Abstract
The molecular structure of the title compound, 3-COOH-2-CH3O—C6H3B(OH)2 or C8H9BO5, is stabilized in part due to the presence of an intramolecular O—H⋯O hydrogen bond. In the crystal structure, molecules are linked by intermolecular O—H⋯O hydrogen bonds, generating a two-dimensional sheet structure aligned parallel to the (11
) plane.
Related literature
For structures of other carboxyphenylboronic acids, see: SeethaLekshmi & Pedireddi (2007 ▶); Soundararajan et al. (1993 ▶). For the application of carboxyphenylboronic acids in crystal engineering, see: (Aakeröy et al., 2005 ▶; SeethaLekshmi & Pedireddi, 2006 ▶). For structural characterization of related ortho-alkoxy arylboronic acids, see: Dabrowski et al. (2006 ▶); Dąbrowski et al. (2008 ▶); Yang et al. (2005 ▶). For the synthesis of the title compound, see: (Kurach et al., 2008 ▶).
Experimental
Crystal data
C8H9BO5
M r = 195.96
Triclinic,
a = 4.8451 (5) Å
b = 7.7564 (7) Å
c = 12.1064 (9) Å
α = 79.476 (7)°
β = 79.575 (7)°
γ = 76.125 (8)°
V = 429.75 (7) Å3
Z = 2
Mo Kα radiation
μ = 0.12 mm−1
T = 100 (2) K
0.32 × 0.20 × 0.14 mm
Data collection
Kuma KM4 CCD diffractometer
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005 ▶) T min = 0.95, T max = 0.98
12229 measured reflections
2106 independent reflections
1526 reflections with I > 2σ(I)
R int = 0.018
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.101
S = 1.05
2106 reflections
163 parameters
All H-atom parameters refined
Δρmax = 0.35 e Å−3
Δρmin = −0.26 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction (2005 ▶); cell refinement: CrysAlis RED (Oxford Diffraction (2005 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg, 1999 ▶); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 ▶).
Supplementary Material
Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808029504/tk2303sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029504/tk2303Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| B1—O2 | 1.3443 (15) |
| B1—O3 | 1.3461 (16) |
| B1—C9 | 1.5661 (17) |
| C6—O8 | 1.2607 (13) |
| C6—O7 | 1.3044 (14) |
| O2—B1—C9—C14 | 18.65 (16) |
| C5—O4—C10—C9 | 93.35 (12) |
| O8—C6—C11—C10 | 177.57 (10) |
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H2⋯O3i | 0.802 (19) | 1.96 (2) | 2.7572 (13) | 172.6 (18) |
| O3—H3⋯O4 | 0.84 (2) | 2.06 (2) | 2.7283 (12) | 136.8 (19) |
| O3—H3⋯O2ii | 0.84 (2) | 2.45 (2) | 3.0538 (14) | 130.2 (19) |
| O7—H8⋯O8iii | 1.03 (2) | 1.60 (2) | 2.6255 (11) | 177.0 (16) |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology and by the Polish Ministry of Science and Higher Education (grant No. N N205 055633).
supplementary crystallographic information
Comment
The presence of a carboxyl group in a molecule of arylboronic acid provides an increased potential for extended supramolecular organization (SeethaLekshmi & Pedireddi, 2007). The promising properties of carboxyphenylboronic acids in crystal engineering (Aakeröy et al., 2005; SeethaLekshmi & Pedireddi, 2006) prompted us to determine the structure of the title compound, (I).
The molecular structure of (I) shows the boronic groups possesses an exo-endo conformation and is slightly twisted with respect to the benzene ring (Table 1). The methoxy group is twisted almost perpendicularly with respect to the aromatic ring. The endo-oriented OH group is engaged in an intramolecular O—H···O hydrogen bonds with the methoxy O atom, resulting in the formation of a six-membered ring. This motif is generally typical of structures of ortho-alkoxyarylboronic acids (Yang et al., 2005; Dąbrowski et al., 2006). The carboxyl group is almost coplanar with respect to the benzene ring. The molecules are linked via almost linear O—H···O bridges in a "head-to-head, tail-to-tail" fashion, i.e., equivalent groups interact with each other forming two alternate centrosymmetric dimeric motifs, Table 2. As a result, an infinite, zigzag chain is formed (Fig. 2). The chain structure resembles the situation found for the related 2-methoxy-1,3-phenylenediboronic acid (Dąbrowski et al., 2008), where single molecules are linked via homomeric (SeethaLekshmi & Pedireddi, 2007) hydrogen-bonding interactions of non-equivalent boronic groups.
The 1D supramolecular architecture extends through cross-linking weak O—H···O bonds between twisted boronic groups. As a result a 2D array is formed, aligned parallel to the (11–2) plane. In conclusion, the intermolecular hydrogen-bonding interactions of boronic and carboxyl groups result in the formation of the infinite chain structure. Chains are interconnected by means of weaker hydrogen-bonds, thus forming the layer structure.
Experimental
The compund was prepared according to the published procedure (Kurach et al., 2008). Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of a solution of the acid (0.15 g) in ethyl acetate/acetone (10 ml, 1:1).
Refinement
All hydrogen atoms were located in difference syntheses and refined freely so that O-H = 0.802 (19) - 1.03 (2) Å and C-H = 0.942 (17) - 1.029 (17) Å.
Figures
Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. The intramolecular hydrogen bond is shown as a dashed lines. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level.
Fig. 2.
The hydrogen-bonding pattern for (I). Hydrogen bonds are shown as dashed lines.
Crystal data
| C8H9BO5 | V = 429.75 (7) Å3 |
| Mr = 195.96 | Z = 2 |
| Triclinic, P1 | F(000) = 204 |
| Hall symbol: -P 1 | Dx = 1.514 Mg m−3 |
| a = 4.8451 (5) Å | Melting point: 429-432 K K |
| b = 7.7564 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
| c = 12.1064 (9) Å | µ = 0.12 mm−1 |
| α = 79.476 (7)° | T = 100 K |
| β = 79.575 (7)° | Prismatic, colourless |
| γ = 76.125 (8)° | 0.32 × 0.20 × 0.14 mm |
Data collection
| Kuma KM4 CCD diffractometer | 2106 independent reflections |
| Radiation source: fine-focus sealed tube | 1526 reflections with I > 2σ(I) |
| graphite | Rint = 0.018 |
| Detector resolution: 8.6479 pixels mm-1 | θmax = 28.6°, θmin = 3.0° |
| ω scan | h = −6→6 |
| Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | k = −10→10 |
| Tmin = 0.95, Tmax = 0.98 | l = −16→16 |
| 12229 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.101 | All H-atom parameters refined |
| S = 1.05 | w = 1/[σ^2^(Fo^2^) + (0.0643P)^2^] where P = (Fo^2^ + 2Fc^2^)/3 |
| 2106 reflections | (Δ/σ)max = 0.001 |
| 163 parameters | Δρmax = 0.35 e Å−3 |
| 0 restraints | Δρmin = −0.26 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| B1 | 0.5522 (3) | 0.79514 (18) | 0.40716 (11) | 0.0168 (3) | |
| O2 | 0.77114 (19) | 0.78932 (13) | 0.46290 (7) | 0.0247 (2) | |
| O3 | 0.3223 (2) | 0.93263 (13) | 0.41255 (8) | 0.0295 (3) | |
| O4 | 0.20761 (17) | 0.81061 (11) | 0.23177 (7) | 0.0181 (2) | |
| C5 | 0.3211 (3) | 0.92945 (19) | 0.13926 (12) | 0.0300 (3) | |
| C6 | 0.2362 (2) | 0.50663 (16) | 0.11119 (9) | 0.0165 (3) | |
| O7 | 0.04150 (18) | 0.65037 (11) | 0.08598 (7) | 0.0199 (2) | |
| O8 | 0.27658 (18) | 0.36943 (11) | 0.06341 (7) | 0.0216 (2) | |
| C9 | 0.5714 (2) | 0.63677 (16) | 0.34035 (9) | 0.0168 (3) | |
| C10 | 0.3987 (2) | 0.65025 (15) | 0.25686 (9) | 0.0147 (3) | |
| C11 | 0.4152 (2) | 0.50426 (15) | 0.20035 (9) | 0.0162 (3) | |
| C12 | 0.6083 (3) | 0.34441 (17) | 0.22948 (10) | 0.0200 (3) | |
| C13 | 0.7810 (3) | 0.32923 (17) | 0.31153 (11) | 0.0232 (3) | |
| C14 | 0.7620 (3) | 0.47419 (17) | 0.36588 (10) | 0.0204 (3) | |
| H2 | 0.729 (4) | 0.869 (2) | 0.5008 (16) | 0.052 (5)* | |
| H3 | 0.204 (5) | 0.903 (3) | 0.3808 (19) | 0.083 (7)* | |
| H5A | 0.506 (4) | 0.956 (2) | 0.1564 (13) | 0.043 (4)* | |
| H5B | 0.187 (3) | 1.040 (2) | 0.1310 (13) | 0.043 (4)* | |
| H5C | 0.361 (3) | 0.8735 (19) | 0.0712 (13) | 0.031 (4)* | |
| H8 | −0.080 (4) | 0.638 (2) | 0.0276 (16) | 0.067 (6)* | |
| H12 | 0.612 (3) | 0.245 (2) | 0.1950 (12) | 0.025 (4)* | |
| H13 | 0.906 (3) | 0.217 (2) | 0.3314 (12) | 0.030 (4)* | |
| H14 | 0.878 (3) | 0.4602 (18) | 0.4239 (11) | 0.024 (4)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| B1 | 0.0178 (7) | 0.0218 (7) | 0.0127 (6) | −0.0063 (5) | −0.0035 (5) | −0.0036 (5) |
| O2 | 0.0229 (5) | 0.0308 (5) | 0.0255 (5) | −0.0031 (4) | −0.0095 (4) | −0.0147 (4) |
| O3 | 0.0305 (5) | 0.0277 (5) | 0.0376 (6) | 0.0014 (4) | −0.0205 (4) | −0.0182 (4) |
| O4 | 0.0218 (4) | 0.0159 (4) | 0.0178 (4) | −0.0018 (3) | −0.0072 (3) | −0.0040 (3) |
| C5 | 0.0408 (8) | 0.0200 (7) | 0.0276 (7) | −0.0065 (6) | −0.0072 (6) | 0.0031 (6) |
| C6 | 0.0174 (6) | 0.0191 (6) | 0.0147 (6) | −0.0076 (5) | −0.0012 (4) | −0.0034 (5) |
| O7 | 0.0212 (4) | 0.0209 (5) | 0.0201 (4) | −0.0022 (4) | −0.0103 (3) | −0.0048 (3) |
| O8 | 0.0280 (5) | 0.0219 (5) | 0.0193 (4) | −0.0088 (4) | −0.0060 (4) | −0.0069 (4) |
| C9 | 0.0156 (6) | 0.0220 (6) | 0.0139 (6) | −0.0063 (5) | −0.0025 (4) | −0.0023 (5) |
| C10 | 0.0146 (5) | 0.0156 (6) | 0.0142 (5) | −0.0042 (4) | −0.0012 (4) | −0.0024 (4) |
| C11 | 0.0167 (6) | 0.0179 (6) | 0.0149 (6) | −0.0062 (5) | −0.0007 (4) | −0.0028 (5) |
| C12 | 0.0215 (6) | 0.0169 (6) | 0.0222 (6) | −0.0051 (5) | −0.0012 (5) | −0.0045 (5) |
| C13 | 0.0210 (6) | 0.0197 (6) | 0.0257 (7) | −0.0013 (5) | −0.0036 (5) | 0.0007 (5) |
| C14 | 0.0178 (6) | 0.0273 (7) | 0.0164 (6) | −0.0054 (5) | −0.0049 (5) | −0.0002 (5) |
Geometric parameters (Å, °)
| B1—O2 | 1.3443 (15) | C6—C11 | 1.4971 (16) |
| B1—O3 | 1.3461 (16) | O7—H8 | 1.03 (2) |
| B1—C9 | 1.5661 (17) | C9—C14 | 1.3933 (17) |
| O2—H2 | 0.802 (19) | C9—C10 | 1.3993 (16) |
| O3—H3 | 0.84 (2) | C10—C11 | 1.4059 (16) |
| O4—C10 | 1.3813 (14) | C11—C12 | 1.3931 (17) |
| O4—C5 | 1.4317 (15) | C12—C13 | 1.3825 (18) |
| C5—H5A | 1.029 (17) | C12—H12 | 0.938 (15) |
| C5—H5B | 0.942 (17) | C13—C14 | 1.3799 (18) |
| C5—H5C | 0.968 (15) | C13—H13 | 0.955 (15) |
| C6—O8 | 1.2607 (13) | C14—H14 | 0.951 (14) |
| C6—O7 | 1.3044 (14) | ||
| O2—B1—O3 | 119.64 (11) | C14—C9—B1 | 119.41 (10) |
| O2—B1—C9 | 118.18 (11) | C10—C9—B1 | 122.49 (10) |
| O3—B1—C9 | 122.16 (10) | O4—C10—C9 | 118.38 (10) |
| B1—O2—H2 | 109.5 (13) | O4—C10—C11 | 120.37 (10) |
| B1—O3—H3 | 104.3 (15) | C9—C10—C11 | 121.25 (11) |
| C10—O4—C5 | 113.51 (10) | C12—C11—C10 | 118.37 (10) |
| O4—C5—H5A | 110.1 (9) | C12—C11—C6 | 116.96 (10) |
| O4—C5—H5B | 109.1 (10) | C10—C11—C6 | 124.66 (10) |
| H5A—C5—H5B | 107.3 (13) | C13—C12—C11 | 121.05 (11) |
| O4—C5—H5C | 108.6 (9) | C13—C12—H12 | 120.4 (9) |
| H5A—C5—H5C | 110.3 (13) | C11—C12—H12 | 118.5 (9) |
| H5B—C5—H5C | 111.4 (13) | C14—C13—C12 | 119.70 (12) |
| O8—C6—O7 | 122.02 (10) | C14—C13—H13 | 121.3 (9) |
| O8—C6—C11 | 119.10 (10) | C12—C13—H13 | 118.9 (9) |
| O7—C6—C11 | 118.88 (10) | C13—C14—C9 | 121.55 (11) |
| C6—O7—H8 | 114.0 (10) | C13—C14—H14 | 118.6 (8) |
| C14—C9—C10 | 118.08 (11) | C9—C14—H14 | 119.8 (8) |
| O2—B1—C9—C14 | 18.65 (16) | O4—C10—C11—C6 | 0.00 (17) |
| O3—B1—C9—C14 | −159.62 (11) | C9—C10—C11—C6 | 179.25 (10) |
| O2—B1—C9—C10 | −162.83 (11) | O8—C6—C11—C12 | −3.26 (16) |
| O3—B1—C9—C10 | 18.89 (18) | O7—C6—C11—C12 | 176.22 (10) |
| C5—O4—C10—C9 | 93.35 (12) | O8—C6—C11—C10 | 177.57 (10) |
| C5—O4—C10—C11 | −87.38 (13) | O7—C6—C11—C10 | −2.95 (16) |
| C14—C9—C10—O4 | 179.50 (10) | C10—C11—C12—C13 | −0.30 (18) |
| B1—C9—C10—O4 | 0.96 (16) | C6—C11—C12—C13 | −179.52 (11) |
| C14—C9—C10—C11 | 0.24 (17) | C11—C12—C13—C14 | 0.18 (19) |
| B1—C9—C10—C11 | −178.30 (10) | C12—C13—C14—C9 | 0.16 (19) |
| O4—C10—C11—C12 | −179.16 (10) | C10—C9—C14—C13 | −0.37 (17) |
| C9—C10—C11—C12 | 0.09 (17) | B1—C9—C14—C13 | 178.22 (10) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H2···O3i | 0.802 (19) | 1.96 (2) | 2.7572 (13) | 172.6 (18) |
| O3—H3···O4 | 0.84 (2) | 2.06 (2) | 2.7283 (12) | 136.8 (19) |
| O3—H3···O2ii | 0.84 (2) | 2.45 (2) | 3.0538 (14) | 130.2 (19) |
| O7—H8···O8iii | 1.03 (2) | 1.60 (2) | 2.6255 (11) | 177.0 (16) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2303).
References
- Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.
- Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Dąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o414–o415. [DOI] [PMC free article] [PubMed]
- Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704. [DOI] [PubMed]
- Kurach, P., Luliński, S. & Serwatowski, J. (2008). Eur. J. Org. Chem. 3171–3178.
- Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd., Abingdon, Oxfordshire, England.
- SeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem.45, 2400–2402. [DOI] [PubMed]
- SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des.7, 944–949.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Soundararajan, S., Duesler, E. N. & Hageman, J. H. (1993). Acta Cryst. C49, 690–693. [DOI] [PubMed]
- Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem.70, 6907–6912. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808029504/tk2303sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029504/tk2303Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


