.
Furthermore, the CQR estimator could be much more efficient and sometimes arbitrarily more
efficient than the least squares estimator. These nice theoretical properties of CQR in linear
regression motivates us to construct the local CQR smoothers as nonparametric estimates of
the regression function and its derivatives.

We make several contributions in this paper.

• We propose the local linear CQR estimator for estimating the nonparametric
regression function. We establish the asymptotic theory of the local linear CQR
estimator and show that, compared with the classical local linear least squares
estimator, the new method can significantly improve the estimation efficiency of the
local linear least squares estimator for commonly used non-normal error distributions.

• We propose the local quadratic CQR estimator for estimating the derivative of the
regression function. The asymptotic theory shows that the local quadratic CQR
estimator can often drastically improve the estimation efficiency of its local least
squares counterpart if the error distribution is non-normal, and at the same time, the
loss in efficiency is at most 8.01% in the worst case scenario.

• The general asymptotic theory of the local p-polynomial CQR estimator is
established. Our theory does not require the error distribution to have a finite variance.
Therefore, local CQR estimators can work well even when local polynomial
regression fails due to the infinite variance in the noise.

It is a well-known fact that the local linear (polynomial) regression is the best linear smoother
in terms of efficiency (Fan & Gijbels 1996). There is no contradiction between this fact and
our results, because the proposed local CQR estimator is a nonlinear smoother.

The rest of this paper is organized as follows. In section 2, we introduce the local linear CQR
for the nonparametric regression and study its asymptotic properties. In section 3, we propose
the local quadratic CQR for estimating the derivative of the nonparametric regression, which
is able to further reduce the estimation bias by the local linear CQR. Monte Carlo study and a
real data example are presented in section 4. In section 5 we present the general theory of the
local p-polynomial CQR and technical proofs.

2 Estimation of regression function
Suppose that (ti,yi), i = 1, ⋯, n, is an independent and identically distributed random sample.
Consider estimating the value of m(T) at t0. In local linear regression we first approximate m
(t) locally by a linear function m(t) ≈ m(t0) + m′(t0)(t − t0) and then fit a linear model locally
in a neighborhood of t0. Let K(·) be a smooth kernel function, the local linear regression
estimators of m(t0) is â, where
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(2.1)

where h is the smoothing parameter. Local linear regression enjoys many good theoretical
properties, such as its design adaptation property and high minimax efficiency (Fan & Gijbels
1992). However, local least squares regression breaks down when the error distribution does
not have finite second moment, for the estimator is no longer consistent. The local least absolute
deviation (LAD) polynomial regression (Fan et al. 1994, Welsh 1996) replaces the least squares
loss in (2.1) with the L1 loss. By doing so, the local LAD estimator can deal with the infinite
variance case, but for finite variance cases its relative efficiency compared to the local least
squares estimator can be arbitrarily small.

We propose the local linear CQR estimator as an efficient alternative to the local linear
regression estimator. Let ρτk (r) = τkr − rI (r < 0), k = 1, 2, …, q, be q check loss functions at

q quantiles positions: . In the linear regression model the CQR loss is defined as (Zou
& Yuan 2008)

The CQR combines the strength across multiple quantile regressions with forcing a single
parameter for “slope”. Since the nonparametric function is approximated by a linear model
locally, we consider minimizing the locally weighted CQR loss

(2.2)

Denote the minimizer of (2.2) by (â1, ⋯, âq, b̂). Then we let

(2.3)

We refer m ̂(t0) to as the local linear CQR estimator of m(t0). As an estimator of m′(t0), m̃′(t0)
can be further improved by using the local quadratic CQR estimator which is discussed in the
next section.

Remark 1
It is worth mentioning here that although the check loss function is typically used to estimate
the conditional quantile function of y given T (see Koenker (2005) and references therein), we
simultaneously employ several check functions to estimate the regression (mean) function. So
the local CQR smoother is conceptually different from nonparametric quantile regression by
local fitting which has been studied in Yu & Jones (1998) and chapter 5 of Fan & Gijbels
(1996).
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Remark 2
In a short note Koenker (1984) studied the Hogg estimator as the minimizer of the weighted
sum of check functions in the framework of parametric linear models. The focus there is to
argue that the Hogg estimator is a different way to do L-estimation. The CQR loss can be
regarded as a weighted sum of check functions with uniform weights and uniform quantiles

. When q is large, such a choice leads to nice oracle-like estimators in
the oracle model selection theoretic framework (Zou & Yuan 2008). Koenker (1984) did not
discuss relative efficiency of the Hogg estimator relative to the least squares estimator. In this
work we consider minimizing the locally weighted CQR loss and show that the local CQR
smoothers have very interesting asymptotic efficiency properties. To our best knowledge, none
of these has been studied in the literature.

2.1 Asymptotic properties
To see why local linear CQR is an efficient alternative to local linear regression, we establish
the asymptotic properties of the local linear CQR estimator. Some notation is necessary for the
discussion. Let F(·) and f(·) denote the density function and cumulative distribution function
of the error distribution, respectively. Denote by fT(·) the marginal density function of the
covariate T. We choose the kernel K(·) as a symmetric density function and let

Define

(2.4)

where ck = F−1 (τk) and τkk′ = τk ∧ τk′ − τkτk′. In the following theorem, we present the asymptotic
bias, variance and normality of m ̂(t0), whose proof is given in section 5. Let T be the σ-field
generated by {T1, ⋯, Tn}.

Theorem 2.1—Suppose that t0 is an interior point of the support of fT(·). Under the regularity
conditions (A)—(D) in section 5, if h → 0 and nh → ∞, then the asymptotic conditional bias
and variance of the local linear CQR estimator m̂(t0) are given by

(2.5)

(2.6)

Furthermore, conditioning on T, we have

(2.7)
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where  stands for convergence in distribution.

Remark 3—In the proof given in section 5 we assume the error distribution is symmetric.
Without such a condition the asymptotic bias will have a non-varnishing term. The asymptotic
variance remains the same and the asymptotic normality still holds with a minor modification.
In other words, the symmetric error distribution condition is only used to ensure that the
quantity to which the local CQR estimator converges is the conditional mean. This is similar
to the situation when using the local LAD to estimate the conditional mean function where we
need to assume the mean and median of the error distribution coincide.

We see from Theorem 2.1 that the leading term of the asymptotic bias for the local linear CQR
estimator is the same as that for the local linear least squares estimator, while their asymptotic
variances are different. The mean squared error of m ̂(t0) is

By straightforward calculations we can see that the optimal variable bandwidth minimizing
the asymptotic mean squared error of m ̂(t0) is

In practice, one may select a constant bandwidth by minimizing the mean integrated squared
error MISE (m ̂) = ∫ MSE{m ̂(t0)}w(t) dt for a weight function w(t). Similarly, the optimal
bandwidth minimizing the asymptotic MISE(m ̂) is

The above calculations indicate that the local linear CQR estimator enjoys the optimal rate of
convergence n2/5.

2.2 Asymptotic relative efficiency
In this section, we study the asymptotic relative efficiency of the local linear CQR estimator
with respect to the local linear least squares estimator by comparing their mean squared errors.
The role of R1 becomes clear in the relative efficiency study.

The local linear least squares estimator for m(t0) has the mean squared error

and hence
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where  is the optimal variable bandwidth minimizing the asymptotic MSE and  is
the optimal bandwidth minimizing the asymptotic MISE. Therefore, we have

(2.8)

We use MSEopt and MISEopt to denote the MSE and MISE evaluated at their optimal
bandwidth. Then by straightforward calculations we see that as n approaches ∞,

Thus, it is natural to define ARE(m ̂, m̂LS the asymptotic relative efficiency (ARE) of the local
linear CQR estimator with respect to the local linear least squares estimator, as follows

(2.9)

The ARE only depends on the error distribution, although the dependence could be rather
complex. However, for many commonly seen error distributions, we can directly compute the
value of ARE. Table 1 displays the ARE(m ̂, m ̂LS) for some commonly seen error distributions.

Several interesting observations can be made from Table 1. Firstly, when the error distribution
is N(0, 1) for which the local linear least squares estimator is expected to have the best
performance, the ARE(m ̂, m̂LS) is very close to 1 regardless the choice of q in the local linear
CQR estimator. When q = 5 the the local linear CQR only loses at most 7% efficiency, while
it performs as well as the local linear least squares estimator when q = 99. Secondly, for all the
other non-normal distributions listed in Table 1, the local linear CQR estimator can have higher
efficiencies than the local linear least squares estimator when a small q is used. The mixture
of two normals is often used to model the so-called contaminated data. For such distributions,
the ARE(m ̂, m̂LS) can be as large as 4.9 and even more. Table 1 also indicates that, except for
the Laplace error, the local CQR with q = 5 or q = 9 are significantly better than the one with
q = 1, which becomes the local LAD for these distributions. Finally, we observe that the ARE
values for a variety of distributions are very close to 1 when q is large (q = 99). It turns out that
this phenomenon is true in general, as demonstrated in the following theorem.

Theorem 2.2—limq→∞ R1(q) = 1, and thus .

Theorem 2.2 provides us insights into the asymptotic behavior of the local linear CQR estimator
and implies that the local linear CQR estimator is a safe competitor against the local linear
least squares estimator, for it will not lose efficiency when using a large q. On the other hand,
substaintial gain in efficiency could be achieved by using a relatively small q such as q = 9, as
shown in Table 1.

Kai et al. Page 6

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3 Estimation of derivative
In many situations we are interested in estimating the derivative of m(t). The local linear CQR
also provides an estimator m̃′(t0) to the derivative of m(t). The asymptotic bias and variance of
the estimate m̃′(t0) in (2.3) are given in (5.8) and (5.9) in section 5. The local linear CQR
estimator and the local linear regression estimator have the same leading bias term which
depends on the intrinsic part m‴(t0) and the extra part . In Chu & Marron
(1991) and Fan (1992), the authors already argued that the bias could be very large in many
situations. So it may not be an ideal estimator because of the relatively large bias. The local
quadratic regression is often preferred for estimating the derivative function, since it reduces
the estimation bias without increasing the estimation variance (Fan & Gijbels 1992). We show
here that the same phenomenon is true in local CQR smoothing.

We consider the local quadratic approximation of m(t) in the neighborhood of t0:

. Let a = (a1, ⋯, aq) and b = (b1, b2). We solve

(3.1)

Then the local quadratic CQR estimator for m′(t0) is given by

(3.2)

3.1 Asymptotic properties
Denote

(3.3)

The asymptotic bias, variance and normality are given in the following theorem.

Theorem 3.1—Suppose that t0 is an interior point of the support of fT(·). Under the regularity
conditions (A)—(D) in section 5, if h → 0 and nh3 → ∞, then the asymptotic conditional bias
and variance of m̃′(t0), defined in (3.2) is given by

(3.4)

(3.5)

Furthermore, conditioning on T, we have the following asymptotic normal distribution
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(3.6)

Remark 4—In Theorem 3.1 the symmetric-error-distribution assumption is used to get the
asymptotic bias formula. Without that assumption, the asymptotic variance remains the same
and the asymptotic normality still holds with a minor modification. It is also interesting to point
out that when the variance function is homoscadastic the symmetric-error-distribution
assumption is no longer needed for Theorem 3.1.

Comparing (5.8) and (3.4), we see that the extra part  is removed in the
local quadratic CQR estimator. Comparing the local quadratic CQR and the local quadratic
least squares estimators for m′(t0), we see that they have the same leading bias term, while their
asymptotic variances are different.

From Theorem 3.1, the mean squared error of local quadratic CQR estimator m ̂′(t0) is given
by

Thus, the optimal variable bandwidth minimizing MSE{m ̂′(t0)} is

Furthermore, we consider the mean integrated squared error MISEm ̂′ = ∫ MSE{m ̂′(t)}w(t) dt
with a weight function w(t). The optimal constant bandwidth minimizing the mean integrated
squared error is given by

The above calculations indicate that the local quadratic CQR estimator enjoys the optimal rate
of convergence n2/7.

3.2 Asymptotic relative efficiency
In what follows we study the asymptotic relative efficiency of the local quadratic CQR
estimator with respect to the local quadratic least squares estimator. Note that the mean squared

error of local quadratic least squares estimator  is given by
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and the mean integrated squared error (MISE) is  with a
weight function w(t). Thus, by straightforward calculations, we notice that

(3.7)

where  and  are the corresponding optimal bandwidths of local quadratic least squares
estimator. With the optimal bandwidths, we have

Therefore, the asymptotic relative efficiency (ARE) of the local quadratic CQR estimator (m ̂

′) with respect to the local quadratic least squares estimator  is defined to be

(3.8)

The ARE only depends on the error distribution and it is scale invariant.

To gain insights into the asymptotic relative efficiency, we consider the limit when q is large.
Zou & Yuan (2008) showed that

Immediately, we know that if using a large q, the ARE is bounded below by 0.70264/7 = 0.8173.
Having a universal lower bound is very useful because it prohibits severe loss in efficiency
when replacing the local quadratic least squares estimator with the local quadratic CQR
estimator. One of our contributions in this work is to provide an improved sharper lower bound
as shown in the following theorem.

Theorem 3.2
Let ℱ denote the class of error distributions with mean 0 and variance 1, then we have

(3.9)

The lower bound is reached if and only if the error follows the rescaled Beta(2,2) distribution
with mean zero and variance one. Thus

(3.10)

It is interesting to note that Theorem 3.2 provides us the exact lower bound of 
as q → ∞. Theorem 3.2 indicates that if q is large, even in the worst scenario the potential
efficiency loss for the local CQR estimator is only 8.01%.
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Theorem 3.2 implies that the local quadratic CQR estimator is a safe alternative to the local
quadratic least squares estimator. It concerns the worst case scenario. There are many optimistic
scenarios as well in which the ARE can be much bigger than 1. We examine the

 for the error distributions considered in Table 1. We also list the results in Table

2, where the column labeled q = ∞ shows the theoretical limit of the . Obviously,
these limits are all larger than the lower bound 0.9199. The local quadratic CQR estimator only
loses less than 4% efficiency when the error distribution is normal and q = 9. It is interesting

to see that for the other non-normal distributions the  is larger than 1 and its value
is insensitive to the choice of q. For example, with q = 9, the AREs are already very close to
their theoretical limits.

4 Numerical comparisons and examples
In this section, we first use Monte Carlo simulation studies to assess the finite sample
performance of the proposed estimation procedures and then demonstrate the application of
the proposed method by using a real data example. Throughout this section we use the

Epanechnikov kernel, i.e., . We adopt the MM algorithm proposed by (Hunter
& Lange 2000) for solving the local CQR smoothing estimator. All the numerical results are
computed using our MATLAB code, which is available upon request.

4.1 Bandwidth selection in practical implementation
Bandwidth selection is an important issue in local smoothing. Here we briefly discuss the
bandwidth selection issue in the local CQR smoothing estimator by using existing bandwidth
selector for the local polynomial regression. Here we consider two bandwidth selectors.

1. The “pilot” selector. The idea is to use a pilot bandwidth in local cubic CQR (defined
in section 5) to estimate m″(t) and m‴(t). The fitted residuals can be used to estimate
R1(q) and R2(q). Thus, we can use the optimal bandwidth formula to estimate the
optimal bandwidth and then refit the data.

2. A short-cut strategy. In our numerical studies, we compare the local CQR and local
least squares estimators. Note that in (2.8) and (3.7) we obtain very neat relationships
between the optimal bandwidths for the local CQR and local least squares estimators.
The optimal bandwidth for the local least squares estimators can be selected by
existing bandwidth selectors (see Chapter 4 of Fan & Gijbels (1996)). In addition, we
are able to infer the factors R1(q) and R2(q) from the residuals of the local least squares
fit. Sometimes, we even know the exact values of the two factors (e.g., in simulations).
Therefore, after fitting the local least squares estimator with the optimal bandwidth,
we can estimate the optimal bandwidth for the local CQR estimator.

We used the short-cut strategy in our simulation examples. However, if the error variance is
infinite or very large, then the local least squares estimator performs poorly. The “pilot” selector
is a better choice than the short-cut strategy.

4.2 Simulation examples
In our simulation studies, we compare the performance of the newly proposed method with
the local polynomial least squares estimate. The bandwidth is set to the optimal one in which
the  is selected by a plug-in bandwidth selector (Ruppert, Sheather & Wand 1995). The
performance of estimator m ̂(·) and m ̂′(·) is assessed via the average squared errors (ASE),

defined by , with g equals either m(·) or m′(·), where {uk,
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k = 1, …, ngrid} are the grid points at which the functions {ĝ(·)} are evaluated. In our simulation,
we set ngrid = 200 and grid points are evenly distributed over the interval at which the m(·) and
m′(·) are estimated. We summarize our simulation results using the ratio of average squared

errors (RASE),  for an estimator ĝ, where ĝLS is the local polynomial
regression estimator under the least squares loss. We considered two simulation examples.

Example 4.1—We generated 400 data set, each consisting of n = 200 observations, from

(4.1)

where T follows N(0, 1). This model is adopted from Fan & Gijbels (1992). In our simulation,
we considered five error distributions for ϵ: N(0, 1), Laplace, t3 distribution, a mixture of two
normals (0.95N(0,1) + 0.05N(0, σ2) with σ = 3,10). For the local polynomial CQR estimator,
we consider q = 5, 9 and 19, and estimate m(·) and m′(·) over [−1.5, 1.5]. The mean and standard
deviation of RASE over 400 simulations are summarized in Table 3. To see how the proposed
estimate behaves at a typical point, Table 3 also depicts the biases and standard deviations of
m ̂(t) and m ̂′(t) at t = 0.75. In Table 3, CQR5, CQR9 and CQR19 correspond to the local CQR
estimate with q = 5, 9 and 19, respectively.

Example 4.2—It is of interest to investigate the effect of heteroscedastic errors. To this end,
we generated 400 simulation data sets, each consisting of n = 200 observations, from

(4.2)

where T follows U(0, 1), σ(t) = {2 + cos(2πt)}/10, and ϵ is the same as that in Example 4.1. In
this example, we estimate m(t) and m′(t) over [0,1]. The mean and standard deviation of RASE
over 400 simulations are summarized in Table 4, in which we also show the biases and standard
deviations of m ̂(t) and m ̂′(t) at t = 0.4. The notation of Table 4 is the same as that in Table 3.

Table 3 and Table 4 show very similar messages, although Table 4 indicates that the local CQR
has more gains over the local least squares method. When the error follows the normal
distribution, the RASEs of the local CQR estimators are slightly less than one. For non-normal
distributions, the RASEs of the local CQR estimators can be greater than one, indicating the
gain in efficiency. For estimating the regression function, CQR5 and CQR9 seem to have better
overall performance than CQR19. For estimating the derivative, all three CQR estimators
perform very similarly. These findings are consistent with the theoretical analysis of AREs.

4.3 A real data example
As an illustration, we now apply the proposed local CQR methodology to the U.K. Family
Expenditure Survey data subset with high net-income, which consists of 363 observations. The
scatter plot of data is depicted in the left panel of Figure 1. The data set was collected in the
U.K. Family Expenditure Survey in 1973. Of interest is to study the relationship between the
food expenditure and the net-income. Thus, we take the response variable Y to be the logarithm
of the food expenditure, and the predictor variable T is the net-income.

We first estimated the regression function using the local least squares estimator with the plug-
in bandwidth selector (Ruppert et al. 1995). We further employed the kernel density estimate
to infer the error density f(·) based on the residuals from the local least squares estimator. Based
on the estimated density, we estimated both R1(q) and R2(q), which were used to compute the
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bandwidth selector for the CQR estimator. For this example, the estimated ratios are close to
1, so we basically use the same bandwidths for these two methods. The selected bandwidths
are 0.24 for regression estimation and 0.4 for derivative estimation. The CQR estimates with
q = 5,9 and 19 with the selected bandwidths are evaluated. The CQR estimates with three
different q’s are very similar, we only present the CQR estimate with q = 9 in Figure 1.

It is interesting to see from Figure 1 that the overall patten of the local least squares and the
local CQR estimate are the same. The difference between the local least squares estimate and
the local CQR estimate of the regression function becomes large when the net income around
2.8. From the scatter plot, there are two possible outlier observations: (2.7902,−2.5207) and
(2.8063,−2.6105) (circled in the plot). To understand the impact of these two possible outliers,
we re-evaluated the local CQR and the local least squares estimates after excluding these two
possible outliers. The resulting estimates are depicted in the top panel of Figure 2, from which
we can see that the local CQR estimate remains almost the same, while the local least squares
estimate changes a lot. We also note that after removing these two possible outliers, the local
least squares estimator becomes very close to the local CQR estimator. Furthermore, as a more
extreme demonstration, we kept these two possible outliers in the data set and moved them to
more extreme cases, i.e, we moved (2.7902,−2.5207) and (2.8063,−2.6105) to (2.7902,(2.7902,
−26.5207) and (2.8063,−6.6105), respectively. After distorting the two observations, we re-
calculated the local CQR and the local least squares estimate. The resulting estimates are
depicted in the bottom panel of Figure 2, which clearly demonstrates that the local least squares
estimate changes dramatically, while the local CQR estimate is nearly un-affected by the
artificial data distortion.

5 Local p-polynomial CQR smoothing and proofs
In this section we establish asymptotic theory of the local p-polynomial CQR estimators. We
then treat Theorems 2.1 and 3.1 as two special cases of the general theory. As a generalization
of the local linear and local quadratic CQR estimators, the local p-polynomial CQR estimator
is constructed by minimizing

(5.1)

and the local p-polynomial CQR estimators of m(t0) and m(r)(t0) are given by

(5.2)

For the asymptotic analysis, we need the following regularity conditions:

A. m(t) has a continuous (p + 2)th derivative in the neighborhood of t0.

B. fT(·), the marginal density function of T, is differentiable and positive in the
neighborhood of t0.

C. The conditional variance σ2(t) is continuous in the neighborhood of t0.

D. Assume that the error has a symmetric distribution with a positive density f(·).

We choose the kernel function K such that K is a symmetric density function with finite support
[−M, M]. The following notation is needed to present the asymptotic properties of the local p-
polynomial CQR estimator. Let S11 be a q × q diagonal matrix with diagonal elements f(ck),

Kai et al. Page 12

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



k = 1, ⋯, q, S12 be a q × p matrix with (k, j)-element being f(ck)μj, k = 1, ⋯,q and
, and S22 be a p × p matrix with (j, j′)-element being

. Similarly, Let Σ11 be a q × q matrix with (k, k′)-element

ν0τkk′, k, k′ = 1, ⋯, q, Σ12 be a q×p matrix with (k, j)-element being 
and , and Σ22 be a p × p matrix with (j, j′)-element being

. Define

Partition S−1 into four submatrices as follows

where and hereafter, we use (·)11 to denote the left-top q × q submatrix and use (·)22 to denote
the right-bottom p × p submatrix.

Furthermore, let . Let xi = (ti − t0)/

h, Ki = K(xi) and . Write di,k = ck[σ(ti) − σ(t0)] + ri,p with

.  to be . let

.

The asymptotic properties of the local p-polynomial CQR estimator are based on the following
theorem.

Theorem 5.1
Denote θ̂n = (û1, …, û1, ν ̂1, …, ν ̂p) be the minimizer of (5.1). Then under the regularity
conditions (A)—(C), we have

To prove theorem 5.1, we first establish Lemmas 5.2—5.3.

Lemma 5.2
Minimizing (5.1) is equivalent to minimizing
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with respect to θ = (u1, ⋯, uq, ν1, ⋯, νp)T, where

Proof. To apply the identity (Knight 1998)

(5.3)

we write . Minimizing (5.1) is equivalent to
minimizing

Using the identity (5.3) and with some straightforward calculations, it follows that

This completes the proof.

Let Sn,11 be a q × q diagonal matrix with diagonal elements ;

Sn,12 be a q × p matrix with (k, j)-element ; Sn,22 be a p × p matrix

with (j, j′) element . Denote

Lemma 5.3

Under Conditions (A) – (C), .

Proof. Write Ln(θ) as
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where Rn,k(θ) = Bn,k(θ) − Eϵ[Bn,k(θ)|T]. Using F(ck + z) − F(ck) = zf(ck) + o(z), then

 equals

We now prove Rn,k(θ) = op(1). It is sufficient to show Varϵ[Bn,k(θ)|T] = op(1). In fact,

Proof of Theorem 5.1—Similar to Parzen (1962), we have

 stands for convergence in probability. Thus,

This, together with Lemmas 5.2, 5.3, leads to

Since the convex function  converges in probability to the convex function

, it follows from the convexity lemma (Pollard 1991) that for any compact set
Θ, the quadratic approximation to Ln(θ) holds uniformly for θ in any compact set, which leads
to
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Denote ηi,k = I(ϵi ≤ ck)−τk and Wn = (w11, ⋯, w1q,, w21, ⋯, w2p)T with 

and . By the Cramer-Wald theorem, it is easy to see that the CLT
for Wn|T holds

(5.4)

Note that Cov(ηi,k, ηi,k′) = τkk′,Cov(ηi,k, ηj,k′) = 0, if i ≠ j. Similar to Parzen (1962), we have

. Combined with (5.4), we have

. Moreover, we have

. So by Slutsky’s theorem, conditioning on T, we have

. Therefore,

(5.5)

This completes the proof.

Proof of Theorem 2.1—The asymptotic normality follows Theorem 5.1 with p = 1. Let us
calculate the conditional bias and variance, respectively. Denote by eq×1 the vector that contains
q 1’s. When p = 1, S is a diagonal matrix with diagonal elements

. So the asymptotic conditional bias of  is

Note that the error is symmetric, thus , and furthermore, it is easy to check that

. Therefore,

Kai et al. Page 16

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



By using the fact that

we obtain

(5.6)

Furthermore, the conditional variance of m ̂(t0) is

(5.7)

By using Theorem 5.1, we can further derive the asymptotic bias and variance of m̃′(t0) given
in (2.3):

(5.8)

(5.9)

Proof of Theorem 2.2—Note that

(5.10)

by change of variables. Define two functions below . It
is easy to verify that

(5.11)

where . Similarly, we obtain
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(5.12)

where . Let I be the integral in (5.10). We have that I equals

(5.13)

By the definition of G and H, we know ; and combining (5.11)
and (5.12) yields . Now it is easy to see that I equals 1, by
the facts that .

Proof of Theorem 3.1—We apply Theorem 5.1 to get the asymptotic normality. Denote by
er the p-vector (0, 0, ⋯, 1, 0, ⋯, 0)T with 1 on the rth position. When p = 2, S12 has the following

forms .

Note that . Thus, (S−1)21 equals

. By Theorem 5.1

Note that . Similarly, under condition

(D), we have . Therefore, Bias

(m ̂′(t0|T) is equal to . For p = 2,

we obtain
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(5.14)

Furthermore, the conditional variance of m ̂(t0) is

(5.15)

which completes the proof.

Proof of Theorem 3.2—From Zou & Yuan (2008), we know that

Thus . We notice that 12 (∫ f2(x)dx)2 is also the asymptotic Pitman
efficiency of the Wilcoxon test relative to the t-test Hodges & Lehmann (1956). For the rest
of the proof, readers are referred to Hodges & Lehmann (1956).

6 Discussion
In this paper our theoretical analysis deals with the classical setting in which t0 is an interior
point and the error distribution has finite variance. We should point out here that the same
arguments hold for estimating boundary points and the proposed methodology is valid even
when the error variance is infinite.

• Automatic boundary correction. For simplicity, consider t ϵ [0, 1] and t0 = ch for
some constant c. We show that the leading team of the asymptotic bias of the local
linear/quadratic CQR estimator is the same as that of the local linear/quadratic LS
estimator, which indicates that the local CQR estimator enjoys the property of
automatical boundary correction, a nice property of local LS estimator. Furthermore,
the asymptotic relative efficiency remains exactly the same as that for interior points.

• Infinite error variance. We show that the local CQR estimator still enjoys the
optimal rate of convergence and asymptotic normality even when the conditional
variance is infinite. This property can be important for real applications, since we
have no information on the error distribution in practice.

For detailed theoretical proof of the above claims, we refer interested readers to a
supplementary file (Kai, Li & Zou 2009) of this paper, where we also provide additional
simulation results to support the theory. We opt not to show these results here due to space
limit.

In this paper, we focus on the local CQR estimate for the nonparametric regression model. The
proposed methodology and theory may be extended to the settings in presence of multivariate
covariates by considering varying coefficient models, additive models or semiparametric
models. Such extensions are of great interest, and further research is needed for such extensions.
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Finally, we would like to point out that the local CQR procedure is efficiently implemented
using the MM algorithm. Our experiences show that for q = 9 and sample size n = 7000, the
local CQR fit at a given location can be computed within 0.32 seconds on an AMD 1.9GHz
machine. The MM implementation seems to be more efficient than the standard linear
programming. We discuss the computing algorithm in details in a separate article.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The left panel is the scatter plot of data, the middle panel is the estimated regression function,
and the right panel is the estimated derivative function.

Kai et al. Page 21

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Plot of estimated regression function and its derivative. The top panel is for the estimate
removing the two possible outliers, and bottom panel is for the estimate moving the two
possible outliers to more extreme cases. The left panel is for the estimated regression function,
and the right panel is the estimated derivative function.
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