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Abstract

Dr. Joseph Loscalzo (M.D., 1978; Ph.D., 1977) is recognized here as a Redox
Pioneer because he has published two articles in the field of antioxidant=redox
biology that have been cited more than 1,000 times and 22 articles that have been
cited more than 100 times. Dr. Loscalzo is known for his seminal contributions to
our understanding of the vascular biology of nitric oxide. His initial discovery
that the antiplatelet effects of organic nitrates are potentiated by thiols through a
mechanism that involved metabolism to S-nitrosothiols was followed by the
demonstration that S-nitrosothiols are formed endogenously through S-transni-
trosation, stabilize nitric oxide, and facilitate the transport and transfer of nitric
oxide between and within cells of the vessel wall. These properties led to the
development of S-nitrosothiol–containing pharmacotherapies to treat disease
states characterized by nitric oxide deficiency. Dr. Loscalzo’s other scientific

contributions include identifying the vascular functional consequences of genetic deficiencies of antioxidant
enzymes that decrease nitric oxide bioavailability, collectively termed the ‘‘oxidative enzymopathies,’’ and
demonstrating the role of mitochondria in modulating the disulfide subproteome, and in redox signaling in
hypoxia. He has received numerous awards and honors for his scientific contributions, including election to the
Institute of Medicine of the National Academy of Sciences. Antioxid. Redox Signal. 13, 1125–1132.

Biomedical research is an extraordinarily gratifying enterprise. Solving a perplexing problem in an innovative and rigorous way,
creating new knowledge in the process, and using that knowledge to (re)define an underlying mechanism are each highly
rewarding aspects of the research process. Perhaps the most rewarding feature, however, is the ability to influence the next
generation of scientists through the impact of one’s scientific contributions, and the guidance and advice given to one’s trainees.
Those of us who have succeeded in developing biomedical research careers have been given a great and special opportunity for
which I, for one, am most grateful.

—Professor Joseph Loscalzo

Educational and Professional Training

Dr. Loscalzo is a graduate of the University of Penn-
sylvania (A.B., M.D., and Ph.D. in Biochemistry). He

completed his residency in internal medicine and a cardiology
fellowship at Brigham and Women’s Hospital. He also com-
pleted his postdoctoral training at Harvard Medical School as
a Research Fellow in Medicine.

Summary of Dr. Loscalzo’s Top Contributions

Organic nitrates and nitric oxide (NO�) donors were known
to limit platelet aggregation; however, the mechanism un-
derlying this response remained unknown for more than a
decade. In 1985, Dr. Loscalzo discovered that the antiplatelet
effects of organic nitrates are dependent on their reaction
with thiols to form S-nitrosothiols. He demonstrated that

Reviewing Editors: Dipak K. Das, Aron Fisher, Santiago Lamas, Elizabeth Murphy, and Pasquale Pagliaro

Professor Joseph Loscalzo

Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts.
Author note: I met Dr. Loscalzo in 1994 as a Cardiology Fellow at Boston University School of Medicine and joined his research laboratory.

Since then, we have been collaborating on studies that examine the pathophysiologic consequences of perturbations of redox homeostasis and
nitric oxide deficiency on vascular function.

For a list of frequently cited articles published by Prof. Loscalzo, see Supplemental Tables 1 and 2, available online at www.liebertonline.com=ars.

ANTIOXIDANTS & REDOX SIGNALING
Volume 13, Number 7, 2010
ª Mary Ann Liebert, Inc.
DOI: 10.1089=ars.2010.3205

1125



S-nitrosothiols are a stable reservoir of NO�, facilitate NO�

transport within and between cells, and promote the vascular
biologic effects of NO�. His research increased our under-
standing of NO� signaling and metabolism in the vasculature
and the pathophysiologic significance of NO�-deficiency
states.

Background, Development, and Training

Joseph Loscalzo was born in 1951 in Camden, New Jersey,
where he spent his childhood with his three siblings and a
large extended family. His great-uncle, a pediatrician who
served on the first board of the American Academy of Pe-
diatrics, was a significant influence on Dr. Loscalzo’s decision
to become a physician. Family has always been important to
Dr. Loscalzo, and he and his wife Anita are the parents of two
highly accomplished grown children, Julie and Alex, and the
proud grandparents of Charlotte.

Dr. Loscalzo joined the faculty of Harvard Medical School
at Brigham and Women’s Hospital in 1984, after completing
his training, and remained on staff until 1994. During this
time, he was appointed Chief of the Cardiology Section at the
Brockton=West Roxbury VA Medical Center, a Harvard
Medical School affiliate institution, and Director of the Center
for Research in Thrombolysis and of the Center for Research
in Vascular Biology.

In 1994, Dr. Loscalzo moved to Boston University School of
Medicine to assume the roles of Chief of Cardiology and
Director of the Whitaker Cardiovascular Institute. In 1997, he
was named the Wade Professor and Chairman of the De-
partment of Medicine. While there, he expanded the Whitaker
Cardiovascular Institute by recruiting a number of talented
investigators. In 2005, he returned to Harvard Medical School
and Brigham and Women’s Hospital as the Hersey Professor
of the Theory and Practice of Medicine and Chairman of the
Department of Medicine.

Area of Interest in Redox Biology

Mitochondrial ROS and the disulfide subproteome

Loscalzo’s group found that mitochondrial ROS were in-
volved in de novo disulfide bond formation, a key event in

protein synthesis and function, by demonstrating that global
disulfide bond formation paralleled mitochondrial ROS
levels. Disulfide bond formation influenced the activation
and cell-surface translocation of selected disulfide-containing
proteins such as insulin growth factor-1 receptor, indicat-
ing the existence of a mitochondrial ROS-dependent redox-
sensitive disulfide subproteome (44). Sparsely cultured
endothelial cells were found to have a lower protein dis-
ulfide content compared with confluent cells, associated with
decreased mitochondrial membrane potential, superoxide
production, and increased levels of reduced glutathione,
indicating a more reductive state. This, in turn, was associ-
ated with diminished ligand-induced phosphorylation of
insulin growth factor-1 receptor, suggesting that differences
in receptor function observed in sparsely cultured cells may
result from insufficient oxidative potential (44). Other studies
revealed that GPx-1 regulates epidermal growth factor
receptor signaling, in part, through a similar mechanism.
Cells that overexpressed GPx-1 were found to have de-
creased epidermal growth factor receptor–mediated activa-
tion of Akt, resulting in decreased proliferation, owing to
a reduction in global disulfide bond formation, mitochon-
drial membrane potential, and ATP production (14). These
studies highlight the importance of mitochondrial ROS
and intracellular reductive potential for protein disulfide
formation, select disulfide-containing cell-surface receptor
expression, and growth factor receptor–mediated signaling
(Fig. 1).

Hypoxia, endothelial cells, and microRNA-210

Hypoxia is associated with inflammation and ischemia, and,
under these conditions, NO� levels may be markedly elevated,
rendering vascular endothelial cells susceptible to apoptosis
and cell death. Loscalzo’s laboratory demonstrated that this
occurred as a result of increased peroxynitrite formation that
activated the mitochondria-independent pathway of apopto-
sis, as well as induced mitochondrial dysfunction and cyto-
chrome c release to activate caspase-9 (39).

Under hypoxic conditions, repression of mitochondrial
electron transport and oxidative phosphorylation in favor of
glycolysis is known as the ‘‘Pasteur effect.’’ In endothelial,
vascular smooth muscle, and transformed cells, as well as
in vivo, this metabolic switch was shown by Dr. Loscalzo’s
group to be regulated by hypoxia-mediated upregulation of
microRNA-210 to decrease the expression of iron-sulfur
cluster assembly proteins 1 and 2. These proteins facilitate the
assembly of iron-sulfur clusters, which are necessary for
Complex I and aconitase activity to facilitate electron trans-
port and mitochondrial oxidation–reduction reactions. Thus,
microRNA-210 is a key regulator of the cellular adaptation to
hypoxia (4). These data suggest that microRNA-210 functions
as a master microRNA under hypoxic conditions and mod-
ulates disease states characterized by hypoxia, such as ische-
mia and tumorigenesis (3) (Fig. 1).

Description of Key Finding 1

S-nitrosothiols and the biologic effects of NO
�

Dr. Loscalzo first demonstrated that the antiplatelet ef-
fects of organic nitrates or endothelium-derived NO� were
dependent on thiols to generate S-nitrosothiols, and he

Dr. Loscalzo and his granddaughter Charlotte
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confirmed this finding by showing that S-nitrosoproteins,
such as S-nitroso-albumin, were potent antiplatelet agents
(22, 29). This discovery by Dr. Loscalzo established the
fundamental role of S-nitrosothiols in modulating the bio-
logic effects of NO�. Subsequently, S-nitrosoglutathione was
shown to enhance platelet formation from megakaryocytes
by inducing apoptosis (1, 2). Loscalzo’s group demonstrated
that S-nitrosothiols are formed naturally in vivo and serve as
a stable reservoir of NO� (28, 33). Subsequently, they found
that de novo formation of S-nitrosothiols occurred through
several mechanisms, including S-transnitrosation (Fig. 2)
(34, 35). This process was shown to be catalyzed by the
cell-surface protein disulfide isomerase, which, through
S-transnitrosation, facilitated the transfer of NO� from the
extracellular to the intracellular compartment (45). In vivo,
S-nitrosoproteins with limited intracellular access were
shown to exert their biologic actions by undergoing thiol-
S-nitrosothiol exchange with low-molecular-weight thiols to

form low-molecular-weight S-nitrosothiols (28). Loscalzo’s
group demonstrated further that endogenous NO� or exog-
enous S-nitrosothiols promoted the formation of S-ni-
trosoproteins in endothelial cells. These S-nitrosoproteins
were localized principally to the mitochondria and the
perimitochondrial compartment, with a half-life of *1 h,
and their formation paralleled eNOS activity and mito-
chondrial function. Mass spectrometry revealed that a lim-
ited repertoire of S-nitrosoproteins exists in resting
endothelial cells, with GAPDH being the most abundant,
suggesting that NO� may play a role in regulating glycolysis
by this mechanism (43).

Description of Key Finding 2

Nitric oxide and platelet activation

Dr. Loscalzo’s laboratory has shown that endogenous or
exogenous NO� modulates platelet activation, recruitment,

FIG. 1. Mitochondrial ROS, metabolism, and role in translocation and function of disulfide-containing cell-surface
protein receptors. ROS generated by mitochondrial respiration play an integral role in the cell-surface translocation and
activation of selected disulfide containing proteins, such as insulin growth factor-1 (IGF-1) receptor. In the presence of
mitochondrial ROS inhibitors, such as the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP),
translocation of the IGF-1 receptor from the cytoplasm to the cell membrane is inhibited. Inhibition of mitochondrial ROS also
limits phosphorylation and activation of the receptor in CCCP-treated endothelial cells. Under hypoxic conditions, mito-
chondrial metabolism shifts, leading to a repression of electron transport and oxidative phosphorylation in favor of gly-
colysis. This phenomenon is known as the ‘‘Pasteur effect.’’ This metabolic switch is regulated by microRNA-210, which is
upregulated by hypoxia, and downregulates the expression of iron-sulfur cluster assembly proteins 1 and 2 (ISCU 1=2). These
proteins are necessary for the activity of Complex I and aconitase. Thus, microRNA-210 limits mitochondrial electron
transport, ROS, and the TCA cycle. CoQ, Coenzyme Q; OM, outer mitochondrial membrane; IM, inner mitochondrial
membrane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article at www.liebertonline.com=ars).
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and aggregation (Fig. 3). Endothelium-derived NO�, in the
presence of N-acetylcysteine, inhibited ex vivo aggregation by
increasing platelet cGMP levels (33). In vivo, in a coronary
artery stenosis model, NO� inhibited periodic platelet
thrombus formation through a similar mechanism (6, 27).
Nitroglycerin acts synergistically with tissue plasminogen
activator or the platelet inhibitory prostaglandins I2 and E1 to
promote platelet disaggregation, whereas inhibiting NO�

with NG-mono-methyl-l-arginine had the opposite effect and
decreased bleeding time (30, 36). The mechanisms by which
NO� inhibits agonist-induced platelet aggregation include
decreasing the expression of platelet P-selectin, CD63, and the
fibrinogen receptor GPIIb=IIIa (25); preventing the binding of
fibrinogen to platelets (24); and inhibiting PI3-kinase activa-
tion in platelets, a step that renders aggregation irreversible
(26). Further studies revealed that NO� production by plate-
lets themselves did not influence platelet activation signifi-
cantly but played a role in limiting platelet recruitment to
the growing thrombus (10). In vivo studies in eNOS-=- mice

revealed that bleeding times in these mice were decreased
significantly compared with wild-type mice, and this was
associated with increased platelet recruitment (12). Clinically,
patients with acute coronary syndromes were also found to
produce less platelet-derived NO� (13). These findings high-
light the importance of endothelium- and platelet-derived
NO� to limit platelet aggregation and further to identify the
antiplatelet properties associated with the administration of
exogenous NO� donors.

Description of Key Finding 3

Oxidative enzymopathies

Loscalzo’s laboratory found that inherited or acquired de-
ficiency of glucose-6-phosphate dehydrogenase or the anti-
oxidant enzyme glutathione peroxidase(s) is associated with
increased oxidant stress, decreased bioavailable NO�, and
vascular dysfunction (Fig. 4). Deficient glucose-6-phosphate
dehydrogenase activity increased ROS levels (19); inhibited
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FIG. 2. S-nitrosothiol and S-nitrosoprotein formation. S-Nitrosothiols (RSNO) are formed when NO
�
reacts with a low- or

high-molecular-weight thiol (RSH) by the exchange of �H for �NO between sulfur groups, a process known as S-trans-
nitrosation. This reaction is catalyzed by cell-surface protein disulfide isomerase (PDI); PDI also facilitates the transport of
NO

�
by localizing the molecule to the cell-membrane space, where it may react with molecular oxygen to generate N2O3,

which is a nitrosating agent. In plasma, S-nitrosothiols may react with albumin to generate S-nitrosoalbumin, the most
abundant circulating S-nitrosated protein. S-Nitrosoalbumin may also participate in thiol-nitrosothiol exchange with low-
molecular-weight thiols such as cysteine. Once S-nitrosocysteine is formed, it is transported across the cell membrane by the
System L transporters to reside in the cytoplasm. Here, S-nitrosocysteine may once again participate in thiol-nitrosothiol
exchange reactions to generate intracellular S-nitrosothiols. S-Nitrosothiols also play an important role in the formation of
S-nitrosoproteins (PrSNO). The majority of S-nitrosoproteins are localized to the mitochondria. Within the mitochondria, NO

�

synthesized by eNOS or mitochondrial NOS may react with superoxide (
�
O2
�) to form peroxynitrite (ONOO�). Peroxynitrite,

in turn, may react with thiol-containing proteins (PrSHs) to yield S-nitrosoproteins or may first react with RSH to generate an
S-nitrosothiol, which then facilitates S-nitrosoprotein formation. Adapted from (10). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article at www.liebertonline.com=ars).
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endothelial cell proliferation, migration, and tube formation
in vitro, as well as angiogenesis in vivo (21); impaired vascular
reactivity to endothelium-dependent and -independent va-
sodilators (19, 20); and mediated the adverse effects of aldo-
sterone on vascular function by contributing to endothelial
dysfunction and oxidative posttranslational modification of
soluble guanylyl cyclase (20, 23).

They also found that GPx-1 deficiency was associated with
endothelial dysfunction and vascular structural abnormali-
ties, including increased matrix deposition and intimal
thickening (7, 8). Deficiency of plasma GPx, or GPx-3, pro-
moted platelet insensitivity to NO�, thrombosis, and was as-
sociated with stroke (9, 11). This led to the identification of a
unique promoter haplotype (H2) of seven tightly linked
polymorphisms in the GPx-3 gene that is overrepresented in
young patients with arterial ischemic stroke and central ve-
nous thrombosis (37, 38).

In related studies, Loscalzo’s laboratory demonstrated that
mild-to-moderate hyperhomocysteinemia was associated
with endothelial dysfunction, enhanced lipid peroxidation,
and impaired vasodilation (5, 17, 41). These effects occurred,
in part, as a result of homocysteine-mediated inhibition of
GPx-1 translation (16), and overexpression of GPx-1 rescued
the adverse vascular phenotype (42). Elevated levels of
homocysteine also were shown to underlie the negative ef-
fects of l-arginine supplementation on vascular function as a
result of conversion of l-arginine to creatine and, thereby,
homocysteine (15).

Other Achievements

5-Lipoxygenase and pulmonary hypertension

In pulmonary artery endothelial cells and animal models of
pulmonary hypertension, Dr. Loscalzo’s group demonstrated
the adverse biologic effects of 5-lipoxygenase, a nonheme
iron-containing dioxygenase that generates the biologi-
cally active leukotrienes and 5-hydroxyeicosatetraenoic acid.

Increased 5-lipoxygenase expression decreased bioavailable
NO� and cGMP levels in pulmonary artery endothelial cells,
whereas inhibition of 5-lipoxygenase limited cell proliferation
by causing a cell-cycle block at G0=G1 (40, 46). In the mono-
crotaline-rat model of pulmonary hypertension, pulmonary
overexpression of 5-lipoxygenase increased right ventricular
systolic pressure, hypertrophy, inflammation, and muscu-
larization of small- and medium-sized pulmonary vessels
(18). Bone morphogenetic protein receptor-2 (BMPR2) muta-
tions have also been linked to pulmonary arterial hyper-
tension. In BMPR2 heterozygous mutant mice, pulmonary
vascular overexpression of 5-lipoxygenase increased pulmo-
nary artery pressures, vascular remodeling, and thromboxane
A2 production compared with unstressed mice (32). Chal-
lenge with 5-lipoxygenase and monocrotaline resulted in
early and severe increases in pulmonary pressures, vascular
endothelial injury, and perivascular infiltration of inflamma-
tory and immune cells. This work suggests that increased
5-lipoxygenase expression enhances the susceptibility to
pulmonary hypertension when the BMPR2 mutation is
present (31).

Current Position

Dr. Loscalzo is the Hersey Professor of the Theory and
Practice of Medicine at Harvard Medical School, Vice Director
of the Biomedical Research Institute, and Chairman of the
Department of Medicine at Brigham and Women’s Hospital, a
department of approximately 900 full-time clinicians and re-
searchers. Dr. Loscalzo’s research laboratory comprises 15
members currently, and his scientific discoveries have led to
30 patents for his work. He currently holds several NIH
awards, including a Method to Extend Research in Time
(MERIT) Award from the NHLBI. He is a member of the
Council of Councils at the NIH and an elected member of the
American Society of Clinical Investigation and the Institute of
Medicine of the National Academy of Sciences.

FIG. 3. Nitric oxide and
platelet aggregation. Nitric
oxide donors, including nitro-
glycerin (TNG), S-nitrosothiols
(RSNOs), and sodium nitro-
prusside (SNP), or endotheli-
um-derived NO�

inhibit agonist-
induced platelet aggregation by
increasing platelet cGMP levels;
decreasing expression of the
fibrinogen receptor GPIIb=IIIa,
P-selectin, and CD63; and in-
hibiting PI3-kinase activation, to
limit irreversible platelet aggre-
gation. Platelet-derived NO

�
, in

turn, inhibits the recruitment
of circulating platelets to sites
of vascular injury. vWF, von
Willebrand factor. (For inter-
pretation of the references to
color in this figure legend, the
reader is referred to the web
version of this article at www
.liebertonline.com=ars).
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Dr. Loscalzo is the Editor-in-Chief of Circulation; an As-
sociate Editor for the Interactive Medical Case Series at the
New England Journal of Medicine; a Consulting Editor for the
Journal of Clinical Investigation, Circulation Research, and
Arteriosclerosis, Thrombosis and Vascular Biology; and is a
member of the editorial board of 16 journals. He is also a
senior editor of Harrison’s Principles of Internal Medicine.

Dr. Loscalzo has a profound commitment to teaching and
has trained more than 50 investigators in his laboratory, many
of whom have gone on to successful careers in biomedical
research and leadership positions at prominent institutions.
According to Dr. Loscalzo, ‘‘Biomedical research is an ex-
traordinarily gratifying enterprise. Solving a perplexing
problem in an innovative and rigorous way, creating new
knowledge in the process, and using that knowledge to
(re)define an underlying mechanism are each highly re-
warding aspects of the research process. Perhaps the most
rewarding feature, however, is the ability to influence the next

generation of scientists through the impact of one’s scientific
contributions, and the guidance and advice given to one’s
trainees. Those of us who have succeeded in developing
biomedical research careers have been given a great and
special opportunity for which I, for one, am most grateful.’’
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