Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Nov 13;64(Pt 12):m1540. doi: 10.1107/S1600536808035241

Dibromidobis(N,N-diethyl­dithio­carbamato-κ2 S,S′)tetra-μ3-sulfido-dicopper(I)dimolybdenum(V) isopropanol disolvate

Qing Zhang a,*, Min Liu a
PMCID: PMC2959921  PMID: 21581154

Abstract

The mol­ecule of the title compound, [Cu2Mo2Br2(C7H14NS2)2S4]·2C3H7OH, comprises one [(i-C3H7)2NCS2]2Mo2S4 unit and two CuBr units held together by six Cu—μ3-S bonds, thus forming a cubane-like Mo2S4Cu2 core. Intramolecular O—H⋯S hydrogen bonds may stabilize the structure. Two methyl groups of the two independent solvent molecules are disordered over two positions and were refined with occupancies of 0.733 (12) and 0.267 (12).

Related literature

For sulfido-bridged dinuclear complexes with an M 2S4 core (M = Mo, W), see: Hidai et al. (1999); Lang et al. (2003); Curtis et al. (1997); Stiefel et al. (1985); Wu et al. (1990).graphic file with name e-64-m1540-scheme1.jpg

Experimental

Crystal data

  • [Cu2Mo2Br2(C7H14NS2)2S4]·2C3H8O

  • M r = 1079.91

  • Triclinic, Inline graphic

  • a = 12.515 (3) Å

  • b = 12.734 (3) Å

  • c = 12.759 (3) Å

  • α = 107.76 (3)°

  • β = 108.26 (3)°

  • γ = 90.12 (3)°

  • V = 1828.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.48 mm−1

  • T = 291 (2) K

  • 0.30 × 0.29 × 0.20 mm

Data collection

  • Rigaku Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998) T min = 0.284, T max = 0.408

  • 17918 measured reflections

  • 6703 independent reflections

  • 5814 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.121

  • S = 1.12

  • 6703 reflections

  • 353 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 1.90 e Å−3

  • Δρmin = −2.13 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035241/hk2539sup1.cif

e-64-m1540-sup1.cif (28.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035241/hk2539Isup2.hkl

e-64-m1540-Isup2.hkl (325.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2D⋯S5 0.82 2.47 3.199 (8) 149
O2—H2D⋯S6 0.82 2.59 3.258 (8) 139

Acknowledgments

The authors acknowledge Jiangxi Science and Technology Normal University for funding.

supplementary crystallographic information

Comment

In the past decades, chemistry of the sulfido-bridged dinuclear complexes with an M2S4 core (M = Mo, W) and various transition metals has been intensively investigated. For example, precursors [(dtc)2Mo2S2(µ-S)2] (dtc = S2CNEt2) (Hidai et al., 1999; Lang et al., 2003) and [Cpx2Mo2S2(µ-S)2] (Cpx = pentamethyl-, pentaethyl- or pentabutyl-cyclopentadienyl) (Curtis et al., 1997; Stiefel et al., 1985) and [Et4N]2[(edt)2Mo2S2(µ-S)2] (edt = ethanedithiolate) (Wu et al., 1990) were shown to react with transition metals to form both incomplete [Mo2MS4] and complete [Mo2M2S4] cubane-like clusters. We report herein the formation of a complete cubane-like [Mo2Cu2S4] by using [(i-C3H7)2NCS2]2Mo2S4 as the starting material to react with two equivalents of CuBr.

The title molecule contains one [(i-C3H7)2NCS2]2Mo2S4 moiety and two CuBr units, which are assembled into a distorted Mo2Cu2S4 cubane-like core (Fig. 1). The formal oxidation states for each Mo and Cu remain + 5 and + 1, respectively. Each Mo center is coordinated by three µ3-S atoms, and the two S atoms of an [(i-C3H7)2NCS2] group, forming a distorted square pyramidal geometry, while each Cu atom is tetrahedrally coordinated by three µ3-S atoms and a terminal bromide. The Mo-S bonds are in the range of 2.1621 (19)-2.4465 (18) Å, due to the different S atoms coordinated. The Cu-S(terminal) bonds [average value: 2.436 (2) Å] are longer than the other Cu-S bonds [average value: 2.211 (2) Å]. The Mo···Mo [2.7874 (10) Å] and Mo···Cu [average value: 2.8114 (15) Å] distances and the Cu-Br bonds [average value: 2.2812 (15) Å] have normal values. Intramolecular O-H···S hydrogen bonds (Table 1) may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, [(i-C3H7)2NCS2]2Mo2S4 (0.49 g, 0.5 mmol), and CuBr (0.144 g, 1.0 mmol) were added into CH2Cl2 solution (20 ml). The mixture was stirred at room temperature for 0.5 h, and the dark-red suspension gradually turned into dark red solution, and then filtered. The filtrate was layered with isopropyl alcohol (30 ml) to produce dark red crystals in 4 d.

Refinement

The C15, C16 and C19 methyl groups in di-isopropyl alcohol solvate were disordered over two positions. During the refinement process the disordered atoms were refined with occupancies of 0.733 (12) for C15, H15A, H15B, H15C, C16, H16A, H16B, H16C, C19, H19A, H19B, H19C and 0.267 (12) for C15A, H15D, H15E, H15F, C16A, H16D, H16E, H16F, C19A, H19D, H19E, H19F, respectively. The C15 and C15A atoms were refined isotropically. H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.98 and 0.96 Å for methine and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for methine H and x = 1.5 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

[Cu2Mo2Br2(C7H14NS2)2S4]·2C3H8O Z = 2
Mr = 1079.91 F000 = 1068
Triclinic, P1 Dx = 1.962 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 12.515 (3) Å Cell parameters from 6125 reflections
b = 12.734 (3) Å θ = 3.3–25.4º
c = 12.759 (3) Å µ = 4.48 mm1
α = 107.76 (3)º T = 291 (2) K
β = 108.26 (3)º Block, dark red
γ = 90.12 (3)º 0.30 × 0.29 × 0.20 mm
V = 1828.2 (9) Å3

Data collection

Rigaku Mercury diffractometer 6703 independent reflections
Radiation source: fine-focus sealed tube 5814 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.032
T = 291(2) K θmax = 25.4º
ω scans θmin = 3.3º
Absorption correction: multi-scan(Jacobson, 1998) h = −15→15
Tmin = 0.284, Tmax = 0.408 k = −15→15
17918 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.121   w = 1/[σ2(Fo2) + (0.0376P)2 + 11.7921P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.006
6703 reflections Δρmax = 1.90 e Å3
353 parameters Δρmin = −2.13 e Å3
10 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mo1 1.00881 (5) 0.18736 (4) 0.39883 (5) 0.02348 (15)
Mo2 1.16712 (5) 0.20599 (5) 0.29120 (5) 0.02768 (16)
Cu1 1.12203 (10) 0.00501 (8) 0.33253 (10) 0.0544 (3)
Cu2 1.23373 (9) 0.24097 (8) 0.53604 (10) 0.0517 (3)
Br1 1.13513 (7) −0.18080 (6) 0.29790 (7) 0.0441 (2)
Br2 1.37543 (7) 0.30267 (8) 0.71075 (7) 0.0535 (3)
S1 1.09552 (15) 0.10190 (15) 0.51854 (15) 0.0308 (4)
S2 1.29693 (17) 0.12006 (18) 0.3783 (2) 0.0473 (5)
S3 1.13192 (15) 0.34620 (14) 0.44228 (15) 0.0301 (4)
S4 1.00310 (14) 0.07858 (14) 0.21230 (14) 0.0281 (4)
S5 1.17527 (16) 0.15164 (14) 0.09288 (15) 0.0323 (4)
S6 1.28036 (15) 0.35219 (14) 0.27486 (15) 0.0311 (4)
S7 0.81395 (14) 0.10577 (14) 0.33380 (16) 0.0327 (4)
S8 0.90078 (15) 0.32398 (14) 0.48497 (16) 0.0325 (4)
O1 0.6199 (7) 0.1776 (6) −0.1619 (6) 0.087 (2)
H1D 0.6271 0.1595 −0.2265 0.131*
O2 1.0055 (6) 0.3083 (5) 0.1913 (6) 0.0697 (19)
H2D 1.0646 0.2930 0.1781 0.104*
N1 0.6852 (5) 0.2439 (4) 0.4372 (5) 0.0284 (12)
N2 1.3096 (5) 0.3023 (5) 0.0653 (5) 0.0293 (13)
C1 0.5412 (6) 0.1342 (7) 0.2459 (6) 0.0413 (18)
H1A 0.5335 0.2023 0.2279 0.062*
H1B 0.4691 0.0901 0.2127 0.062*
H1C 0.5947 0.0940 0.2140 0.062*
C2 0.5971 (7) 0.0577 (6) 0.4167 (8) 0.046 (2)
H2A 0.6226 0.0806 0.5003 0.069*
H2B 0.6520 0.0160 0.3886 0.069*
H2C 0.5260 0.0122 0.3862 0.069*
C3 0.5824 (6) 0.1597 (6) 0.3769 (7) 0.0349 (16)
H3A 0.5220 0.1956 0.4033 0.042*
C4 0.6128 (7) 0.4224 (6) 0.4354 (7) 0.0429 (19)
H4A 0.6557 0.4262 0.3859 0.064*
H4B 0.6087 0.4959 0.4831 0.064*
H4C 0.5377 0.3876 0.3883 0.064*
C5 0.6097 (8) 0.3443 (7) 0.5956 (8) 0.050 (2)
H5A 0.6503 0.3014 0.6423 0.075*
H5B 0.5345 0.3081 0.5516 0.075*
H5C 0.6056 0.4169 0.6454 0.075*
C6 0.6703 (6) 0.3545 (6) 0.5132 (6) 0.0298 (15)
H6A 0.7460 0.3928 0.5609 0.036*
C7 0.7831 (6) 0.2252 (5) 0.4229 (6) 0.0287 (15)
C8 1.1642 (8) 0.2257 (9) −0.1322 (7) 0.063 (3)
H8A 1.1360 0.2969 −0.1193 0.094*
H8B 1.1222 0.1780 −0.1100 0.094*
H8C 1.1559 0.1935 −0.2132 0.094*
C9 1.3407 (9) 0.1315 (7) −0.0753 (8) 0.061 (3)
H9A 1.4192 0.1456 −0.0281 0.091*
H9B 1.3342 0.0982 −0.1557 0.091*
H9C 1.3022 0.0820 −0.0518 0.091*
C10 1.2881 (7) 0.2392 (6) −0.0598 (6) 0.0401 (19)
H10A 1.3274 0.2847 −0.0889 0.048*
C11 1.3276 (8) 0.4937 (7) 0.0623 (9) 0.056 (2)
H11A 1.2572 0.5032 0.0775 0.084*
H11B 1.3132 0.4691 −0.0203 0.084*
H11C 1.3750 0.5630 0.0975 0.084*
C12 1.4996 (7) 0.3893 (7) 0.0935 (7) 0.046 (2)
H12A 1.5341 0.3352 0.1281 0.069*
H12B 1.5484 0.4578 0.1287 0.069*
H12C 1.4879 0.3629 0.0113 0.069*
C13 1.3864 (6) 0.4082 (6) 0.1130 (6) 0.0337 (16)
H13A 1.4011 0.4361 0.1974 0.040*
C14 1.2634 (6) 0.2720 (5) 0.1317 (6) 0.0281 (15)
C15 0.7206 (16) 0.1461 (12) 0.0386 (12) 0.041 (3)* 0.733 (12)
H15A 0.7706 0.0973 0.0688 0.061* 0.733 (12)
H15B 0.6436 0.1170 0.0193 0.061* 0.733 (12)
H15C 0.7353 0.2182 0.0964 0.061* 0.733 (12)
C15A 0.722 (4) 0.186 (5) 0.057 (3) 0.041 (3)* 0.267 (12)
H15D 0.7931 0.2152 0.1172 0.061* 0.267 (12)
H15E 0.6914 0.1219 0.0661 0.061* 0.267 (12)
H15F 0.6700 0.2418 0.0613 0.061* 0.267 (12)
C16 0.8461 (8) 0.2073 (9) −0.0314 (8) 0.039 (3) 0.733 (12)
H16A 0.8528 0.2791 0.0251 0.058* 0.733 (12)
H16B 0.8590 0.2158 −0.0989 0.058* 0.733 (12)
H16C 0.9012 0.1639 0.0017 0.058* 0.733 (12)
C16A 0.750 (3) 0.181 (5) 0.0666 (18) 0.039 (3) 0.267 (12)
H16D 0.8166 0.1527 0.1055 0.058* 0.267 (12)
H16E 0.6846 0.1478 0.0724 0.058* 0.267 (12)
H16F 0.7567 0.2603 0.1025 0.058* 0.267 (12)
C17 0.7390 (11) 0.1546 (12) −0.0634 (10) 0.092 (4)
H17 0.7484 0.0778 −0.1029 0.111*
C18 0.8873 (8) 0.4760 (11) 0.2435 (8) 0.080 (4)
H18A 0.8899 0.5548 0.2593 0.120*
H18B 0.8831 0.4585 0.3103 0.120*
H18C 0.8218 0.4401 0.1775 0.120*
C19 1.0116 (11) 0.4568 (14) 0.1142 (12) 0.059 (4) 0.733 (12)
H19A 1.0792 0.4282 0.1019 0.088* 0.733 (12)
H19B 1.0174 0.5354 0.1280 0.088* 0.733 (12)
H19C 0.9474 0.4214 0.0464 0.088* 0.733 (12)
C19A 0.991 (3) 0.388 (4) 0.100 (4) 0.059 (4) 0.267 (12)
H19D 0.9542 0.4360 0.0569 0.088* 0.267 (12)
H19E 0.9475 0.3167 0.0671 0.088* 0.267 (12)
H19F 1.0654 0.3808 0.0950 0.088* 0.267 (12)
C20 0.9974 (10) 0.4343 (10) 0.2164 (10) 0.083 (3)
H20 1.0628 0.4732 0.2846 0.099*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mo1 0.0218 (3) 0.0244 (3) 0.0245 (3) −0.0001 (2) 0.0092 (2) 0.0066 (2)
Mo2 0.0320 (3) 0.0283 (3) 0.0232 (3) −0.0066 (2) 0.0126 (2) 0.0052 (2)
Cu1 0.0570 (7) 0.0372 (6) 0.0485 (6) 0.0155 (5) −0.0029 (5) 0.0061 (5)
Cu2 0.0422 (6) 0.0401 (6) 0.0523 (6) −0.0043 (4) −0.0116 (5) 0.0145 (5)
Br1 0.0499 (5) 0.0361 (4) 0.0474 (5) 0.0070 (4) 0.0162 (4) 0.0146 (4)
Br2 0.0384 (5) 0.0843 (7) 0.0297 (4) −0.0176 (4) 0.0042 (3) 0.0146 (4)
S1 0.0307 (9) 0.0365 (9) 0.0284 (9) −0.0022 (7) 0.0110 (7) 0.0139 (8)
S2 0.0355 (11) 0.0513 (12) 0.0539 (13) −0.0013 (9) 0.0220 (10) 0.0076 (10)
S3 0.0314 (9) 0.0260 (9) 0.0325 (9) −0.0032 (7) 0.0133 (8) 0.0061 (7)
S4 0.0302 (9) 0.0285 (9) 0.0240 (8) −0.0036 (7) 0.0095 (7) 0.0057 (7)
S5 0.0387 (10) 0.0319 (9) 0.0249 (9) −0.0102 (7) 0.0161 (8) 0.0017 (7)
S6 0.0368 (10) 0.0311 (9) 0.0244 (8) −0.0107 (7) 0.0157 (7) 0.0019 (7)
S7 0.0233 (9) 0.0280 (9) 0.0390 (10) −0.0016 (7) 0.0123 (8) −0.0022 (8)
S8 0.0265 (9) 0.0267 (9) 0.0405 (10) −0.0028 (7) 0.0152 (8) 0.0015 (8)
O1 0.117 (7) 0.081 (5) 0.064 (5) −0.019 (5) 0.042 (5) 0.010 (4)
O2 0.081 (5) 0.060 (4) 0.067 (4) 0.012 (4) 0.020 (4) 0.024 (4)
N1 0.026 (3) 0.026 (3) 0.029 (3) −0.002 (2) 0.008 (2) 0.003 (2)
N2 0.033 (3) 0.033 (3) 0.023 (3) −0.002 (2) 0.016 (2) 0.004 (2)
C1 0.033 (4) 0.042 (4) 0.039 (4) 0.000 (3) 0.004 (3) 0.007 (4)
C2 0.039 (5) 0.041 (4) 0.057 (5) −0.007 (4) 0.011 (4) 0.021 (4)
C3 0.022 (4) 0.035 (4) 0.043 (4) 0.000 (3) 0.012 (3) 0.004 (3)
C4 0.046 (5) 0.037 (4) 0.044 (5) 0.011 (4) 0.014 (4) 0.012 (4)
C5 0.060 (6) 0.044 (5) 0.057 (5) 0.005 (4) 0.037 (5) 0.011 (4)
C6 0.027 (4) 0.032 (4) 0.028 (4) 0.004 (3) 0.012 (3) 0.001 (3)
C7 0.033 (4) 0.026 (3) 0.028 (4) 0.003 (3) 0.014 (3) 0.006 (3)
C8 0.057 (6) 0.090 (7) 0.031 (5) −0.026 (5) −0.002 (4) 0.022 (5)
C9 0.077 (7) 0.053 (5) 0.049 (5) −0.005 (5) 0.041 (5) −0.010 (4)
C10 0.053 (5) 0.045 (4) 0.020 (4) −0.012 (4) 0.016 (3) 0.002 (3)
C11 0.064 (6) 0.043 (5) 0.074 (6) 0.002 (4) 0.032 (5) 0.026 (5)
C12 0.045 (5) 0.044 (5) 0.051 (5) −0.007 (4) 0.022 (4) 0.014 (4)
C13 0.040 (4) 0.032 (4) 0.031 (4) −0.012 (3) 0.016 (3) 0.008 (3)
C14 0.029 (4) 0.028 (4) 0.027 (4) −0.002 (3) 0.010 (3) 0.007 (3)
C16 0.020 (5) 0.068 (7) 0.018 (4) −0.017 (5) 0.002 (4) 0.005 (4)
C16A 0.020 (5) 0.068 (7) 0.018 (4) −0.017 (5) 0.002 (4) 0.005 (4)
C17 0.089 (9) 0.125 (11) 0.087 (9) 0.027 (8) 0.045 (7) 0.051 (8)
C18 0.056 (6) 0.154 (11) 0.031 (5) −0.012 (7) 0.010 (4) 0.034 (6)
C19 0.047 (7) 0.092 (12) 0.072 (8) 0.031 (8) 0.028 (6) 0.065 (10)
C19A 0.047 (7) 0.092 (12) 0.072 (8) 0.031 (8) 0.028 (6) 0.065 (10)
C20 0.093 (9) 0.084 (8) 0.054 (6) 0.015 (7) 0.010 (6) 0.011 (6)

Geometric parameters (Å, °)

Mo1—Mo2 2.7874 (10) C8—H8B 0.9600
Mo1—Cu1 2.7715 (14) C8—H8C 0.9600
Mo1—Cu2 2.7618 (16) C9—C10 1.508 (12)
Mo1—S1 2.1621 (19) C9—H9A 0.9600
Mo1—S3 2.3535 (19) C9—H9B 0.9600
Mo1—S4 2.3386 (19) C9—H9C 0.9600
Mo1—S7 2.4310 (19) C10—N2 1.486 (8)
Mo1—S8 2.4160 (19) C10—H10A 0.9800
Mo2—Cu1 2.8547 (14) C11—C13 1.510 (11)
Mo2—Cu2 2.8582 (15) C11—H11A 0.9600
Mo2—S2 2.166 (2) C11—H11B 0.9600
Mo2—S3 2.352 (2) C11—H11C 0.9600
Mo2—S4 2.356 (2) C12—C13 1.522 (10)
Mo2—S5 2.4465 (18) C12—H12A 0.9600
Mo2—S6 2.4349 (18) C12—H12B 0.9600
Cu1—Br1 2.2867 (14) C12—H12C 0.9600
Cu1—S1 2.444 (2) C13—N2 1.497 (8)
Cu1—S2 2.437 (2) C13—H13A 0.9800
Cu1—S4 2.213 (2) C14—N2 1.306 (8)
Cu2—Br2 2.2756 (16) C15—H15A 0.9600
Cu2—S1 2.383 (2) C15—H15B 0.9600
Cu2—S2 2.481 (3) C15—H15C 0.9600
Cu2—S3 2.209 (2) C15A—H15D 0.9600
S5—C14 1.731 (7) C15A—H15E 0.9600
S6—C14 1.744 (7) C15A—H15F 0.9600
S7—C7 1.726 (7) C16—H16A 0.9600
S8—C7 1.741 (7) C16—H16B 0.9600
O1—H1D 0.8200 C16—H16C 0.9600
O2—H2D 0.8200 C16A—H16D 0.9600
C1—C3 1.515 (10) C16A—H16E 0.9600
C1—H1A 0.9600 C16A—H16F 0.9600
C1—H1B 0.9600 C17—C16 1.378 (15)
C1—H1C 0.9600 C17—C15 1.425 (17)
C2—C3 1.525 (10) C17—C15A 1.544 (19)
C2—H2A 0.9600 C17—C16A 1.547 (18)
C2—H2B 0.9600 C17—O1 1.715 (15)
C2—H2C 0.9600 C17—H17 0.9800
C3—N1 1.505 (8) C18—H18A 0.9600
C3—H3A 0.9800 C18—H18B 0.9600
C4—C6 1.526 (10) C18—H18C 0.9600
C4—H4A 0.9600 C19—H19A 0.9600
C4—H4B 0.9600 C19—H19B 0.9600
C4—H4C 0.9600 C19—H19C 0.9600
C5—C6 1.510 (10) C19A—H19D 0.9600
C5—H5A 0.9600 C19A—H19E 0.9600
C5—H5B 0.9600 C19A—H19F 0.9600
C5—H5C 0.9600 C20—C19A 1.40 (4)
C6—N1 1.497 (8) C20—C19 1.479 (17)
C6—H6A 0.9800 C20—O2 1.546 (13)
C7—N1 1.306 (8) C20—C18 1.579 (12)
C8—C10 1.513 (12) C20—H20 0.9800
C8—H8A 0.9600
S1—Mo1—S4 107.30 (7) C10—C8—H8B 109.5
S1—Mo1—S3 105.60 (7) H8A—C8—H8B 109.5
S4—Mo1—S3 104.32 (7) C10—C8—H8C 109.5
S1—Mo1—S8 110.87 (7) H8A—C8—H8C 109.5
S4—Mo1—S8 137.84 (7) H8B—C8—H8C 109.5
S3—Mo1—S8 82.15 (6) C6—C5—H5A 109.5
S1—Mo1—S7 102.40 (7) C6—C5—H5B 109.5
S4—Mo1—S7 83.56 (7) H5A—C5—H5B 109.5
S3—Mo1—S7 146.89 (7) C6—C5—H5C 109.5
S8—Mo1—S7 71.52 (6) H5A—C5—H5C 109.5
S1—Mo1—Cu2 56.33 (6) H5B—C5—H5C 109.5
S4—Mo1—Cu2 107.39 (6) C3—C2—H2A 109.5
S3—Mo1—Cu2 50.40 (6) C3—C2—H2B 109.5
S8—Mo1—Cu2 108.24 (6) H2A—C2—H2B 109.5
S7—Mo1—Cu2 157.85 (6) C3—C2—H2C 109.5
S1—Mo1—Cu1 57.82 (6) H2A—C2—H2C 109.5
S4—Mo1—Cu1 50.46 (5) H2B—C2—H2C 109.5
S3—Mo1—Cu1 106.97 (6) C3—C1—H1A 109.5
S8—Mo1—Cu1 166.67 (6) C3—C1—H1B 109.5
S7—Mo1—Cu1 102.73 (6) H1A—C1—H1B 109.5
Cu2—Mo1—Cu1 72.36 (5) C3—C1—H1C 109.5
S1—Mo1—Mo2 101.97 (5) H1A—C1—H1C 109.5
S4—Mo1—Mo2 53.87 (5) H1B—C1—H1C 109.5
S3—Mo1—Mo2 53.66 (5) C6—C4—H4A 109.5
S8—Mo1—Mo2 130.76 (5) C6—C4—H4B 109.5
S7—Mo1—Mo2 135.61 (5) H4A—C4—H4B 109.5
Cu2—Mo1—Mo2 62.00 (4) C6—C4—H4C 109.5
Cu1—Mo1—Mo2 61.80 (4) H4A—C4—H4C 109.5
S2—Mo2—S3 105.05 (8) H4B—C4—H4C 109.5
S2—Mo2—S4 104.02 (8) N2—C13—C11 109.8 (6)
S3—Mo2—S4 103.81 (7) N2—C13—C12 111.4 (6)
S2—Mo2—S6 101.58 (8) C11—C13—C12 112.6 (6)
S3—Mo2—S6 85.72 (6) N2—C13—H13A 107.6
S4—Mo2—S6 149.13 (7) C11—C13—H13A 107.6
S2—Mo2—S5 103.59 (8) C12—C13—H13A 107.6
S3—Mo2—S5 146.24 (7) N1—C7—S7 126.4 (5)
S4—Mo2—S5 86.05 (7) N1—C7—S8 123.9 (5)
S6—Mo2—S5 71.31 (7) S7—C7—S8 109.6 (4)
S2—Mo2—Mo1 98.63 (6) N2—C10—C9 111.9 (6)
S3—Mo2—Mo1 53.70 (5) N2—C10—C8 112.6 (7)
S4—Mo2—Mo1 53.29 (5) C9—C10—C8 113.5 (7)
S6—Mo2—Mo1 138.23 (5) N2—C10—H10A 106.1
S5—Mo2—Mo1 137.45 (5) C9—C10—H10A 106.1
S2—Mo2—Cu1 56.09 (6) C8—C10—H10A 106.1
S3—Mo2—Cu1 104.42 (5) N1—C6—C5 112.3 (6)
S4—Mo2—Cu1 49.13 (5) N1—C6—C4 108.4 (6)
S6—Mo2—Cu1 156.98 (6) C5—C6—C4 113.6 (6)
S5—Mo2—Cu1 106.21 (6) N1—C6—H6A 107.4
Mo1—Mo2—Cu1 58.83 (4) C5—C6—H6A 107.4
S2—Mo2—Cu2 57.22 (7) C4—C6—H6A 107.4
S3—Mo2—Cu2 49.00 (5) N1—C3—C1 112.6 (6)
S4—Mo2—Cu2 103.90 (6) N1—C3—C2 112.3 (6)
S6—Mo2—Cu2 104.35 (6) C1—C3—C2 114.5 (6)
S5—Mo2—Cu2 159.79 (6) N1—C3—H3A 105.5
Mo1—Mo2—Cu2 58.56 (4) C1—C3—H3A 105.5
Cu1—Mo2—Cu2 69.75 (5) C2—C3—H3A 105.5
S4—Cu1—Br1 124.95 (7) N2—C14—S5 126.6 (5)
S4—Cu1—S2 100.02 (9) N2—C14—S6 123.5 (5)
Br1—Cu1—S2 116.22 (8) S5—C14—S6 109.9 (4)
S4—Cu1—S1 102.17 (8) C16—C17—C15 108.4 (12)
Br1—Cu1—S1 114.44 (7) C16—C17—C15A 100 (2)
S2—Cu1—S1 93.70 (8) C16—C17—C16A 90.1 (16)
S4—Cu1—Mo1 54.58 (5) C16—C17—O1 125.5 (10)
Br1—Cu1—Mo1 148.85 (6) C15—C17—O1 113.2 (11)
S2—Cu1—Mo1 92.75 (7) C15A—C17—O1 108.3 (18)
S1—Cu1—Mo1 48.48 (5) C16A—C17—O1 121 (2)
S4—Cu1—Mo2 53.62 (6) C16—C17—H17 102.0
Br1—Cu1—Mo2 150.08 (6) C15—C17—H17 102.0
S2—Cu1—Mo2 47.51 (6) C15A—C17—H17 120.4
S1—Cu1—Mo2 93.37 (6) C16A—C17—H17 115.2
Mo1—Cu1—Mo2 59.37 (3) O1—C17—H17 102.0
S3—Cu2—Br2 125.87 (7) C19A—C20—O2 72.2 (18)
S3—Cu2—S1 103.11 (8) C19—C20—O2 104.5 (10)
Br2—Cu2—S1 115.75 (7) C19A—C20—C18 118.1 (18)
S3—Cu2—S2 99.62 (9) C19—C20—C18 113.8 (9)
Br2—Cu2—S2 112.85 (8) O2—C20—C18 115.1 (10)
S1—Cu2—S2 94.10 (8) C19A—C20—H20 129.3
S3—Cu2—Mo1 55.17 (5) C19—C20—H20 107.7
Br2—Cu2—Mo1 153.00 (6) O2—C20—H20 107.7
S1—Cu2—Mo1 49.02 (5) C18—C20—H20 107.7
S2—Cu2—Mo1 92.04 (7) C20—C18—H18A 109.5
S3—Cu2—Mo2 53.47 (6) C20—C18—H18B 109.5
Br2—Cu2—Mo2 146.41 (6) H18A—C18—H18B 109.5
S1—Cu2—Mo2 94.60 (6) C20—C18—H18C 109.5
S2—Cu2—Mo2 47.21 (6) H18A—C18—H18C 109.5
Mo1—Cu2—Mo2 59.44 (4) H18B—C18—H18C 109.5
Cu1—S4—Mo1 74.96 (6) C7—N1—C6 120.0 (5)
Cu1—S4—Mo2 77.26 (7) C7—N1—C3 123.1 (6)
Mo1—S4—Mo2 72.84 (6) C6—N1—C3 116.9 (5)
C14—S6—Mo2 89.4 (2) C14—N2—C10 124.0 (6)
C7—S7—Mo1 89.2 (2) C14—N2—C13 120.0 (5)
C7—S8—Mo1 89.3 (2) C10—N2—C13 116.0 (5)
Mo2—S2—Cu1 76.40 (7) C17—O1—H1D 109.5
Mo2—S2—Cu2 75.57 (7) C20—O2—H2D 109.5
Cu1—S2—Cu2 83.22 (8) C17—C15—H15A 109.5
Mo1—S1—Cu2 74.65 (6) C17—C15—H15B 109.5
Mo1—S1—Cu1 73.70 (6) C17—C15—H15C 109.5
Cu2—S1—Cu1 85.16 (7) C20—C19—H19A 109.5
C14—S5—Mo2 89.3 (2) C20—C19—H19B 109.5
Cu2—S3—Mo2 77.53 (7) H19A—C19—H19B 109.5
Cu2—S3—Mo1 74.43 (6) C20—C19—H19C 109.5
Mo2—S3—Mo1 72.65 (6) H19A—C19—H19C 109.5
C10—C9—H9A 109.5 H19B—C19—H19C 109.5
C10—C9—H9B 109.5 C17—C16—H16A 109.5
H9A—C9—H9B 109.5 C17—C16—H16B 109.5
C10—C9—H9C 109.5 C17—C16—H16C 109.5
H9A—C9—H9C 109.5 C20—C19A—H19D 109.5
H9B—C9—H9C 109.5 C20—C19A—H19E 109.5
C13—C12—H12A 109.5 H19D—C19A—H19E 109.5
C13—C12—H12B 109.5 C20—C19A—H19F 109.5
H12A—C12—H12B 109.5 H19D—C19A—H19F 109.5
C13—C12—H12C 109.5 H19E—C19A—H19F 109.5
H12A—C12—H12C 109.5 C17—C15A—H15D 109.5
H12B—C12—H12C 109.5 C17—C15A—H15E 109.5
C13—C11—H11A 109.5 H15D—C15A—H15E 109.5
C13—C11—H11B 109.5 C17—C15A—H15F 109.5
H11A—C11—H11B 109.5 H15D—C15A—H15F 109.5
C13—C11—H11C 109.5 H15E—C15A—H15F 109.5
H11A—C11—H11C 109.5 C17—C16A—H16D 109.5
H11B—C11—H11C 109.5 C17—C16A—H16E 109.5
C10—C8—H8A 109.5 C17—C16A—H16F 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2D···S5 0.82 2.47 3.199 (8) 149
O2—H2D···S6 0.82 2.59 3.258 (8) 139

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2539).

References

  1. Curtis, M. D., Druker, S. H., Goossen, L. & Kampf, J. W. (1997). Organometallics, 16, 231–235.
  2. Hidai, M., Ikada, T., Kuwata, S. & Mizobe, Y. (1999). Inorg. Chem.38, 64–69.
  3. Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  4. Lang, J.-P., Wei, Z.-H., Xu, Q.-F., Li, H.-X. & Chen, J.-X. (2003). J. Organomet. Chem.87, 197–202.
  5. Rigaku/MSC (2001). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stiefel, E. I., Halbert, T. R. & Cohen, S. A. (1985). Organometallics, 4, 1689–1690.
  9. Wu, X.-T., Zhu, N.-Y. & Zheng, Y.-F. (1990). J. Chem. Soc. Chem. Commun. pp. 780–781.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035241/hk2539sup1.cif

e-64-m1540-sup1.cif (28.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035241/hk2539Isup2.hkl

e-64-m1540-Isup2.hkl (325.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES