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Abstract

Background: The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium
arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a
species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation
of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent
origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall
fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA
carboxylase [Accl] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and
the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca
species complex were also included in the study, to increase understanding of evolutionary processes in a
taxonomic group characterised by multiple inter-specific hybridisation events.

Results: Putative homoeologous sequences from both nuclear genes were obtained from each polyploid species
and compared to counterparts from 15 diploid taxa. Phylogenetic reconstruction confirmed F. pratensis and F.
arundinacea var. glaucescens as probable progenitors to Continental tall fescue, and these species are also likely to
be ancestral to the rhizomatous morphotype. However, these two morphotypes are sufficiently distinct to be
located in separate clades based on the [TS-derived data set. All four of the generated data sets suggest
independent evolution of the Mediterranean and Continental morphotypes, with minimal affinity between cognate
sequence haplotypes. No obvious candidate progenitor species for Mediterranean tall fescues were identified, and
only two putative sub-genome-specific haplotypes were identified for this morphotype.

Conclusions: This study describes the first phylogenetic analysis of the Festuca genus to include representatives of
each tall fescue morphotype, and to use low copy nuclear gene-derived sequences to identify putative progenitors
of the polyploid species. The demonstration of distinct tall fescue lineages has implications for both taxonomy and
molecular breeding strategies, and may facilitate the generation of morphotype and/or sub-genome-specific
molecular markers.

Background

The Festuca genus is the largest within the Loliinae sub-
tribe of the Poaceae family, and contains over 500 spe-
cies of temperate grasses [1]. Species of Festuca vary in
morphology, with studies of leaf anatomy and phylogeny
based on sequence of the internal transcribed spacer
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(ITS) region of ribosomal DNA (rDNA) consistently
defining two major evolutionary lineages, of broad and
fine-leaved species [1-6]. The genus also varies substan-
tially in ploidy levels, from diploid (2n = 2x = 14) to
dodecaploid (2n = 12x = 84), the vast majority of species
being allopolyploid [7,8]. One of the most agriculturally
important Festuca species is tall fescue (Festuca arundi-
nacea Schreb.); a broad-leaved outbreeding allohexa-
ploid grass that is cultivated for pasture production
throughout the temperate world. Within the Festuca
genus, tall fescue has been recognised as belonging,
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along with other mostly polyploidy species, to the Sche-
donorus sub-genus [2]. This taxonomic classification has
been the subject of some controversy, as Schedonorus
species share a close relationship with Lolium, the rela-
tively less populated genus of ryegrasses and allied spe-
cies, which contains ten recognised diploid taxa [9-11].
The monophyly of Schedonorus and Lolium has led to
proposals of reclassification, such that the Schedonorus
sub-genus is aligned within Lolium and tall fescue is
hence renamed Lolium arundinaceum (Schreb.) Darbysh
[12]. The Lolium and Festuca genera undoubtedly repre-
sent a closely allied complex of related and partially
interfertile species. In this study, however, due to com-
parisons of tall fescue and other broad-leaved species
with taxa which remain classified as part of Festuca, the
nomenclature and sub-generic classification of Clayton
and Renvoize [2] is retained.

The Schedonorus sub-genus is itself a complex species
group with considerable ploidy variation resulting from
multiple combinatorial hybridisation events. Within this
sub-genus, hexaploid tall fescue is a member of a poly-
ploid series that consists of a tetraploid (F. arundinacea
var. glaucescens Boiss. = F. arundinacea subsp. fenas
(Lag.) Arcang.), octoploid (F. arundinacea subsp. atlan-
tigena (St. Yves) Auquier) and a decaploid (F. arundina-
cea subsp. letourneuxiana St. Yves.). Other evolutionary
important Schedonorus species include diploid meadow
fescue (F. pratensis Huds.), F. pratensis subsp. apennina
(De Not.) Hegi (tetraploid), F. mairei St. Yves (tetra-
ploid) and the hexaploid F. gigantea (L.) Vill. The com-
plex evolutionary relationships between these species
have to date been studied through the generation of
hybrids [13-17], cytological analysis [18], in situ hybridi-
sation [19-22], molecular genetic marker variation
[3,23,24] and comparison of chloroplast and rDNA ITS
nucleotide sequence [1,4-6].

Further complications arise due to variation within
hexaploid tall fescue itself, which may be more accu-
rately described as a species complex. Three major
forms of tall fescue have been recognised (Continental,
Mediterranean and rhizomatous) that differ in terms of
agronomically significant morphological and physiologi-
cal attributes. These distinct forms are denoted in this
study as morphotypes. The summer-active Continental
type that predominates in Northern Europe has contrib-
uted the majority of temperate cultivated germplasm,
and has been the subject of most published tall fescue
studies. The Mediterranean type endemic to Northern
Africa, parts of Italy and the Middle East displays
incomplete summer dormancy and greater winter
growth, but lacks winter hardiness as compared to the
Continental type [25,26]. The two morphotypes also
appear to harbor distinctly different symbiotic fungal
endophytes of the Epichloé type [27,28].
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The third, rhizomatous, morphotype predominates in
parts of northern Portugal and Galicia in Spain [29,30]
and is distinguished by the presence of both longer and
more prevalent rhizomes than those seen in Continental
and Mediterranean germplasm, as well as some other
distinct taxonomic traits [30,31]. Rhizomatous tall fescue
has hence become the target of turf breeding programs
due to its superior spreading ability, firstly in New Zeal-
and [32-35] and later in Europe and the USA [36].

The observed differences between the three types
would not necessarily be of taxonomic significance,
except that F; hybrids between morphotypes, despite
being highly vigorous individuals, may display infertility.
This property has been reported for crosses between
Continental and Mediterranean morphotypes, which
display irregular meiotic pairing resulting from extensive
multivalent formation [37-43]. Similarly, hybrids between
rhizomatous and Mediterranean plants are highly desy-
naptic, forming numerous univalents at meiosis [43], and
hence sterile [34,36]. The sterility effects have in part
been explained in terms of genetic control of a diploid-
like chromosome pairing mechanism in hexaploid tall
fescue [44-46]. This mechanism, which may be of broad
occurrence in the Poaceae family, does not operate at the
haploid level (and is hence termed haplo-insufficient)
[44,45]. 1t is also possible that failure of meiotic pairing is
due to structural or genomic differences between chro-
mosomes [47]. Many allopolyploid species have arisen
more than once from different progenitor ancestral
species [48] and it is probable that hexaploid tall fescue
follows this pattern, with separate origin events in differ-
ent regions [30,49].

Attempts to determine the genomic constitution of tall
fescue have to date solely focused on the Continental mor-
photype. Meadow fescue (F. pratensis) has previously been
identified as the contemporary taxon most closely related
to one of the diploid progenitor sub-genome (P) donors,
based on chromosome structure and pairing [13,17] stu-
dies. The two remaining sub-genomes (G; and G,) have
been attributed to the tetraploid F. arundinacea var. glau-
cescens, based on genomic in situ hybridisation (GISH)
and other molecular genetic techniques [19,20,23]. The
genomic constitution of Continental tall fescue has there-
fore been designated PPG1G;G,G,.

Although multiple studies of Festuca genus phylogeny
have been performed [1,3-6,24], none as yet have
included multiple tall fescue morphotypes. Furthermore,
the methods employed were limited in capacity to iden-
tify each putative progenitor of an allopolyploid species.
Genes present in single copy or low copy-number within
the nuclear genome have become increasingly popular
for studying plant phylogenies [50] and have been used
to determine the hybrid origins of polyploid species
[51-54]. As compared to the sequences that have been
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traditionally used for molecular evolutionary studies,
nuclear genes provide sequence evolution rates elevated
in comparison to chloroplast DNA (cpDNA) and rDNA
[55,56], are biparentally inherited (in contrast to cpDNA)
and are less frequently subjected to concerted evolution
than rDNA [57]. This study aims to compare the
sequence of two protein-coding genes (Accl [encoding
plastid acetyl-CoA carboxylase] and CEN [the floral
developmental identity-determining gene centroradialis,
also known as terminal flower 1]) obtained from all three
tall fescue morphotypes, along with some other species
of section Schedonorus, and taxa previously identified as
putative diploid progenitors. The AccI gene is present as
a single copy in Triticum (wheat) species on the homoeo-
logous group 2 chromosomes [58] and has been used to
achieve high phylogenetic resolution and identify the
hybrid origins of a number of polyploid species [59-61].
The CEN gene has been previously isolated and charac-
terised in perennial ryegrass (Lolium perenne L.) and
although Southern hybridisation studies revealed two
gene copies in this species, only one was detected and
isolated from a genomic library [62]. The LpCEN gene
has been previously mapped to perennial ryegrass linkage
group 5 [63]. Given the large extent of macrosynteny
between the genomes of the Triticeae cereals and both
Lolium and Festuca species, the allohexaploid tall fescue
Accl and CEN orthologues are likely to be located on
homoeologous linkage groups 2 and 5, respectively
[64-66]. The value of the CEN gene for molecular phylo-
genetics studies in Poaceae species has been evaluated
here for the first time. This study is hence aimed at
increasing knowledge of evolutionary relationships
between each tall fescue morphotype, and other species
of the Schedonorus sub-genus through the use of three
classes of gene sequence: the nuclear rDNA ITS region,
the two low-copy nuclear genes, and the cpDNA matur-
ase K (matK) gene, which has been adopted as an inter-
national standard for DNA ‘barcoding’ [67] and provides
evidence for maternal progenitor identity.

Methods

Orthology assessment

Exonic regions of the wheat AccI (GenBank accession
EU660902) and the perennial ryegrass CEN (GenBank
accession AF316419) nuclear genes were used as subject
queries in BLASTN analysis [68] of the Brachypodium
distachyon genome sequence 8X release [69], to deter-
mine copy number in the model species, and hence
probable abundance of predicted orthologues (defined at
a threshold level of E < 10™°) in Festuca species.

Sampling and DNA Extraction
Sampling of Lolium/Festuca taxa was designed to include
the three tall fescue morphotypes along with diploid and
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polyploid species that are thought to share common sub-
genomes (Table 1). A sample from the related grass
species crested dog’s-tail (Cynosurus cristatus L.) was
chosen as an out-group for all datasets. Seed of each tall
fescue morphotype was supplied by PGG Wrightson
Seeds, apart from the Continental cultivar KY31, which
was obtained from the Royal Barenbrug Group. The
remainder of the samples used were sourced from the
Genetic Resources Unit, Institute for Biological, Environ-
mental and Rural Studies (IBERS), Aberystwyth, Wales.
Genomic DNA was extracted from freeze-dried leaf
tissue from one individual per cultivar or accession, using
the DNeasy Plant Mini Kit (Qiagen)

Ploidy Analysis

Ploidy levels for each sample were confirmed using flow
cytometric measurements obtained using a Partec Ploidy
Analyser instrument. For each cultivar or accession, the
single individual from which genomic DNA was extracted
was also used for DNA content measurement. Nuclei were
extracted from fresh leaf tissue and stained using CyStain
UV precise P (Partec) according to the manufacturer’s
instructions. Prepared samples were immediately analysed
using ultraviolet (UV) light excitation, and duplicate read-
ings were obtained for each sample. A total of two sepa-
rately prepared samples were measured for each individual
tall fescue plant. The genome size for each species was
measured relative to F. pratensis (as a confirmed diploid
standard) and then compared to previously published
relative genome sizes [8,18,70,71].

PCR Amplification

PCR reactions were established in total volumes of
20 pl, containing 1 x Immolase PCR buffer, 1.5 mM
MgCl,, 200 uM dNTPs, 0.25 uM each primer (listed in
Table 2), 0.4 units Immolase DNA polymerase (Bioline)
and 10 ng template genomic DNA. For the Accl and
rDNA ITS regions, PCR programs were as previously
described (references listed in Table 2). The CEN gene
fragment was amplified using a touchdown PCR pro-
gram consisting of 95°C for 15 minutes, 10 cycles of
95°C for 30 seconds, 65°C for 30 seconds decreasing 1°C
per cycle, 72°C for 2 minutes, followed by 25 cycles of
95°C for 30 seconds, 55°C for 30 seconds to 72°C for
2 minutes and a final extension of 72°C for 7 minutes.
To amplify the matK gene region, the same touchdown
protocol was used with an altered initial annealing tem-
perature of 60°C.

Cloning and Sequencing

All Accl and CEN amplification products were sub-
cloned into the pCR*4-TOPO*® vector using the TOPO®
TA Cloning® Kit for Sequencing (Invitrogen) and were
transformed into TOPO10 chemically competent E. coli
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Table 1 List of samples included in the study and details of ploidy levels and origin
Taxon Ploidy Origin Sub-genus IBERS Number of
Accession distinct
Identifier haplotypes
Accl CEN
Festuca arundinacea Schreb. 6X
Jesup Continental cultivar Schedonorus N/A 3 3
Quantum Continental cultivar Schedonorus N/A 3 3
KY31 Continental cultivar Schedonorus N/A 3 3
Resolute Mediterranean cultivar Schedonorus N/A 2 2
PG4012 Mediterranean breeding line Schedonorus N/A 2 2
Torpedo I Rhizomatous cultivar Schedonorus N/A 3 3
CT2093R Rhizomatous breeding line Schedonorus N/A 3 3
Festuca pratensis Huds. 2X Tadham Moor (Great Britain) Schedonorus BF1199 1 1
Festuca pratensis subsp. apennina (De Not.) Hegi 4x Le Moleson (Switzerland) Schedonorus BF954 2 2
Festuca arundinacea var. glaucescens Boiss 4x Aoiz (Spain) Schedonorus BN581 2 2
Festuca mairei St. Yves 4x Marrakesh (Morocco) Schedonorus BS3065 2 2
Festuca gigantea (L.) Vill. 6X Unspecified Schedonorus BS5001 2 3
Festuca arundinacea subsp. atlantigena (St. Yves) Auquier 8x Unspecified Schedonorus BN865 3 2
Festuca arundinacea subsp. letourneuxiana St. Yves 10x Agadir Gouj (Morocco) Schedonorus BN812 4 4
Festuca drymeja Mert. & Koch 2X (Hungary) Drymanthele BS3675 1 1
Festuca altissima All. 2x Koskeg (Hungary) Drymanthele BS4384 1 1
Festuca lasto 2X Los Barrios (Spain) Drymanthele BS3748 1 1
Festuca scariosa (Lag) Asch. & Graebn. 2X Unspecified Scariosae BS3278 1 1
Festuca pallens Host. 2X Gyulakeszi (Hungary) Festuca BL2811 1 1
Festuca circummediterranea Patzke 2 Colle Sanson (ltaly) Festuca BL2787 1 1
Festuca rupicaprina (Hackel) A. Kerner 2X Unspecified Festuca BL2767 1 1
Festuca tatrae (Czako) Degen 2% Unspecified Festuca BL2758 1 1
Festuca ovina L. 2% Ponterwyd (Great Britain) Festuca BL2643 1 1
Festuca valesiaca Schleicher ex Gaudin 2X Pregradnaya (Russia) Festuca BL2506 1 1
Lolium perenne L. 2X Cultivar ‘Aurora’ - N/A 1 1
Lolium multiflorum Lam. 2x Cultivar ‘Andrea’ - N/A 1 1
Lolium temulentum L. 2x - BA13157 1 1
Cynosurus cristatus L. 2X Ponterwyd (Great Britain) - BG527 1 1

N/A = not applicable

cells following manufacturer’s instructions. For each
plant accession-gene combination, 12 colonies were
picked for each predicted diploid sub-genome, and the
recombinant plasmid DNA was amplified using the

Table 2 Details of primer pairs used to amplify the rDNA
ITS region and the matK, Acc1 and CEN genes

DNA Primer Primer sequence 5’ - 3’ Reference

region name

Accl Acclf1 GTTCCTGGCTCCCCAATATTTATC [59]
Acclrl TTCAAGAGATCAACTGTGTAATCA [59]

CEN CENf1 TAAGCAGCCCAAGCCCTTCAAAG This paper
CENr3 CGAGGAAGTAATGTAGAAGAGGAGC  This paper

ITS ITSL TCGTAACAAGGTTTCCGTAGGTG [72]
[TS4 TCCTCCGCTTATTGATATGC [72]

matK S5-1F ACCCTGTTCTGACCATATTG [94]
trnkK-2R AACTAGTCGGATGGAGTAG [95]

TempliPhi DNA Sequencing Template Amplification Kit
(GE Healthcare). The amplified template was diluted
with the addition of 56 pl of ddH,O and 2 pl used as
template for sequencing with T7 and T3 primers. Each
sequencing reaction contained 5 pl total volume and
contained 0.16 pM primer, 0.125 pl BigDye® Terminator
v3.1 (Applied Biosystems), 0.875 x BigDye® Sequencing
Buffer (Applied Biosystems) and was subjected to
cycling conditions as described in the BigDye® v.3.1 pro-
tocol. The extension products were purified with etha-
nol, sodium acetate and EDTA following the BigDye®
v3.1 protocol (Applied Biosystems) and electrophoresis
was performed on the ABI3730x] automated capillary
electrophoresis platform.

The amplified ITS and matK-derived amplicons were
purified using Exonuclease I and shrimp alkaline phos-
phatase and a total of 0.5 ul purified PCR product was
sequenced in a 10 pl total volume reaction containing
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the previously listed reagents, with amendment of the
volume of BigDye® v.3.1 (0.25 pl). The ITSL, ITS4, ITS2
and ITS3 primers [72] were used to fully sequence the
ITS region, and the matK gene was sequenced using the
amplification primers.

Sequence alignment and analyses

To separate homoeologous sequence haplotypes derived
from Accl and CEN, all sequences obtained from each
sample were first aligned using Sequencher 4.7 (Gene
Codes). Pairwise distances between all sequences from a
given accession were calculated using the maximum
composite likelihood nucleotide substitution model
implemented in MEGA version 4 [73]. The diploid sam-
ples were first analysed to determine a p value threshold
that could be used to discriminate between probable
allelic (homologous) variation and homoeologous
sequence diversity. Each identified group of sequences
falling below this threshold were then separately aligned,
and consensuses were defined for phylogenetic analysis.
These putative homoeologous consensus sequences are
hereafter described as haplotypes.

For each gene, all haplotypes were aligned using
Sequencher 4.7 (Gene Codes) and edited manually as
required. For the directly sequenced ITS and matK gene
products, ambiguous bases were denoted using the stan-
dard IUPAC ambiguity codes, and boundaries of the
ITS spacers and the 5.8 S gene were determined as pre-
viously described [4]. For Accl and CEN, intron-exon
boundary coordinates were estimated according to those
previously determined in bread wheat (Triticum aesti-
vum L.) [58] and perennial ryegrass [62]. Measures of
variation (variable sites, parsimony informative sites and
indels) within the aligned contigs were calculated using
MEGA version 4 [73] and DnaSP version 4.90.1 [74].

Phylogenetic reconstruction

Prior to performing phylogenetic analysis, all gaps were
coded as binary characters using GapCoder [75]. For
each data matrix, parsimony analysis was performed
using PAUP* v4.0b10 [76] with heuristic search options,
TBR branch swapping and 1000 replicates of random
sequence addition. Characters were equally weighted
and statistical support was achieved through bootstrap-
ping using 1000 replicates [77].

C. cristatus was used as an out-group species for all
data sets, and sequences deposited in GenBank from
kentucky bluegrass (Poa pratensis L.) and B. distachyon
were used as more distant out-group species for the
more conserved rDNA ITS and matK sequence datasets
(GenBank accessions AY237833, AF303399, AF164402,
AM234568). The B. distachyon Accl and CEN genes
identified in the orthology assessment were also used as
out-group sequences for each respective nuclear gene
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data set. The Incongruence Length Difference test [78]
was used to assess congruence between the nuclear gene
data sets and was implemented in PAUP* v4.0b10
through the partition homogeneity test with 1000
replicates.

Results

Orthology assessment

The largest exons (numbers eight and ten of Accl, and two
and four of CEN) were used to search the Brachypodium
distachyon genome sequence. For both genes, BLASTN
analysis retrieved a single sequence with a below-threshold
E value. The Accl orthologue is located on B. distachyon
chromosome 5, corresponding to the predicted gene
bd5g03860, while the CEN orthologue is annotated as
predicted gene bd4g42400 on chromosome 4.

Ploidy analysis

For all but one sample tested, the relative genome size
did not differ by greater than 0.6-fold when calculated
using either the measurements of the Ploidy Analyser or
from genome size values previously published (Addi-
tional file 1). These samples were therefore deemed to
have the predicted ploidy level (Table 1). The F. rupica-
prina sample differed by over two-fold when comparing
the two relative genome size measurements, and was
subsequently removed from all further analysis.

Isolation of homoeologous sequences

For both Accl and CEN, the analysis of pairwise dis-
tance between sequences from diploid samples failed to
produce a p value of greater than 0.01. Therefore, varia-
tion between any two sequences with a p value less than
0.01 was predicted to be the result of allelic variation or
sequence error. For the polyploid samples, sequences
with a p value of greater than 0.01 were therefore con-
sidered likely to be of different sub-genome origin. Each
identified group of homoeologous sequences were sepa-
rately aligned and consensuses were defined for phyloge-
netic analysis. The number of haplotypes identified for
each sample is detailed in Table 1.

Sequence analysis

ITS

The amplified ITS region used for phylogenetic analysis
consisted of the gene encoding the 5.8 S ribosomal subu-
nit, as well as the two ITS regions that separate this gene
from the 18 S and 26 S ribosomal subunit genes (ITS1
and ITS2 respectively). The amplified region ranged from
595 to 599 bp, length variation being attributable to the
ITS1 spacer. Both the 5.8 S and ITS2 regions were the
same length for all samples, at 269 and 101 bp respec-
tively. After alignment of all ITS sequences, the total con-
tig length was 610 bp and contained 174 variable sites
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and 100 parsimony informative sites (Table 3). A total of
25 of the 33 sequenced samples contained at least one
ambiguous base. These sequences were deposited in
GenBank under the accession numbers HM453173 -
HM453199 and the final sequence alignment is included
as Additional File 2. For each sample, the generated ITS
sequence was compared to accessions from the same spe-
cies that were previously submitted in GenBank from
other studies. This evaluation, along with the compari-
sons of genome size calculated in this study with prior
reports in the literature, was used to confirm the identity
of each species.

matK

The amplicon generated using the published matK pri-
mers contained an extra 65 and 288 bp from the 5’- and
3’-boundaries, respectively, of the matK gene. However,
only the gene itself was used for analysis. These sequences
were deposited in GenBank under the accession numbers
HM453050 - HM453076 and the final sequence alignment
is included as Additional File 3. The matK gene was 1542
bp in length for all samples with the exception of C. crista-
tus (1545 bp). The total contig length used for phyloge-
netic analysis was 1545 bp and contained 179 variable
sites, and 70 parsimony informative sites (Table 3).

Accl

For the majority of taxa, the number of haplotypes
obtained was equivalent to the number of predicted sub-
genomes for each species (Table 1). The exceptions were
F. gigantea, F. arundinacea subsp. atlantigena, F. arundi-
nacea subsp. letourneuxiana and the two Mediterranean
morphotype varieties Resolute and PG4012, for which
the number of derived haplotypes was one less than the
ploidy level. The amplified gene fragment contained

Table 3 Characteristics of each sequenced region

Gene

Accl CEN ITS matK
Total aligned length (bp) 2254 972 610 1545
Exon length (bp) min-max 40-188  41-218 - -
Average exon length 101 128 - -
Exon std dev min-max 0-0 0-0 - -
Intron length (bp) min-max 73-493  82-958 - -
Average intron length 110 119 - -
UTR length (bp) min-max - 42-56 - -
Average UTR length - 55 - -
Exon + intron + (UTR) length (bp) min- 1525- 903- - -
max 1946 958
Average exon + intron + (UTR) length 1572 925 - -
(bp)
Variable sites 492 275 174 179
Parsimony informative sites 199 122100 70
Indels 112 44 22 4
Indel length (bp) min-max 1-413 1-32 14 69
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8 exons and 7 introns, corresponding to exons 6 to 13 of
the full-length wheat gene. The total length ranged from
1525 to 1946 bp, the major size disparities being due to
insertions in the first and second introns. F. valesiaca
contained a 235 bp insertion within the first intron, while
a 390 bp insertion was present within the second intron
for one haplotype derived from F. arundinacea subsp.
atlantigena. The 8 exons ranged in size from 40 to
188 bp: however there was no size variation between
samples within each exon. The 7 introns ranged in size
from 73 to 493 bp, and each intron displayed more varia-
tion between haplotypes than the exons. The total
aligned length of the contig was 2254 bp which included
492 variable sites, 199 parsimony informative sites and
112 indels (Table 3). These haplotypes were deposited in
GenBank under the accession numbers HM453077 -
HM453124 and the final sequence alignment is included
as Additional File 4.

CEN

As for Accl, in the majority of instances the number of
haplotypes recovered for a given species was equivalent
to the predicted sub-genome number (Table 1). The
exceptions were F. arundinacea subsp. letourneuxiana
and the two Mediterranean morphotype tall fescue vari-
eties Resolute and PG4012, for which haplotype number
was one less than the ploidy level, and the octoploid
F. arundinacea subsp. atlantigena, from which only two
haplotypes were recovered. The amplified gene fragment
ranged in size from 903 to 958 bp and contained 4
exons, 3 introns and a region of the 3’-untranslated
region (UTR). The 4 exons ranged in size from 41 to
218 bp, also exhibiting no size variation between species
and haplotypes. Greater variation was observed between
species with respect to intron length, as well as the size
of the 3’-UTR which ranged from 42 to 56 bp in size.
The total aligned length of the contig was 972 bp, which
included 275 variable sites, 122 parsimony informative
sites and 44 indels (Table 3). The haplotypes were
deposited in GenBank under the accession numbers
HM453125 - HM453172 and the final sequence align-
ment is included as Additional File 5.

Phylogenetic inference

ITS

The parsimony analysis yielded 36 most parsimonious
trees (CI = 0.738;RI = 0.828), the strict consensus of
which is shown in Figure 1. This tree resolved three
major lineages, in which clades A and B represent the
Schedonorus/Lolium and Festuca sub-genera respec-
tively, and clade C contains representatives of the Dry-
manthele and Scariosae sub-genera. Clade A (71% of
bootstrap) is further resolved into three well-supported
groups (A.1, A.2 and A.3, at 99, 100 and 100% bootstrap
levels) which separate the three tall fescue morphotypes.


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453173
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453199
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453050
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453076
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453077
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453124
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453125
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=HM453172
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Figure 1 Strict consensus tree obtained from sequence analysis of the nuclear rDNA ITS region. Numbers below branches are bootstrap

B.distachyon

J

A.1 contains the resolved diploid Lolium representatives
and six unresolved samples including the three Conti-
nental tall fescue varieties, along with one diploid
(F. pratensis), one tetraploid (F. pratensis subsp. apen-
nina) and one other hexaploid (F. gigantea). Clade A.2
is composed of the two rhizomatous tall fescue varieties
(Torpedo and CT2093R) as well as four unresolved sam-
ples (F. mairei, F. arundinacea var. glaucescens, F. arun-
dinacea subsp. letourneuxiana and F. arundinacea
subsp. atlantigena), while clade A.3 consists solely of
the two Mediterranean tall fescue varieties (Resolute
and PG4012). The diploid fine-leaved species of the Fes-
tuca sub-genus form group B (100% of bootstrap), and

the third major lineage, C (82% bootstrap), is composed
of three Drymanthele sub-genus representatives, two
which share a sister relationship (F. lasto and F. dry-
meja), and the third (F. altissima) is related to the one
representative of the Scariosae sub-genus (F. scariosa).
C. cristatus, P. pratensis and B. distachyon were out-
groups to the entire tree, as anticipated.

matK

A single most parsimonious tree (CI = 0.943, RI =
0.967) resolved into three major clades (A-C) was gener-
ated from the heuristic search conducted on the matK
data matrix (Figure 2). Clade A was further divided into
two well-supported sub-clades (A.1 and A.2: 92% and
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96% of bootstrap respectively) and a third less-well sup-
ported sub-clade A.3 (64% of bootstrap). F. arundinacea
var. glaucescens and the Continental and rhizomatous
tall fescue varieties were unresolved in A.1, while A.2
consists of the three unresolved Lolium species in sister
relationships to the unresolved group containing F. pra-
tensis, F. pratensis subsp. apennina and F. gigantea.
Sub-clade A.3 consists of three unresolved samples (F.
mairei, F. arundinacea subsp. atlantigena and F. arundi-
nacea subsp. letourneuxiana) and the two Mediterra-
nean tall fescue varieties. Representatives of the
Drymanthele sub-genus comprise clade B (99% boot-
strap), while clade C (100% bootstrap) contains the fine-
leaved species from the Festuca sub-genus. C. cristatus,
P. pratensis and B. distachyon are out-groups to the
entire tree.
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Accl

The heuristic search conducted on the Accl data matrix
resulted in 504 most parsimonious trees (CI = 0.830; RI =
0.878), the strict consensus of which is shown in Figure 3.
This tree can be divided into four major lineages (A-D), in
which clades A and B contain representatives of the Sche-
donorus/Lolium sub-genus, and clades C and D are assem-
blages of the diploids from the Drymanthele and Festuca
sub-genera, respectively. Within clade A, haplotypes from
F. arundinacea subsp. letourneuxiana and F. arundinacea
subsp. atlantigena, along with an assemblage of F. praten-
sis subsp. apennina and F. gigantea, are in sister relation-
ships to the remainder of the clade, which has been
further partitioned into sub-clades A.1 and A.2. Sub-clade
A.1 (91% of bootstrap) contains haplotypes from the two
Mediterranean tall fescue varieties sister to the rest of A.1,
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Figure 2 The single most parsimonious tree obtained from sequence analysis of the cpDNA matK gene. Numbers below branches are
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which includes the monophyletic Lolium species and an
unresolved group of one rhizomatous and three Continen-
tal tall fescue haplotypes, along with F. pratensis, F. pra-
tensis subsp. apennina and F. gigantea. The second
rhizomatous tall fescue variety and a haplotype derived
from F. arundinacea subsp. letourneuxiana complete sub-
clade A.1. Within sub-clade A.2 (97% of bootstrap), haplo-
types from Continental tall fescue are unresolved from an
F. arundinacea var. glaucescens haplotype, while rhizoma-
tous tall fescue haplotypes are sister to this group along
with F. mairei. F. arundinacea subsp. letourneuxiana and
F. arundinacea subsp. atlantigena haplotypes are basal to
the remainder of clade A. Clade B is well supported (100%

of bootstrap) and comprises another group of Continental
and rhizomatous tall fescue haplotypes that are related to
F. arundinacea var. glaucescens and again, this group is
sister to F. mairei. Haplotypes of the two Mediterranean
tall fescue samples share a sister relationship, as do the
higher-order polyploids (F. arundinacea subsp. atlanti-
gena and F. arundinacea subsp. letourneuxiana) and these
two groups collapse unresolved alongside clade B. Clade C
(100% of bootstrap) is an unresolved monophyletic group
consisting solely of the three Drymanthele species, while
the final clade, D (100% of bootstrap), contains the fine-
leaved diploid species of the Festuca sub-genus, in which
each species is fully resolved. F. scariosa holds the most
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basal position among the Festuca species, with C. cristatus
and B. distachyon positioned as out-groups.

CEN

The consensus of 15 most parsimonious trees (CI = 0.852,
RI = 0.926) derived from the heuristic search of the CEN
data matrix is shown in Figure 4. This tree has been
divided into five lineages (A-E), in which A, B and C com-
prise species from the Schedonorus/Lolium sub-genus, D
represents the Drymanthele and Scariosae sub-genera and
E contains species from the fine-leaved Festuca sub-genus.
Within clade A (93% of bootstrap), the sequence of
L. multiflorum and haplotypes from F. gigantea, F. arundi-
nacea subsp. letourneuxiana are positioned as sister to
two well supported sub-clades (A.1 and A.2). Sub-clade
A.1 (100% of bootstrap) is formed from the Continental
and rhizomatous tall fescue varieties and unresolved hap-
lotypes from F. pratensis, F. pratensis subsp. apennina and
F. gigantea. The Mediterranean varieties, along with the
L. temulentum-derived sequence, then comprise the
remainder of A.1. Sub-clade A.2 (89% of bootstrap) again
demonstrates close relationships between haplotypes from
Continental and rhizomatous tall fescue varieties, and also
contains unresolved haplotypes from F. arundinacea var.
glaucescens, F. mairei, F. arundinacea subsp. atlantigena,
and F. arundinacea subsp. letourneuxiana. This monophy-
letic group is near identical to clade C (77% of bootstrap),
which contains haplotypes from all of the same species
and displays equivalent structure for F. arundinacea var.
glaucescens, F. mairei, F. arundinacea subsp. atlantigena,
and F. arundinacea subsp. letourneuxiana which are
again, all unresolved. The remainder of the Schedonorus/
Lolium-derived haplotypes are either resolved into the
small clade B (F. gigantea, F. pratensis subsp. apennina
and L. perenne: 97% of bootstrap) or are positioned as out-
groups to both clades A and B (both Mediterranean vari-
eties and F. arundinacea subsp. letourneuxiana). The
diploids of the Drymanthele sub-genus are unresolved
within clade D (97% of bootstrap), which also contains
the only representative of the Scariosae sub-genus (F. scar-
iosa), while clade E is a well supported (100% of bootstrap)
monophyletic group containing species from the diploid
fine-leaved Festuca sub-genus. C. cristatus and B. distach-
yon form out-groups.

Congruence between nuclear gene-derived data sets

The Accl and CEN gene-derived phylogenetic trees
share similar structure, particularly with respect to rela-
tionships between the three tall fescue morphotypes and
the division of other Schedonorus haplotypes. Both trees
reveal comparable evolutionary patterns, Accl clade A
corresponding to CEN sub-clade A, and Accl clade B
corresponding to most of CEN clade C. The remaining
Accl clades C and D correspond to lineages D and E in
the CEN-derived dendrogram. The larger source of
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discordance between the two data sets arises with
respect to the Lolium species and to F. scariosa. While
the Accl gene demonstrates little distinction between
the three sampled Lolium species, which form a mono-
phyletic group within the F. pratensis-containing sub-
clade A.1, the CEN gene detects a much higher level of
variation, such that the three species are distributed
throughout the phylogenetic tree in different clades (A.1
- L. temulentum, A - L. multiflorum and B - L. perenne).
Similarly, F. scariosa exchanges clade location between
the two data sets. Within the Accl gene-derived dendro-
gram, this species is in a basal position to all other Fes-
tuca/Lolium species, whereas it is positioned as sister to
Drymanthele sub-genus species in the CEN phylogenetic
tree. The Incongruence Length Difference test implies
significant incongruence between the two nuclear gene
data sets (p = 0.01).

Discussion

Phylogenetic relationships between each tall fescue
morphotype

This phylogenetic study has, for the first time, assessed
evolutionary relationships between the three morpho-
types of hexaploid tall fescue, which are distinct in
geographical and morphophysiological terms. The den-
drograms generated from both of the nuclear gene-
derived data sets suggest that representatives of the
Mediterranean morphotype are genetically distinct
from the Continental and rhizomatous varieties
sampled here, supporting the observations of hybrid
sterility between tall fescue morphotypes [38,39]. It
may be assumed that, for each nuclear gene, the three
haplotypes recovered from the Continental tall fescue
varieties represent the three sub-genomes, as in each
case the relevant haplotypes are closely associated with
counterparts from F. pratensis and F. arundinacea var.
glaucescens. The Mediterranean morphotype-derived
nuclear sequences are, however, more distantly related
to these progenitor species, implying that they (or
closely related taxa) did not participate as direct ances-
tors of this morphotype. Both the ITS- and matK
gene-derived dendrograms also support an alternative
polyploid origin for the Mediterranean morphotype,
despite inability to resolve to the level of individual
sub-genomes. For each of these data sets, the Mediter-
ranean varieties fail to be closely associated with either
F. pratensis or F. arundinacea var. glaucescens, in con-
trast to the Continental and rhizomatous samples.

Full interpretation of taxon origin for the polyploid
Mediterranean morphotype is rendered difficult due to
the recovery of only two distinct sequence haplotypes for
each of the nuclear genes. The two Mediterranean vari-
ety-derived genotypes may be confidently predicted to be
hexaploid in nature, despite a relatively lower estimated
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Figure 4 Strict consensus tree obtained from sequence analysis of the nuclear CEN gene. Numbers below branches are bootstrap
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genome size as compared to the Continental varietal
individuals. This observed difference in genome size was
not unexpected, as previous studies have consistently
reported lower flow cytometric measurement values from
confirmed hexaploid Mediterranean accessions when
compared to the samples from the Continental morpho-
type [79]. Therefore, a relatively trivial explanation for
the observation of only two haplotypes is that three dis-
tinct sub-genomes are actually present in the Mediterra-
nean morphotype, but one sub-genome is sufficiently
diverged from the template primer sequence to be ineffi-
ciently amplified and hence under-represented in, or
absent from, the contig assemblies. However, the success

observed with the Accl and CEN-directed primer pairs
across a diverse species range, including more distantly
related taxa such as C. cristatus, suggests that this inter-
pretation is unlikely. In addition, the depth of sequencing
employed proved more than sufficient to recover all
three haplotypes from the Continental and rhizomatous
tall fescue samples. Alternatively, only two sequence var-
iants may be present in the Mediterranean hexaploids,
raising the possibility of an autotetraploid progenitor. In
order for disomic inheritance to operate in the contem-
porary hexaploid, preferential pairing must have arisen
between chromosomes of the paired sub-genomes, possi-
bly due to genetic divergence [80], later reinforced by
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homoeologous pairing gene control [81]. Confirmation of
this model would depend on demonstration of haplotype
number deficit across a broader selection of nuclear
genes, and, ideally, identification of a contemporary auto-
tetraploid taxon related to the putative ancestor. How-
ever, no potential progenitors of the Mediterranean
morphotype were identified in this study. Such species
may be extinct, or have failed to be sampled in taxonomic
studies. If still extant, any such progenitors are likely to
be taxonomically classified in the Schedonorus sub-genus
and be located in a similar region (Northern Africa/Wes-
tern Mediterranean) to both Mediterranean tall fescue
and the higher polyploids F. arundinacea subsp. atlanti-
gena and F. arundinacea subsp. letourneuxiana. No
diploid ancestors of any of the western Mediterranean
species (identified by Figure 1 clade A.2) have yet been
identified, and so may have become extinct as a result of
climate changes associated with glaciation periods, or,
less likely, have evaded discovery [1].

The results of this study indicate a close relationship
between the Continental and rhizomatous morphotypes,
at least for the varieties sampled here, as they are closely
associated in both the nuclear gene dendrograms, while
displaying sufficient nucleotide variation to be fully
resolved from each other. In each instance, the rhizoma-
tous morphotype putative sub-genomic haplotypes are
as equally related to F. pratensis and F. arundinacea var.
glaucescens as those of Continental individuals, suggest-
ing that these two morphotypes share the same progeni-
tors. The ITS-derived data set provides a distinct
indication for separation by a large evolutionary dis-
tance, as the Continental and rhizomatous samples are
positioned in the ‘European’ (Clade A.1) and ‘Maghre-
bian’ (Clade A.2) sub-clades, respectively. These two
sub-clades reflect geographical structure and consis-
tently segregate between the Northern European and
African/Western Mediterranean Schedonorus species in
previous phylogenetic studies performed with ITS
sequence [1,4,5]. Information on shared diploid ancestry,
however, cannot be obtained through comparison of ITS
sequence, as the contributions of each parental genome
are generally homogenised to one sequence through the
action of either gene conversion or non-homologous
unequal crossing-over [82-85]. The evidence of the ITS-
derived dendrogram therefore only indicates that the
Continental and rhizomatous morphotypes have evolved
independently over a sufficient duration to permit differ-
ential ITS homogenisation events.

Phylogenetic inferences from ITS- and matK-derived
sequence data

The overall general structure of the dendrogram gener-
ated from the ITS data set is consistent with those pre-
viously published [1,3-6]. As in these studies, the results
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support the taxonomic classification of Clayton and
Renvoize [2] and early divergence of the broad- and fine-
leaved Festuca species. A lower level of basal resolution
was achieved here, however, as the Schedonorus, Festuca
and Drymanthele sub-genera form three sister clades
(Figure 1, Clades A, B, C) rather than the usual two
representing the broad-leaved (Schedonorus and Dry-
manthele subgenera) and fine-leaved (Festuca sub-genus)
species. As clades A and C are less strongly supported
(71 and 82% of bootstrap), this disparity is most likely
due to minor differences in phylogenetic methodology. In
contrast, the matK gene was able to effectively resolve
the broad and fine-leaved species, and also provided a
higher level of resolution in the Schedonorus sub-genus
(Figure 2, Clade A). Previous phylogenetic analysis of the
Festuca genus using chloroplast-derived sequence was
performed using the trnL-truF intergenic spacer [5] and
achieved similar resolution to that produced here. The
main difference between the ITS- and matK-derived den-
drograms is the highly supported (92% of bootstrap) for-
mation of sub-clade A.1 (Figure 2) from the matK data
set, which segregates F. arundinacea var. glaucescens and
both the Continental and rhizomatous tall fescue samples
from the remaining ‘European’ Schedonorus/Lolium
species. As the chloroplast genome is almost always
inherited solely from the female parent, this assemblage
probably indicates that a taxon closely related to F. arun-
dinacea var. glaucescens has provided the maternal
genome for both the Continental and rhizomatous tall
fescue morphotypes. The Mediterranean varieties form a
close association with F. mairei and the higher polyploids
F. arundinacea subsp. atlantigena and F. arundinacea
subsp. letourneuxiana in the matK dendrogram, which
raises the possibility of these polyploids sharing a mater-
nal ancestor. While this close relationship with F. mairei
is not supported by data from the two nuclear genes, it is
not feasible to determine whether this is due to the
absence of three distinct haplotypes from the Mediterra-
nean varieties or if the association from the chloroplast
data is an aberration as a result of low phylogenetic reso-
lution. The matK gene analysis, in summary, predicts
F. pratensis as the maternal genome donor of F. gigantea
and F. pratensis subsp. apennina, while one of the G; or
@G, progenitor genomes appears to have contributed the
maternal genome of F. arundinacea var. glaucescens and
both the Continental and rhizomatous tall fescue mor-
photypes. Mediterranean tall fescue shares a maternal
origin with F. mairei and the higher polyploids F. arundi-
nacea subsp. atlantigena and F. arundinacea subsp.
letourneuxiana.

Possible diploid origins of polyploid Festuca species
Although the nuclear gene-derived data sets confirm
F. pratensis and F. arundinacea var. glaucescens as
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probable progenitors of Continental tall fescue, the
diploid origins of the G; and G, sub-genomes of
F. arundinacea var. glaucescens could not be determined
from either dendrogram. The results do, however, per-
mit some previously proposed diploid species to be
excluded as candidate sub-genome donors. F. altissima
and F. scariosa have been previously suggested as
diploid progenitors of Continental tall fescue based on
morphological comparisons [15] and comparison of
chromosome structure [21], but sequences from these
two species were never closely associated with any tall
fescue haplotype in this phylogenetic analysis. The pre-
sent results do support cytogenetic studies that indicate
an allotetraploid origin for F. arundinacea var. glauces-
cens [13], as two distinct haplotypes are observed, and
that F. pratensis did not contribute either sub-genomes
[19]. It has been further proposed that F. arundinacea
var. glaucescens and F. mairei may share a diploid sub-
genome, based on chromosome structure and the for-
mation of bivalents in hybrids [21,86]. The nuclear gene
analysis here indicate a high degree of similarity
between both sub-genomes of these tetraploids, to the
extent that they are unresolved in the CEN gene-derived
dendrogram. Sequence from the ITS region was also
unable to resolve the two species, and only the chloro-
plast matK gene data set suggests a large evolutionary
distance, possibly due to different maternal progenitor
taxa.

As the number of recovered nuclear gene haplotypes
failed to correspond to the number of expected diploid
sub-genomes, resolution of genomic constitutions for the
higher polyploids F. arundinacea subsp. atlantigena (octo-
ploid) and F. arundinacea subsp. letourneuxiana (deca-
ploid) has not been possible. Nonetheless, the two
sub-species are minimally differentiated in all the dendro-
grams, and contain haplotypes that cannot be resolved
from those of F. arundinacea var. glaucescens and
F. mairei in the CEN gene-derived dendrogram. As the
Accl data set provides higher resolution, the association
appears more distant, but it is clear that both F. arundina-
cea var. glaucescens and F. mairei are closely related to the
higher polyploids, and either may have contributed to the
formation of these species. Crosses of the two tetraploids
produce fertile hybrids that resemble F. arundinacea
subsp. atlantigena, further supporting the speculation that
such a hybridisation occurred naturally to produce the
octoploid [13]. In this case, the absence of four haplotypes
from F. arundinacea subsp. atlantigena may be due to the
inability to discriminate between the F. arundinacea var.
glaucescens and F. mairei sub-genome components, which
are poorly resolved at the species level by nuclear gene
analysis.

All of the phylogenetic trees support strong evolution-
ary relationships between the ‘European’ fescue species
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(F. pratensis, F. pratensis subsp. apennina and F. gigan-
tea). Data from both of the nuclear genes suggest that
the hexaploid F. gigantea was formed through the hybri-
disation of F. pratensis subsp. apennina and another
diploid species, and that F. pratensis is only one of the
diploid progenitors of F. pratensis subsp. apennina. This
is consistent with previous studies demonstrating
the allopolyploid nature of F. pratensis subsp. apennina
[87] and a common diploid sub-genome (related to
F. pratensis) between tall fescue and F. gigantea [22].

Phylogenetic utility of Acc7 and CEN genes

The location of the B. distachyon Accl and CEN ortholo-
gues on chromosomes 5 and 4, respectively, is consistent
with known macrosynteny between the Triticeae cereals,
Poeae grasses and B. distachyon [64,65,65,69] and further
supports the positioning of these loci on different homo-
eologous groups within tall fescue. A considerable degree
of confidence may therefore be placed in conclusions of
hybrid origin, as they are supported by data from two
unlinked loci, rather than a single nuclear gene. Both data
sets predict very similar relationships between the Festuca
species, the higher resolution achieved from Accl being
probably due to the result of greater sequence length and
the presence of 7 introns (in contrast to 3 in CEN), which
provide a greater level of nucleotide variation as compared
to exons. While the Accl gene has previously been
demonstrated to be effective for clarification of the hybrid
origin of polyploid species through phylogenetic recon-
struction [59-61], this was the first recorded assessment of
CEN utility. This gene was originally selected due to veri-
fied low copy number in perennial ryegrass [62], along
with the presence of introns and ability to be amplified as
a single product from the range of species used here. The
CEN dendrogram was able to confirm the majority of evo-
lutionary relationships observed from the Accl data set,
but the observed polyphyly of Lolium species is inconsis-
tent with all other phylogenetic studies, and is possibly an
effect of differential selection acting on genes involved in
reproductive morphogenesis. Although the multilocus
approach used here is crucial for providing independent
estimates of evolutionary history, the subsequent indepen-
dent history of each loci must be considered. AccI may be
described as a ‘housekeeping’ gene, as it is involved in fatty
acid biosynthesis and is hence likely to be subject to strong
but even selective pressure across a large range of species.
CEN, in contrast, is involved in flowering time control,
and represses flowering by maintaining the unfixed iden-
tity of the inflorescence meristem [62]. Experiments have
shown that this gene, among others, is involved in extend-
ing the vegetative state of the plant [88-91]. It is therefore
possible that CEN is under different selective pressure in
different species, depending on their geographical distribu-
tion and habitat, and that the nucleotide variation reflects
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these pressures. It is interesting that such variation is only
apparent within the Lolium species, for which variation in
annual-perennial growth habit and floral induction
requirements has been well documented. The evolutionary
lineages described by CEN for the remaining Festuca spe-
cies are the same as those predicted for Accl. In general,
the CEN gene can be described as useful for phylogenetic
reconstruction in the Festuca/Lolium genera, as it con-
firmed the majority of relationships produced by Accl and
the ITS data sets. The unexpected placement of Lolium
species reinforces the importance of comparison between
data from multiple unlinked loci when assessing evolu-
tionary relationships.

Future implications

The results of this study have contributed to the under-
standing of evolutionary relationships within a group of
grass species for which previous taxonomic classifications
have been contentious. In particular, a further revision of
systematics to recognise the Mediterranean and Conti-
nental morphotypes of tall fescue as separate taxa
appears to be warranted. The implications of these
results, however, reach beyond taxonomy and have the
potential to impact on molecular breeding strategies. For
example, the demonstration of independent evolution
between the Mediterranean and Continental morpho-
types suggests sufficient nucleotide variation to allow
development of molecular genetic markers capable of
discrimination, to enable an uncomplicated germplasm
screening method which is simpler and cheaper than
sequencing. The ability to distinguish sequences from all
three sub-genomes of Continental and rhizomatous tall
fescue in this study also has implications for the genera-
tion of sub-genome-specific genetic markers, such as sin-
gle nucleotide polymorphism assays, as has been
demonstrated for the outbreeding allotetraploid forage
species white clover (Trifolium repens L.) [92]. This result
implies that the diversity between each sub-genome is
sufficient to design sub-genome specific primers, and
ultimately detect DNA sequence polymorphisms that are
able to attribute homoeologous linkage groups to specific
sub-genomes and putative progenitor origins [92,93].

Conclusions

This study describes the first phylogenetic analysis of the
Festuca genus to include each of the three tall fescue
morphotypes (Continental, Mediterranean and rhizoma-
tous) and has used low copy nuclear gene sequences to
identify progenitors of the polyploid species. F. pratensis
and F. arundinacea var. glaucescens were confirmed as
the probable progenitors of Continental tall fescue, and
also as likely ancestors of the rhizomatous morphotype,
although these two morphotypes are sufficiently diverse
to be positioned in separate clades based on ITS analysis.
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Phylogenetic reconstruction of all four data sets suggests
that Mediterranean tall fescue has evolved independently
from both other morphotypes, as a result from hybridisa-
tion of different diploid progenitors. These results have
implications for taxonomic revision, as well as molecular
breeding strategies, and will facilitate the generation of
both morphotype and sub-genome-specific molecular
genetic markers.

Additional material

Additional file 1: Relative genome size of each sample. Genome size
was calculated relative to F. pratensis, using measurements from both the
Ploidy Analyser and previously published estimates. For each sample,
Ploidy Analyser measurements represent the average of two readings,
with the exception of tall fescue varieties, for which four measurements
were made. The previously published estimates represent an average of
the respective genome sizes, as reported in multiple prior publications.
The extent of error bars represent the standard error of the mean.

Additional file 2: Sequence alignment of the ITS region. Sequence
alignment, in NEXUS format, used to generate the ITS phylogenetic tree

Additional file 3: Sequence alignment of matK. Sequence alignment,
in NEXUS format, used to generate the matK phylogenetic tree
Additional file 4: Sequence alignment of Acc1. Sequence alignment,
in NEXUS format, used to generate the Accl phylogenetic tree
Additional file 5: Sequence alignment of CEN. Sequence alignment, in
NEXUS format, used to generate the CEN phylogenetic tree
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