Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 9;64(Pt 11):m1375. doi: 10.1107/S1600536808009781

Diethyl­enetriaminium hexa­fluorido­titanate(IV) fluoride

J Lhoste a, K Adil a,*, M Leblanc a, V Maisonneuve a
PMCID: PMC2959685  PMID: 21580831

Abstract

The title compound, (C6H21N4)[TiF6]F, was synthesized by the reaction of TiO2, tris­(2-amino­ethyl)amine, HF and ethanol at 463 K in a microwave oven. The crystal structure consists of two crystallographically independent [TiF6]2− anions, two fluoride anions and two triply-protonated tris­(2-amino­ethyl)­amine cations. The Ti atoms are coordinated by six F atoms within slightly distorted octa­hedra. The anions and cations are connected by inter­molecular N—H⋯F hydrogen bonds.

Related literature

For background, see: Adil et al. (2006). For related structures, see: Calov et al. (1992); Dadachov et al. (2000); Tang et al. (2001).graphic file with name e-64-m1375-scheme1.jpg

Experimental

Crystal data

  • (C6H21N4)[TiF6]F

  • M r = 330.14

  • Monoclinic, Inline graphic

  • a = 16.265 (4) Å

  • b = 8.089 (3) Å

  • c = 21.778 (5) Å

  • β = 110.54 (2)°

  • V = 2683.1 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 (2) K

  • 0.18 × 0.13 × 0.06 mm

Data collection

  • Siemens AED2 diffractometer

  • Absorption correction: Gaussian (SHELX76; Sheldrick, 2008) T min = 0.850, T max = 0.929

  • 6191 measured reflections

  • 6133 independent reflections

  • 3531 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: 15%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.155

  • S = 1.12

  • 6133 reflections

  • 332 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: STADI4 (Stoe & Cie, 1998); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009781/nc2095sup1.cif

e-64-m1375-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009781/nc2095Isup2.hkl

e-64-m1375-Isup2.hkl (294.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ti1—F1 1.796 (3)
Ti1—F2 1.826 (3)
Ti1—F4 1.856 (3)
Ti1—F5 1.865 (3)
Ti1—F3 1.868 (3)
Ti1—F6 1.882 (3)
Ti2—F8 1.803 (3)
Ti2—F7 1.821 (3)
Ti2—F9 1.825 (3)
Ti2—F10 1.827 (3)
Ti2—F11 1.832 (3)
Ti2—F12 1.856 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯F13 0.89 1.90 2.773 (5) 165
N2—H2D⋯F6i 0.89 2.04 2.865 (5) 154
N2—H2E⋯F13i 0.89 1.84 2.725 (5) 172
N3—H3C⋯F13 0.89 1.86 2.700 (5) 157
N3—H3C⋯N1 0.89 2.52 2.948 (6) 110
N3—H3D⋯F3 0.89 1.90 2.726 (5) 154
N3—H3E⋯F9 0.89 1.84 2.717 (5) 167
N4—H4C⋯F13 0.89 1.83 2.692 (5) 162
N4—H4D⋯F12i 0.89 2.01 2.835 (5) 153
N4—H4E⋯F5 0.89 1.84 2.712 (5) 168
N6—H6C⋯F14 0.89 1.84 2.696 (5) 162
N6—H6D⋯F10ii 0.89 2.00 2.823 (5) 154
N6—H6E⋯F4iii 0.89 1.90 2.749 (5) 160
N7—H7C⋯F14 0.89 1.82 2.699 (5) 169
N7—H7D⋯F2iii 0.89 2.24 2.876 (5) 129
N7—H7E⋯F7i 0.89 2.08 2.916 (5) 157
N7—H7E⋯F10i 0.89 2.41 2.972 (5) 121
N8—H8C⋯F14 0.89 1.91 2.791 (5) 168
N8—H8D⋯F6 0.89 2.14 2.879 (5) 140
N8—H8E⋯F14iv 0.89 1.81 2.702 (5) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

To date, only a few organic-inorganic fluorotitanates were reported. The first compound {(CN3H6)[TiF6]}, described by Calov et al. (1992), is built up from (TiF6) monomers and guanidinium cations. Dadachov et al. (2000) and Tang et al. (2001) reported the synthesis of piperazinium {(C4N2H12)2[Ti2F10]2(H2O)} and piperidinium {[C5H6N2]2(Ti2F11)(H3O)(H20)} fluorotitanates respectively, built up from (Ti2F10)2- or (Ti2F11)3- dimers. As a part of our ongoing investigations in this field (Adil et al., 2006)) we now report the synthesis and structure of the title compound, (I).

The asymmetric unit of (I) consits of two crystallographically independent (TiF6)2- anions, two fluoride anions and two triprotonated tris(2-aminoethyl)amine (tren) cations, all of them located in general positions (Fig. 1). The TiF6 anions form sligthly distorted octahedra and the environnement of both independent anions is different (Table 1). Both TiF6 anions are connected to the cations via N—H···F hydrogen bonding (Figure 2 and Table 2).

The two isolated fluoride anions are also hydrogen bonded to the [H3tren]3+ cations with N—H···F distances ranging from 2.692 (5)Å to 2.791 (5)Å (Figure 2 and Table 2).

Experimental

The synthetis was performed by using a microwave-assisted route. Crystals were prepared from a mixture of titanium(IV) oxide (79 mg, 1 mmol), tris(2-aminoethyl)amine (0.230 ml, 1.52 mmol), hydrogen fluoride (40%, 0.130 ml, 2.95 mmol) and ethanol (10 ml, 35 mmol). The mixture was transferred into a teflon autoclave installed in a CEM microwave oven at 493 K for 1 hour under a constant pressure of 22 bar. Finally, the solid product was washed with ethanol and dried in air at room temperature to yield colourless paralellepipeds of (I).

Refinement

A number of mis-measured reflections were omitted from the refinement.

The hydrogen atoms were positioned with idealized geometry (C—H = 0.88-0.97Å, N—H = 0.89Å) and modelled as riding with a group Uiso value refined.

The highest difference is 2.49 Å from H4A. It might be that this peak corresponds to a small amount of water, which cannot be proven. Therefore, this electron density was not considered in the final refinement.

Figures

Fig. 1.

Fig. 1.

Crystal structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of (I) with view along [010]. Hydrogen bonding is shown as dashed lines.

Crystal data

(C6H21N4)[TiF6]F F(000) = 1360
Mr = 330.14 Dx = 1.635 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 32 reflections
a = 16.265 (4) Å θ = 29.1–30.9°
b = 8.089 (3) Å µ = 0.71 mm1
c = 21.778 (5) Å T = 298 K
β = 110.54 (2)° Parallelepiped, colourless
V = 2683.1 (13) Å3 0.18 × 0.13 × 0.06 mm
Z = 8

Data collection

Siemens AED2 diffractometer 3531 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.0000
graphite θmax = 27.5°, θmin = 2.0°
2θ/ω scans h = −21→19
Absorption correction: gaussian (SHELX76; Sheldrick, 2008) k = 0→10
Tmin = 0.850, Tmax = 0.929 l = 0→28
6191 measured reflections 3 standard reflections every 120 min
6133 independent reflections intensity decay: 15%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0532P)2 + 2.5558P] where P = (Fo2 + 2Fc2)/3
6133 reflections (Δ/σ)max = 0.001
332 parameters Δρmax = 1.37 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ti1 0.18135 (5) 0.59284 (10) 0.60307 (4) 0.02406 (18)
Ti2 0.70766 (5) 0.58675 (11) 0.64839 (4) 0.0319 (2)
F1 0.1489 (3) 0.5816 (4) 0.51539 (14) 0.0687 (10)
F2 0.07464 (18) 0.5254 (4) 0.60403 (17) 0.0582 (9)
F3 0.29513 (18) 0.6604 (4) 0.61299 (17) 0.0539 (8)
F4 0.14665 (19) 0.8126 (3) 0.59720 (15) 0.0469 (7)
F5 0.2192 (2) 0.3737 (3) 0.61004 (16) 0.0492 (8)
F6 0.2182 (2) 0.6079 (5) 0.69502 (13) 0.0557 (9)
F7 0.72742 (19) 0.7113 (4) 0.58528 (14) 0.0518 (8)
F8 0.6614 (2) 0.4174 (4) 0.59328 (14) 0.0631 (10)
F9 0.5986 (2) 0.6765 (4) 0.6291 (2) 0.0817 (13)
F10 0.81774 (18) 0.4997 (4) 0.66930 (15) 0.0494 (8)
F11 0.7527 (2) 0.7485 (4) 0.70991 (15) 0.0533 (8)
F12 0.6933 (2) 0.4627 (4) 0.71561 (15) 0.0555 (9)
N1 0.4459 (2) 0.1509 (5) 0.60450 (17) 0.0276 (8)
C1 0.5134 (3) 0.0224 (6) 0.6192 (2) 0.0361 (11)
H1A 0.5186 −0.0159 0.5785 0.044 (2)*
H1B 0.4952 −0.0708 0.6394 0.044 (2)*
C2 0.6020 (3) 0.0814 (6) 0.6642 (2) 0.0342 (10)
H2A 0.6448 −0.0063 0.6703 0.044 (2)*
H2B 0.6206 0.1748 0.6444 0.044 (2)*
N2 0.5983 (2) 0.1311 (5) 0.72899 (18) 0.0333 (9)
H2C 0.5635 0.2188 0.7239 0.044 (2)*
H2D 0.6521 0.1565 0.7560 0.044 (2)*
H2E 0.5773 0.0479 0.7458 0.044 (2)*
C3 0.4511 (3) 0.2578 (6) 0.5509 (2) 0.0392 (12)
H3A 0.4246 0.2012 0.5093 0.044 (2)*
H3B 0.5123 0.2784 0.5571 0.044 (2)*
C4 0.4048 (3) 0.4209 (7) 0.5489 (2) 0.0418 (12)
H4A 0.4078 0.4863 0.5124 0.044 (2)*
H4B 0.3434 0.4006 0.5419 0.044 (2)*
N3 0.4453 (3) 0.5149 (5) 0.61097 (19) 0.0379 (9)
H3C 0.4595 0.4455 0.6448 0.044 (2)*
H3D 0.4073 0.5894 0.6150 0.044 (2)*
H3E 0.4935 0.5660 0.6103 0.044 (2)*
C5 0.3582 (3) 0.0778 (7) 0.5890 (2) 0.0394 (11)
H5A 0.3532 −0.0187 0.5615 0.044 (2)*
H5B 0.3142 0.1572 0.5645 0.044 (2)*
C6 0.3406 (3) 0.0281 (6) 0.6498 (3) 0.0399 (12)
H6A 0.2837 −0.0253 0.6373 0.044 (2)*
H6B 0.3847 −0.0512 0.6743 0.044 (2)*
N4 0.3420 (2) 0.1714 (5) 0.69203 (18) 0.0375 (10)
H4C 0.3941 0.2208 0.7036 0.044 (2)*
H4D 0.3325 0.1373 0.7278 0.044 (2)*
H4E 0.3002 0.2425 0.6702 0.044 (2)*
N5 0.0735 (2) 0.5437 (4) 0.89540 (17) 0.0257 (8)
C7 −0.0032 (3) 0.6180 (6) 0.9046 (2) 0.0303 (10)
H7A 0.0129 0.7239 0.9263 0.044 (2)*
H7B −0.0232 0.5471 0.9324 0.044 (2)*
C8 −0.0768 (3) 0.6422 (6) 0.8393 (2) 0.0371 (11)
H8A −0.1257 0.6977 0.8462 0.044 (2)*
H8B −0.0566 0.7112 0.8111 0.044 (2)*
N6 −0.1063 (2) 0.4800 (5) 0.80724 (18) 0.0396 (10)
H6C −0.0602 0.4245 0.8049 0.044 (2)*
H6D −0.1447 0.4962 0.7670 0.044 (2)*
H6E −0.1316 0.4222 0.8305 0.044 (2)*
C9 0.1286 (3) 0.4546 (6) 0.9547 (2) 0.0330 (10)
H9A 0.1348 0.5216 0.9930 0.044 (2)*
H9B 0.1867 0.4386 0.9526 0.044 (2)*
C10 0.0905 (3) 0.2884 (6) 0.9620 (2) 0.0324 (10)
H10A 0.1238 0.2425 1.0047 0.044 (2)*
H10B 0.0304 0.3030 0.9598 0.044 (2)*
N7 0.0924 (3) 0.1710 (5) 0.91024 (19) 0.0350 (9)
H7C 0.0633 0.2141 0.8710 0.044 (2)*
H7D 0.0673 0.0763 0.9148 0.044 (2)*
H7E 0.1478 0.1522 0.9138 0.044 (2)*
C11 0.1253 (3) 0.6685 (5) 0.8757 (2) 0.0309 (10)
H11A 0.1671 0.7186 0.9147 0.044 (2)*
H11B 0.0864 0.7548 0.8508 0.044 (2)*
C12 0.1743 (3) 0.5946 (6) 0.8347 (2) 0.0319 (10)
H12A 0.2105 0.6789 0.8252 0.044 (2)*
H12B 0.2126 0.5069 0.8592 0.044 (2)*
N8 0.1116 (2) 0.5266 (5) 0.77194 (18) 0.0329 (9)
H8C 0.0850 0.4378 0.7804 0.044 (2)*
H8D 0.1408 0.4986 0.7458 0.044 (2)*
H8E 0.0716 0.6030 0.7523 0.044 (2)*
F13 0.48067 (17) 0.3777 (3) 0.73054 (12) 0.0381 (6)
F14 0.00692 (17) 0.2652 (3) 0.78508 (13) 0.0362 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ti1 0.0232 (4) 0.0229 (4) 0.0258 (4) 0.0008 (3) 0.0081 (3) −0.0022 (3)
Ti2 0.0313 (4) 0.0306 (4) 0.0335 (4) 0.0001 (4) 0.0109 (3) 0.0052 (4)
F1 0.116 (3) 0.052 (2) 0.0285 (15) 0.000 (2) 0.0141 (17) −0.0044 (16)
F2 0.0296 (15) 0.0481 (19) 0.096 (3) −0.0058 (14) 0.0206 (16) 0.0027 (18)
F3 0.0365 (16) 0.0480 (18) 0.088 (2) −0.0072 (14) 0.0353 (17) −0.0135 (17)
F4 0.0507 (18) 0.0262 (15) 0.064 (2) 0.0073 (13) 0.0211 (15) −0.0005 (14)
F5 0.0505 (17) 0.0293 (16) 0.066 (2) 0.0112 (13) 0.0185 (15) 0.0061 (14)
F6 0.0519 (18) 0.086 (2) 0.0284 (15) −0.0037 (18) 0.0125 (13) −0.0022 (16)
F7 0.0519 (18) 0.0520 (19) 0.0443 (17) −0.0129 (15) 0.0079 (14) 0.0156 (15)
F8 0.088 (2) 0.055 (2) 0.0351 (16) −0.0295 (19) 0.0079 (16) 0.0026 (16)
F9 0.0399 (19) 0.046 (2) 0.163 (4) 0.0094 (16) 0.041 (2) 0.025 (2)
F10 0.0447 (17) 0.0482 (19) 0.0568 (18) 0.0151 (15) 0.0196 (15) 0.0040 (16)
F11 0.071 (2) 0.0408 (17) 0.0527 (19) −0.0096 (16) 0.0270 (17) −0.0140 (15)
F12 0.094 (2) 0.0410 (17) 0.0477 (18) −0.0066 (17) 0.0445 (18) 0.0021 (14)
N1 0.0255 (18) 0.0327 (19) 0.0250 (18) 0.0021 (15) 0.0096 (15) −0.0017 (16)
C1 0.041 (3) 0.031 (2) 0.037 (3) 0.009 (2) 0.015 (2) −0.002 (2)
C2 0.028 (2) 0.033 (2) 0.043 (3) 0.010 (2) 0.015 (2) 0.007 (2)
N2 0.0265 (19) 0.032 (2) 0.035 (2) −0.0022 (16) 0.0028 (16) 0.0040 (17)
C3 0.044 (3) 0.052 (3) 0.023 (2) 0.007 (2) 0.014 (2) 0.003 (2)
C4 0.042 (3) 0.050 (3) 0.029 (2) 0.008 (3) 0.008 (2) 0.013 (2)
N3 0.034 (2) 0.034 (2) 0.044 (2) 0.0034 (18) 0.0114 (19) 0.0111 (19)
C5 0.031 (2) 0.044 (3) 0.037 (3) −0.005 (2) 0.004 (2) −0.014 (2)
C6 0.033 (2) 0.031 (2) 0.055 (3) −0.008 (2) 0.015 (2) 0.004 (2)
N4 0.029 (2) 0.052 (3) 0.033 (2) −0.0063 (19) 0.0137 (17) 0.0057 (19)
N5 0.0284 (18) 0.0223 (18) 0.0283 (18) −0.0008 (14) 0.0121 (15) 0.0013 (14)
C7 0.032 (2) 0.030 (2) 0.035 (2) 0.0019 (19) 0.0192 (19) −0.0014 (19)
C8 0.036 (3) 0.037 (3) 0.042 (3) 0.014 (2) 0.018 (2) 0.013 (2)
N6 0.032 (2) 0.053 (3) 0.031 (2) 0.0091 (19) 0.0073 (17) 0.003 (2)
C9 0.030 (2) 0.036 (3) 0.025 (2) 0.0015 (19) −0.0001 (18) −0.0033 (19)
C10 0.042 (3) 0.030 (2) 0.024 (2) 0.006 (2) 0.010 (2) 0.0087 (19)
N7 0.045 (2) 0.026 (2) 0.038 (2) 0.0029 (18) 0.0197 (19) 0.0046 (17)
C11 0.036 (2) 0.023 (2) 0.038 (3) −0.0053 (19) 0.019 (2) −0.0027 (19)
C12 0.025 (2) 0.031 (2) 0.044 (3) −0.003 (2) 0.0176 (19) 0.000 (2)
N8 0.039 (2) 0.030 (2) 0.038 (2) 0.0009 (17) 0.0249 (18) 0.0004 (17)
F13 0.0377 (15) 0.0401 (16) 0.0357 (15) −0.0005 (12) 0.0119 (12) −0.0088 (12)
F14 0.0398 (15) 0.0338 (15) 0.0352 (14) −0.0026 (12) 0.0134 (12) −0.0064 (12)

Geometric parameters (Å, °)

Ti1—F1 1.796 (3) C6—N4 1.475 (6)
Ti1—F2 1.826 (3) C6—H6A 0.9700
Ti1—F4 1.856 (3) C6—H6B 0.9700
Ti1—F5 1.865 (3) N4—H4C 0.8900
Ti1—F3 1.868 (3) N4—H4D 0.8900
Ti1—F6 1.882 (3) N4—H4E 0.8900
Ti2—F8 1.803 (3) N5—C7 1.459 (5)
Ti2—F7 1.821 (3) N5—C11 1.472 (5)
Ti2—F9 1.825 (3) N5—C9 1.475 (5)
Ti2—F10 1.827 (3) C7—C8 1.516 (6)
Ti2—F11 1.832 (3) C7—H7A 0.9700
Ti2—F12 1.856 (3) C7—H7B 0.9700
N1—C1 1.463 (6) C8—N6 1.484 (6)
N1—C5 1.470 (6) C8—H8A 0.9700
N1—C3 1.479 (6) C8—H8B 0.9700
C1—C2 1.507 (6) N6—H6C 0.8900
C1—H1A 0.9700 N6—H6D 0.8900
C1—H1B 0.9700 N6—H6E 0.8900
C2—N2 1.487 (6) C9—C10 1.512 (6)
C2—H2A 0.9700 C9—H9A 0.9700
C2—H2B 0.9700 C9—H9B 0.9700
N2—H2C 0.8900 C10—N7 1.483 (6)
N2—H2D 0.8900 C10—H10A 0.9700
N2—H2E 0.8900 C10—H10B 0.9700
C3—C4 1.512 (7) N7—H7C 0.8900
C3—H3A 0.9700 N7—H7D 0.8900
C3—H3B 0.9700 N7—H7E 0.8900
C4—N3 1.489 (6) C11—C12 1.513 (6)
C4—H4A 0.9700 C11—H11A 0.9700
C4—H4B 0.9700 C11—H11B 0.9700
N3—H3C 0.8900 C12—N8 1.494 (6)
N3—H3D 0.8900 C12—H12A 0.9700
N3—H3E 0.8900 C12—H12B 0.9700
C5—C6 1.504 (7) N8—H8C 0.8900
C5—H5A 0.9700 N8—H8D 0.8900
C5—H5B 0.9700 N8—H8E 0.8900
F1—Ti1—F2 94.09 (17) N1—C5—H5B 109.2
F1—Ti1—F4 90.38 (15) C6—C5—H5B 109.2
F2—Ti1—F4 91.12 (14) H5A—C5—H5B 107.9
F1—Ti1—F5 90.21 (15) N4—C6—C5 111.9 (4)
F2—Ti1—F5 90.17 (14) N4—C6—H6A 109.2
F4—Ti1—F5 178.55 (14) C5—C6—H6A 109.2
F1—Ti1—F3 92.71 (17) N4—C6—H6B 109.2
F2—Ti1—F3 173.16 (16) C5—C6—H6B 109.2
F4—Ti1—F3 89.59 (14) H6A—C6—H6B 107.9
F5—Ti1—F3 89.06 (14) C6—N4—H4C 109.5
F1—Ti1—F6 178.38 (17) C6—N4—H4D 109.5
F2—Ti1—F6 87.50 (15) H4C—N4—H4D 109.5
F4—Ti1—F6 89.26 (15) C6—N4—H4E 109.5
F5—Ti1—F6 90.11 (15) H4C—N4—H4E 109.5
F3—Ti1—F6 85.71 (15) H4D—N4—H4E 109.5
F8—Ti2—F7 93.49 (14) C7—N5—C11 111.2 (3)
F8—Ti2—F9 90.23 (18) C7—N5—C9 111.6 (3)
F7—Ti2—F9 91.21 (16) C11—N5—C9 110.8 (3)
F8—Ti2—F10 90.95 (16) N5—C7—C8 110.9 (4)
F7—Ti2—F10 89.10 (15) N5—C7—H7A 109.5
F9—Ti2—F10 178.75 (19) C8—C7—H7A 109.5
F8—Ti2—F11 175.05 (15) N5—C7—H7B 109.5
F7—Ti2—F11 91.46 (15) C8—C7—H7B 109.5
F9—Ti2—F11 89.50 (18) H7A—C7—H7B 108.0
F10—Ti2—F11 89.29 (15) N6—C8—C7 110.2 (4)
F8—Ti2—F12 88.59 (14) N6—C8—H8A 109.6
F7—Ti2—F12 177.05 (15) C7—C8—H8A 109.6
F9—Ti2—F12 90.86 (17) N6—C8—H8B 109.6
F10—Ti2—F12 88.78 (15) C7—C8—H8B 109.6
F11—Ti2—F12 86.47 (14) H8A—C8—H8B 108.1
C1—N1—C5 111.0 (4) C8—N6—H6C 109.5
C1—N1—C3 110.0 (4) C8—N6—H6D 109.5
C5—N1—C3 111.9 (4) H6C—N6—H6D 109.5
N1—C1—C2 112.9 (4) C8—N6—H6E 109.5
N1—C1—H1A 109.0 H6C—N6—H6E 109.5
C2—C1—H1A 109.0 H6D—N6—H6E 109.5
N1—C1—H1B 109.0 N5—C9—C10 112.4 (3)
C2—C1—H1B 109.0 N5—C9—H9A 109.1
H1A—C1—H1B 107.8 C10—C9—H9A 109.1
N2—C2—C1 110.8 (4) N5—C9—H9B 109.1
N2—C2—H2A 109.5 C10—C9—H9B 109.1
C1—C2—H2A 109.5 H9A—C9—H9B 107.9
N2—C2—H2B 109.5 N7—C10—C9 111.7 (4)
C1—C2—H2B 109.5 N7—C10—H10A 109.3
H2A—C2—H2B 108.1 C9—C10—H10A 109.3
C2—N2—H2C 109.5 N7—C10—H10B 109.3
C2—N2—H2D 109.5 C9—C10—H10B 109.3
H2C—N2—H2D 109.5 H10A—C10—H10B 107.9
C2—N2—H2E 109.5 C10—N7—H7C 109.5
H2C—N2—H2E 109.5 C10—N7—H7D 109.5
H2D—N2—H2E 109.5 H7C—N7—H7D 109.5
N1—C3—C4 111.6 (4) C10—N7—H7E 109.5
N1—C3—H3A 109.3 H7C—N7—H7E 109.5
C4—C3—H3A 109.3 H7D—N7—H7E 109.5
N1—C3—H3B 109.3 N5—C11—C12 112.0 (4)
C4—C3—H3B 109.3 N5—C11—H11A 109.2
H3A—C3—H3B 108.0 C12—C11—H11A 109.2
N3—C4—C3 111.2 (4) N5—C11—H11B 109.2
N3—C4—H4A 109.4 C12—C11—H11B 109.2
C3—C4—H4A 109.4 H11A—C11—H11B 107.9
N3—C4—H4B 109.4 N8—C12—C11 110.7 (3)
C3—C4—H4B 109.4 N8—C12—H12A 109.5
H4A—C4—H4B 108.0 C11—C12—H12A 109.5
C4—N3—H3C 109.5 N8—C12—H12B 109.5
C4—N3—H3D 109.5 C11—C12—H12B 109.5
H3C—N3—H3D 109.5 H12A—C12—H12B 108.1
C4—N3—H3E 109.5 C12—N8—H8C 109.5
H3C—N3—H3E 109.5 C12—N8—H8D 109.5
H3D—N3—H3E 109.5 H8C—N8—H8D 109.5
N1—C5—C6 112.0 (4) C12—N8—H8E 109.5
N1—C5—H5A 109.2 H8C—N8—H8E 109.5
C6—C5—H5A 109.2 H8D—N8—H8E 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2C···F13 0.89 1.90 2.773 (5) 165
N2—H2D···F6i 0.89 2.04 2.865 (5) 154
N2—H2E···F13i 0.89 1.84 2.725 (5) 172
N3—H3C···F13 0.89 1.86 2.700 (5) 157
N3—H3C···N1 0.89 2.52 2.948 (6) 110
N3—H3D···F3 0.89 1.90 2.726 (5) 154
N3—H3E···F9 0.89 1.84 2.717 (5) 167
N4—H4C···F13 0.89 1.83 2.692 (5) 162
N4—H4D···F12i 0.89 2.01 2.835 (5) 153
N4—H4E···F5 0.89 1.84 2.712 (5) 168
N6—H6C···F14 0.89 1.84 2.696 (5) 162
N6—H6D···F10ii 0.89 2.00 2.823 (5) 154
N6—H6E···F4iii 0.89 1.90 2.749 (5) 160
N7—H7C···F14 0.89 1.82 2.699 (5) 169
N7—H7D···F2iii 0.89 2.24 2.876 (5) 129
N7—H7E···F7i 0.89 2.08 2.916 (5) 157
N7—H7E···F10i 0.89 2.41 2.972 (5) 121
N8—H8C···F14 0.89 1.91 2.791 (5) 168
N8—H8D···F6 0.89 2.14 2.879 (5) 140
N8—H8E···F14iv 0.89 1.81 2.702 (5) 177

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z; (iii) −x, y−1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2095).

References

  1. Adil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci.8, 698–703.
  2. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  3. Brandenburg, K. (2001). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Calov, U., Schneider, M. & Leibnitz, P. (1992). Z. Anorg. Allg. Chem.593, 90–98.
  5. Dadachov, M. S., Tang, L. Q. & Zou, X. D. (2000). Z. Kristallogr. New Cryst. Struct.215, 605–606.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Stoe & Cie (1998). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  8. Tang, L.-Q., Dadachov, M. S. & Zou, X.-D. (2001). Z. Kristallogr. New Cryst. Struct.216, 387–388.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009781/nc2095sup1.cif

e-64-m1375-sup1.cif (24.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009781/nc2095Isup2.hkl

e-64-m1375-Isup2.hkl (294.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES