Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):o2181. doi: 10.1107/S1600536808034259

8,9-Isopropyl­idenedi­oxy-3-p-tolyl-1,6-dioxa-3-aza­spiro­[4.5]decane-2,10-dione

Chun-Sheng Ling a, Qiang Wu b,*, Shan-Shan Li c
PMCID: PMC2959605  PMID: 21581040

Abstract

In the title compound, C17H19NO6, which may serve as a ketone catalyst for the asymmetric epoxidation of olefins, the crystal packing is consolidated by C—H⋯O inter­actions.

Related literature

For general background, see: Denmark & Wu (1999); Shi (2004); Yang (2004). For the synthesis, see: Zhao et al. (2006).graphic file with name e-64-o2181-scheme1.jpg

Experimental

Crystal data

  • C17H19NO6

  • M r = 333.33

  • Monoclinic, Inline graphic

  • a = 11.1268 (8) Å

  • b = 6.3163 (5) Å

  • c = 11.8697 (8) Å

  • β = 94.084 (1)°

  • V = 832.09 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.18 × 0.15 × 0.13 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.982, T max = 0.987

  • 8821 measured reflections

  • 1795 independent reflections

  • 1389 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.075

  • S = 1.06

  • 1795 reflections

  • 220 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034259/hb2819sup1.cif

e-64-o2181-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034259/hb2819Isup2.hkl

e-64-o2181-Isup2.hkl (88.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O1i 0.97 2.54 3.093 (3) 116
C14—H14B⋯O4ii 0.97 2.55 3.426 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

supplementary crystallographic information

Comment

Dioxiranes generated in situ from chiral ketones are effective for the asymmetric epoxidation of olefins (Denmark & Wu, 1999; Shi, 2004; Yang, 2004). As part of our own studies in this area, we now report the synthesis and structure of the title compound, (I).

The compound (I) consists of a four-ring system, including a phenyl ring, a pyran ring, a dioxolane ring and an oxazolidine ring, and which displays a chair molecular framework (Fig. 1). In the structure of (I), the S(6) ring of O4/C10/C11/C12/C13/C14 is nonplanar, charactrtized by a O4–C10–C11–C12 torsion angle of 61.1 (2) °. The stereogenic centres C10, C12 and C13 were assigned R, S, and S configurations, respectively.

In the crystal, some short C—H···O interactions (Table 1) may help to establish the packing (Fig. 2).

Experimental

The title compound was made by the method of Zhao et al. (2006), starting from D-glucose and 4-methyl-benzenamine to yield colorless blocks of (I). The molecular formula, C17H19NO6, was established by ESI-MS, m/z: 356(M+Na), 334(M+H), 232, 204, 108. Spectroscopic analysis, 1H NMR (400 MHz, CDCl3): δ7.40 (d, J=5.4 Hz, 2H, ArH), 7.19 (d, J=5.4 Hz, 2H, ArH), 4.87 (d, J=5.7 Hz, 1H), 4.74 (d, J=10.2 Hz, 1H), 4.66–4.61 (m, 2H), 4.27 (d, J=13.8 Hz, 1H), 3.74 (d, J=10.2 Hz, 1H), 2.34 (s, 3H, ArCH3), 1.49 (s, 3H, –CH3), 1.44 (s, 3H, –CH3).

Refinement

Anomalous dispersion was negligible and Firedel pairs were merged before refinement. The H atoms were gemoetrically placed (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C) 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the title compound (I), H atoms are omitted for clarity.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C17H19NO6 F(000) = 352
Mr = 333.33 Dx = 1.330 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2y b Cell parameters from 2427 reflections
a = 11.1268 (8) Å θ = 2.4–21.1°
b = 6.3163 (5) Å µ = 0.10 mm1
c = 11.8697 (8) Å T = 296 K
β = 94.084 (1)° Block, colorless
V = 832.09 (11) Å3 0.18 × 0.15 × 0.13 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 1795 independent reflections
Radiation source: fine-focus sealed tube 1389 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −13→13
Tmin = 0.982, Tmax = 0.987 k = −7→7
8821 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0303P)2 + 0.0894P] where P = (Fo2 + 2Fc2)/3
1795 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 0.10 e Å3
1 restraint Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.89223 (17) 0.9579 (3) 0.12879 (17) 0.0543 (5)
O1 1.00555 (17) 1.2504 (3) 0.08456 (16) 0.0792 (6)
O2 0.84070 (14) 1.1560 (3) −0.02227 (14) 0.0588 (5)
O3 0.70022 (18) 0.7396 (3) −0.15295 (19) 0.0810 (6)
O4 0.64278 (14) 1.1097 (3) 0.02397 (14) 0.0600 (5)
O5 0.47051 (15) 1.1373 (3) −0.18543 (15) 0.0665 (5)
O6 0.59983 (16) 1.0190 (4) −0.31240 (15) 0.0766 (6)
C1 1.1700 (3) 0.5776 (7) 0.5018 (3) 0.0997 (12)
H1A 1.1778 0.6722 0.5652 0.150*
H1B 1.2484 0.5455 0.4775 0.150*
H1C 1.1316 0.4492 0.5235 0.150*
C2 1.0944 (3) 0.6815 (5) 0.4059 (2) 0.0705 (8)
C3 1.0017 (3) 0.5773 (5) 0.3486 (2) 0.0760 (8)
H3 0.9824 0.4413 0.3714 0.091*
C4 0.9355 (3) 0.6666 (5) 0.2580 (2) 0.0687 (8)
H4 0.8727 0.5907 0.2212 0.082*
C5 0.9620 (2) 0.8692 (4) 0.2214 (2) 0.0534 (6)
C6 1.0555 (2) 0.9785 (5) 0.2790 (2) 0.0648 (7)
H6 1.0751 1.1145 0.2567 0.078*
C7 1.1195 (2) 0.8837 (6) 0.3702 (2) 0.0727 (8)
H7 1.1815 0.9590 0.4086 0.087*
C8 0.9231 (2) 1.1294 (4) 0.0685 (2) 0.0563 (6)
C9 0.7901 (2) 0.8463 (4) 0.0715 (2) 0.0568 (6)
H9A 0.7294 0.8121 0.1234 0.068*
H9B 0.8156 0.7175 0.0357 0.068*
C10 0.74453 (19) 1.0086 (4) −0.0148 (2) 0.0524 (6)
C11 0.7064 (2) 0.9266 (4) −0.1330 (2) 0.0566 (6)
C12 0.6676 (2) 1.0984 (5) −0.2160 (2) 0.0628 (7)
H12 0.7381 1.1759 −0.2389 0.075*
C13 0.5811 (2) 1.2495 (4) −0.1640 (2) 0.0647 (7)
H13 0.5778 1.3830 −0.2062 0.078*
C14 0.6057 (2) 1.2941 (4) −0.0408 (2) 0.0677 (7)
H14A 0.6684 1.4007 −0.0314 0.081*
H14B 0.5335 1.3517 −0.0114 0.081*
C15 0.4747 (2) 1.0412 (5) −0.2935 (2) 0.0696 (8)
C16 0.4154 (3) 1.1789 (7) −0.3854 (3) 0.1116 (13)
H16A 0.3316 1.1956 −0.3732 0.167*
H16B 0.4234 1.1136 −0.4576 0.167*
H16C 0.4537 1.3152 −0.3840 0.167*
C17 0.4167 (3) 0.8262 (6) −0.2888 (3) 0.0914 (10)
H17A 0.4574 0.7441 −0.2296 0.137*
H17B 0.4222 0.7553 −0.3597 0.137*
H17C 0.3335 0.8422 −0.2739 0.137*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0565 (12) 0.0435 (12) 0.0639 (12) −0.0099 (10) 0.0112 (10) −0.0006 (10)
O1 0.0775 (12) 0.0680 (12) 0.0918 (13) −0.0344 (12) 0.0032 (10) 0.0086 (11)
O2 0.0532 (9) 0.0492 (10) 0.0746 (11) −0.0102 (8) 0.0097 (8) 0.0076 (9)
O3 0.0798 (13) 0.0514 (12) 0.1092 (15) 0.0067 (11) −0.0109 (11) −0.0152 (12)
O4 0.0554 (9) 0.0535 (11) 0.0729 (11) 0.0052 (9) 0.0179 (8) 0.0002 (9)
O5 0.0617 (10) 0.0617 (11) 0.0763 (12) 0.0064 (10) 0.0058 (8) −0.0065 (11)
O6 0.0769 (12) 0.0874 (14) 0.0670 (11) 0.0026 (12) 0.0163 (10) −0.0039 (11)
C1 0.087 (2) 0.131 (3) 0.082 (2) 0.014 (2) 0.0079 (17) 0.023 (2)
C2 0.0640 (17) 0.081 (2) 0.0681 (18) 0.0086 (16) 0.0169 (14) 0.0026 (16)
C3 0.089 (2) 0.0619 (19) 0.0775 (19) 0.0032 (17) 0.0113 (16) 0.0108 (16)
C4 0.0782 (18) 0.0552 (17) 0.0727 (18) −0.0080 (15) 0.0053 (14) −0.0008 (16)
C5 0.0565 (14) 0.0485 (15) 0.0563 (15) 0.0007 (12) 0.0131 (12) −0.0047 (12)
C6 0.0637 (16) 0.0599 (17) 0.0719 (17) −0.0069 (14) 0.0128 (14) −0.0061 (15)
C7 0.0608 (17) 0.088 (2) 0.0695 (19) −0.0023 (17) 0.0066 (14) −0.0095 (17)
C8 0.0560 (14) 0.0470 (15) 0.0672 (15) −0.0056 (14) 0.0142 (12) −0.0002 (14)
C9 0.0501 (13) 0.0438 (13) 0.0771 (16) −0.0094 (12) 0.0082 (12) 0.0038 (13)
C10 0.0439 (12) 0.0439 (13) 0.0708 (16) −0.0061 (12) 0.0147 (11) 0.0010 (12)
C11 0.0418 (13) 0.0497 (15) 0.0799 (18) −0.0014 (11) 0.0168 (12) −0.0023 (14)
C12 0.0629 (15) 0.0604 (16) 0.0671 (16) −0.0096 (14) 0.0182 (13) 0.0037 (14)
C13 0.0712 (17) 0.0429 (14) 0.0803 (19) 0.0024 (14) 0.0080 (14) 0.0057 (15)
C14 0.0699 (17) 0.0472 (16) 0.086 (2) 0.0098 (14) 0.0052 (14) −0.0095 (15)
C15 0.0694 (18) 0.0691 (19) 0.0700 (18) 0.0084 (15) 0.0032 (14) 0.0037 (16)
C16 0.131 (3) 0.108 (3) 0.093 (2) 0.025 (3) −0.012 (2) 0.023 (2)
C17 0.086 (2) 0.084 (3) 0.104 (2) −0.009 (2) 0.0007 (18) −0.012 (2)

Geometric parameters (Å, °)

N1—C8 1.356 (3) C5—C6 1.387 (3)
N1—C5 1.415 (3) C6—C7 1.389 (4)
N1—C9 1.463 (3) C6—H6 0.9300
O1—C8 1.199 (3) C7—H7 0.9300
O2—C8 1.374 (3) C9—C10 1.511 (3)
O2—C10 1.426 (3) C9—H9A 0.9700
O3—C11 1.205 (3) C9—H9B 0.9700
O4—C10 1.405 (3) C10—C11 1.528 (4)
O4—C14 1.440 (3) C11—C12 1.508 (4)
O5—C15 1.423 (3) C12—C13 1.517 (4)
O5—C13 1.427 (3) C12—H12 0.9800
O6—C12 1.417 (3) C13—C14 1.495 (4)
O6—C15 1.432 (3) C13—H13 0.9800
C1—C2 1.516 (4) C14—H14A 0.9700
C1—H1A 0.9600 C14—H14B 0.9700
C1—H1B 0.9600 C15—C17 1.506 (4)
C1—H1C 0.9600 C15—C16 1.510 (4)
C2—C3 1.364 (4) C16—H16A 0.9600
C2—C7 1.380 (5) C16—H16B 0.9600
C3—C4 1.380 (4) C16—H16C 0.9600
C3—H3 0.9300 C17—H17A 0.9600
C4—C5 1.390 (4) C17—H17B 0.9600
C4—H4 0.9300 C17—H17C 0.9600
C8—N1—C5 125.5 (2) O4—C10—C11 106.10 (18)
C8—N1—C9 110.9 (2) O2—C10—C11 108.94 (19)
C5—N1—C9 122.3 (2) C9—C10—C11 116.8 (2)
C8—O2—C10 109.46 (18) O3—C11—C12 124.6 (3)
C10—O4—C14 113.54 (19) O3—C11—C10 121.4 (3)
C15—O5—C13 106.81 (19) C12—C11—C10 113.8 (2)
C12—O6—C15 107.8 (2) O6—C12—C11 112.6 (2)
C2—C1—H1A 109.5 O6—C12—C13 103.6 (2)
C2—C1—H1B 109.5 C11—C12—C13 110.3 (2)
H1A—C1—H1B 109.5 O6—C12—H12 110.1
C2—C1—H1C 109.5 C11—C12—H12 110.1
H1A—C1—H1C 109.5 C13—C12—H12 110.1
H1B—C1—H1C 109.5 O5—C13—C14 111.3 (2)
C3—C2—C7 117.1 (3) O5—C13—C12 100.3 (2)
C3—C2—C1 121.7 (3) C14—C13—C12 116.0 (2)
C7—C2—C1 121.2 (3) O5—C13—H13 109.6
C2—C3—C4 122.3 (3) C14—C13—H13 109.6
C2—C3—H3 118.9 C12—C13—H13 109.6
C4—C3—H3 118.9 O4—C14—C13 113.3 (2)
C3—C4—C5 120.4 (3) O4—C14—H14A 108.9
C3—C4—H4 119.8 C13—C14—H14A 108.9
C5—C4—H4 119.8 O4—C14—H14B 108.9
C6—C5—C4 118.2 (3) C13—C14—H14B 108.9
C6—C5—N1 122.4 (2) H14A—C14—H14B 107.7
C4—C5—N1 119.4 (2) O5—C15—O6 106.1 (2)
C5—C6—C7 119.7 (3) O5—C15—C17 108.0 (3)
C5—C6—H6 120.2 O6—C15—C17 110.0 (2)
C7—C6—H6 120.2 O5—C15—C16 111.4 (3)
C2—C7—C6 122.3 (3) O6—C15—C16 108.8 (3)
C2—C7—H7 118.9 C17—C15—C16 112.3 (3)
C6—C7—H7 118.9 C15—C16—H16A 109.5
O1—C8—N1 130.1 (2) C15—C16—H16B 109.5
O1—C8—O2 120.5 (2) H16A—C16—H16B 109.5
N1—C8—O2 109.4 (2) C15—C16—H16C 109.5
N1—C9—C10 101.55 (19) H16A—C16—H16C 109.5
N1—C9—H9A 111.5 H16B—C16—H16C 109.5
C10—C9—H9A 111.5 C15—C17—H17A 109.5
N1—C9—H9B 111.5 C15—C17—H17B 109.5
C10—C9—H9B 111.5 H17A—C17—H17B 109.5
H9A—C9—H9B 109.3 C15—C17—H17C 109.5
O4—C10—O2 110.5 (2) H17A—C17—H17C 109.5
O4—C10—C9 109.00 (19) H17B—C17—H17C 109.5
O2—C10—C9 105.54 (17)
C7—C2—C3—C4 0.6 (4) N1—C9—C10—O2 17.4 (2)
C1—C2—C3—C4 −177.1 (3) N1—C9—C10—C11 138.56 (19)
C2—C3—C4—C5 0.2 (4) O4—C10—C11—O3 −113.6 (3)
C3—C4—C5—C6 −0.6 (4) O2—C10—C11—O3 127.4 (3)
C3—C4—C5—N1 −179.6 (2) C9—C10—C11—O3 8.0 (3)
C8—N1—C5—C6 16.7 (4) O4—C10—C11—C12 61.1 (2)
C9—N1—C5—C6 −177.0 (2) O2—C10—C11—C12 −57.9 (2)
C8—N1—C5—C4 −164.3 (2) C9—C10—C11—C12 −177.25 (19)
C9—N1—C5—C4 1.9 (3) C15—O6—C12—C11 95.7 (3)
C4—C5—C6—C7 0.2 (4) C15—O6—C12—C13 −23.5 (3)
N1—C5—C6—C7 179.2 (2) O3—C11—C12—O6 12.3 (4)
C3—C2—C7—C6 −1.0 (4) C10—C11—C12—O6 −162.21 (18)
C1—C2—C7—C6 176.7 (3) O3—C11—C12—C13 127.5 (3)
C5—C6—C7—C2 0.6 (4) C10—C11—C12—C13 −47.0 (3)
C5—N1—C8—O1 −7.5 (4) C15—O5—C13—C14 −160.6 (2)
C9—N1—C8—O1 −175.0 (3) C15—O5—C13—C12 −37.3 (2)
C5—N1—C8—O2 173.46 (19) O6—C12—C13—O5 36.9 (2)
C9—N1—C8—O2 5.9 (3) C11—C12—C13—O5 −83.8 (2)
C10—O2—C8—O1 −172.9 (2) O6—C12—C13—C14 157.0 (2)
C10—O2—C8—N1 6.2 (3) C11—C12—C13—C14 36.3 (3)
C8—N1—C9—C10 −14.5 (2) C10—O4—C14—C13 56.3 (3)
C5—N1—C9—C10 177.48 (19) O5—C13—C14—O4 73.7 (3)
C14—O4—C10—O2 53.3 (3) C12—C13—C14—O4 −40.2 (3)
C14—O4—C10—C9 168.83 (19) C13—O5—C15—O6 24.2 (3)
C14—O4—C10—C11 −64.6 (2) C13—O5—C15—C17 142.0 (2)
C8—O2—C10—O4 102.5 (2) C13—O5—C15—C16 −94.1 (3)
C8—O2—C10—C9 −15.2 (3) C12—O6—C15—O5 0.8 (3)
C8—O2—C10—C11 −141.4 (2) C12—O6—C15—C17 −115.8 (3)
N1—C9—C10—O4 −101.3 (2) C12—O6—C15—C16 120.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9B···O1i 0.97 2.54 3.093 (3) 116
C14—H14B···O4ii 0.97 2.55 3.426 (3) 151

Symmetry codes: (i) −x+2, y−1/2, −z; (ii) −x+1, y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2819).

References

  1. Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Denmark, S. E. & Wu, Z. (1999). Synlett, pp. 847–859.
  3. Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Shi, Y. (2004). Acc. Chem. Res.37, 488–496. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Yang, D. (2004). Acc. Chem. Res.37, 497–505. [DOI] [PubMed]
  8. Zhao, M.-X., Goeddel, D., Li, K. & Shi, Y. (2006). Tetrahedron, 62, 8064–8068.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034259/hb2819sup1.cif

e-64-o2181-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034259/hb2819Isup2.hkl

e-64-o2181-Isup2.hkl (88.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES